L. Douarin, N. M. Teillet, and M. A. , The migration of neural crest cells to the wall of the digestive tract in avian embryo, J. Embryol. Exp. Morphol, vol.30, pp.31-48, 1973.

H. M. Young, Colonizing while migrating: how do individual enteric neural crest cells behave?, BMC Biology, vol.12, issue.1, p.23, 2014.
DOI : 10.1002/(SICI)1097-0177(199903)214:3<239::AID-AJA7>3.0.CO;2-O

H. M. Young, Dynamics of neural crest-derived cell migration in the embryonic mouse gut, Developmental Biology, vol.270, issue.2, pp.455-473, 2004.
DOI : 10.1016/j.ydbio.2004.03.015

A. J. Burns and N. M. Douarin, The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system, Development, vol.125, pp.4335-4347, 1998.

A. S. Wallace and A. J. Burns, Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract, Cell and Tissue Research, vol.63, issue.3, pp.367-382, 2005.
DOI : 10.1007/s00441-004-1023-2

N. Nagy and A. M. Goldstein, Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system, Developmental Biology, vol.293, issue.1, pp.203-217, 2006.
DOI : 10.1016/j.ydbio.2006.01.032

H. M. Young, GDNF Is a Chemoattractant for Enteric Neural Cells, Developmental Biology, vol.229, issue.2, pp.503-516, 2001.
DOI : 10.1006/dbio.2000.0100

R. B. Anderson, The Cell Adhesion Molecule L1 Is Required for Chain Migration of Neural Crest Cells in the Developing Mouse Gut, Gastroenterology, vol.130, issue.4, pp.1221-1232, 2006.
DOI : 10.1053/j.gastro.2006.01.002

M. A. Breau, Lack of ??1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype, Development, vol.133, issue.9, pp.1725-1734, 2006.
DOI : 10.1242/dev.02346

M. A. Breau, A. Dahmani, F. Broders-bondon, J. Thiery, and S. Dufour, ??1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells, Development, vol.136, issue.16, pp.2791-2801, 2009.
DOI : 10.1242/dev.031419

F. Broders-bondon, P. Paul-gilloteaux, C. Carlier, G. L. Radice, and S. Dufour, N-cadherin and ??1-integrins cooperate during the development of the enteric nervous system, Developmental Biology, vol.364, issue.2, pp.178-191, 2012.
DOI : 10.1016/j.ydbio.2012.02.001

Y. Watanabe, Sox10 and Itgb1 interaction in enteric neural crest cell migration, Developmental Biology, vol.379, issue.1, pp.92-106, 2013.
DOI : 10.1016/j.ydbio.2013.04.013

J. L. Duband and J. P. Thiery, Distribution of laminin and collagens during avian neural crest development, Development, vol.101, pp.461-478, 1987.

R. Perris and D. Perissinotto, Role of the extracellular matrix during neural crest cell migration, Mechanisms of Development, vol.95, issue.1-2, pp.3-21, 2000.
DOI : 10.1016/S0925-4773(00)00365-8

E. Papusheva and C. Heisenberg, Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis, The EMBO Journal, vol.114, issue.16, pp.2753-2768, 2010.
DOI : 10.1016/j.devcel.2009.12.006

E. Brouzés and E. Farge, Interplay of mechanical deformation and patterned gene expression in developing embryos, Current Opinion in Genetics & Development, vol.14, issue.4, pp.367-374, 2004.
DOI : 10.1016/j.gde.2004.06.005

M. Théry and M. Bornens, Cell shape and cell division, Current Opinion in Cell Biology, vol.18, issue.6, pp.648-657, 2006.
DOI : 10.1016/j.ceb.2006.10.001

P. M. Gilbert, Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture, Science, vol.329, issue.5995, pp.1078-1081, 2011.
DOI : 10.1126/science.1191035

R. M. Tenney and D. Discher, Stem cells, microenvironment mechanics, and growth factor activation, Current Opinion in Cell Biology, vol.21, issue.5, pp.630-635, 2009.
DOI : 10.1016/j.ceb.2009.06.003

D. E. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1143, 2005.
DOI : 10.1126/science.1116995

C. Lo, H. Wang, M. Dembo, and Y. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-152, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

T. A. Ulrich, E. M. De-juan-pardo, and S. Kumar, The Mechanical Rigidity of the Extracellular Matrix Regulates the Structure, Motility, and Proliferation of Glioma Cells, Cancer Research, vol.69, issue.10, pp.4167-4174, 2009.
DOI : 10.1158/0008-5472.CAN-08-4859

L. Davidson and R. Keller, Measuring Mechanical Properties of Embryos and Embryonic Tissues, Methods Cell Biol, vol.83, pp.425-439, 2007.
DOI : 10.1016/S0091-679X(07)83018-4

N. R. Chevalier, E. Gazguez, S. Dufour, and V. Fleury, Measuring the micromechanical properties of embryonic tissues, Methods, vol.94, 2015.
DOI : 10.1016/j.ymeth.2015.08.001

S. Majkut, Heart-Specific Stiffening in Early Embryos Parallels Matrix and Myosin Expression to Optimize Beating, Current Biology, vol.23, issue.23, pp.2434-2439, 2013.
DOI : 10.1016/j.cub.2013.10.057

T. Savin, On the growth and form of the gut, Nature, vol.88, issue.7358, pp.57-62, 2011.
DOI : 10.1038/nature10277

A. M. Goldstein and N. Nagy, A Bird's Eye View of Enteric Nervous System Development: Lessons From the Avian Embryo, Pediatric Research, vol.40, issue.4, pp.326-333, 2008.
DOI : 10.1203/PDR.0b013e31818535e8

H. Gregersen, Biomechanics of the gastrointestinal tract, Neurogastroenterology & Motility, vol.259, issue.Suppl. III, 2003.
DOI : 10.1111/j.1365-2982.1996.tb00267.x

C. Odin, Collagen and myosin characterization by orientation field second harmonic microscopy, Optics Express, vol.16, issue.20, pp.16151-16165, 2008.
DOI : 10.1364/OE.16.016151

URL : https://hal.archives-ouvertes.fr/hal-00672471

T. Guilbert, A robust collagen scoring method for human liver fibrosis by second harmonic microscopy, Optics Express, vol.18, issue.25, pp.25794-807, 2010.
DOI : 10.1364/OE.18.025794

URL : https://hal.archives-ouvertes.fr/hal-00684532

P. J. Campagnola and L. M. Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nature Biotechnology, vol.21, issue.11, pp.1356-1360, 2003.
DOI : 10.1038/nbt894

G. Cox, 3-Dimensional imaging of collagen using second harmonic generation, Journal of Structural Biology, vol.141, issue.1, pp.53-62, 2003.
DOI : 10.1016/S1047-8477(02)00576-2

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure, Nature Protocols, vol.28, issue.4, pp.654-69, 2012.
DOI : 10.1364/OE.18.019339

N. Morishige, Second-Harmonic Imaging Microscopy of Normal Human and Keratoconus Cornea, Investigative Opthalmology & Visual Science, vol.48, issue.3, pp.1087-1094, 2007.
DOI : 10.1167/iovs.06-1177

R. T. Venkatasubramanian, Freeze???Thaw Induced Biomechanical Changes in Arteries: Role of Collagen Matrix and Smooth Muscle Cells, Annals of Biomedical Engineering, vol.87, issue.4, pp.694-706, 2010.
DOI : 10.1007/s10439-010-9921-9

G. Sommer, Biomechanical properties and microstructure of human ventricular myocardium, Acta Biomaterialia, vol.24, 2015.
DOI : 10.1016/j.actbio.2015.06.031

A. C. Chen and -. , Second harmonic generation and multiphoton microscopic detection of collagen without the need for species specific antibodies, Burns, vol.37, issue.6, pp.1001-1009, 2011.
DOI : 10.1016/j.burns.2011.03.013

R. F. Payette, Accumulation of components of basal laminae: Association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of mutant mice, Developmental Biology, vol.125, issue.2, pp.341-360, 1988.
DOI : 10.1016/0012-1606(88)90217-5

J. R. Tse and A. J. Engler, Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate, PLoS ONE, vol.96, issue.1, p.15978, 2011.
DOI : 10.1371/journal.pone.0015978.s003

I. J. Allan and D. F. Newgreen, The origin and differentiation of enteric neurons of the intestine of the fowl embryo, American Journal of Anatomy, vol.129, issue.2, pp.137-154, 1980.
DOI : 10.1002/aja.1001570203

R. P. Kapur, C. Yost, and R. D. Palmiter, A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice, Scientific RepoRts | Development, vol.6, issue.116, pp.20927-20937, 1992.

M. N. Woodward, Analysis of the effects of endothelin-3 on the development of neural crest cells in the embryonic mouse gut, Journal of Pediatric Surgery, vol.38, issue.9, pp.1322-1328, 2003.
DOI : 10.1016/S0022-3468(03)00389-0

A. L. Stewart, H. M. Young, M. Popoff, and R. B. Anderson, Effects of pharmacological inhibition of small GTPases on axon extension and migration of enteric neural crest-derived cells, Developmental Biology, vol.307, issue.1, pp.92-104, 2007.
DOI : 10.1016/j.ydbio.2007.04.024

E. M. Davis, Translocation of neural crest cells within a hydrated collagen lattice, J. Embryol. Exp. Morphol, vol.55, pp.17-31, 1980.

R. P. Tucker and C. A. Erickson, Morphology and behavior of quail neural crest cells in artificial three-dimensional extracellular matrices, Developmental Biology, vol.104, issue.2, pp.390-405, 1984.
DOI : 10.1016/0012-1606(84)90094-0

K. Wolf, Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force, The Journal of Cell Biology, vol.256, issue.5A, pp.1069-1084, 2013.
DOI : 10.1083/jcb.201210152.dv

E. M. Davis and J. P. Trinkaus, Significance of cell-to cell contacts for the directional movement of neural crest cells within a hydrated collagen lattice, J. Embryol. Exp. Morphol, vol.63, pp.29-51, 1981.

R. B. Anderson, Matrix metalloproteinase-2 is involved in the migration and network formation of enteric neural crest-derived cells, The International Journal of Developmental Biology, vol.54, issue.1, pp.63-69, 2010.
DOI : 10.1387/ijdb.082667ra

E. Monsonego-ornan, Matrix metalloproteinase 9/gelatinase B is required for neural crest cell migration, Developmental Biology, vol.364, issue.2, pp.162-177, 2012.
DOI : 10.1016/j.ydbio.2012.01.028

S. L. Schor, T. D. Allen, and C. J. Harrison, Cell migration through three-dimensional gels of native collagen fibres: collagenolytic activity is not required for the migration of two permanent cell lines, J. Cell Sci, vol.46, pp.171-186, 1980.

E. Evans, . Leung, and D. Zhelev, Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens, The Journal of Cell Biology, vol.122, issue.6, pp.1295-1300, 1993.
DOI : 10.1083/jcb.122.6.1295

T. Yeung, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motility and the Cytoskeleton, vol.100, issue.1, pp.24-34, 2005.
DOI : 10.1002/cm.20041

L. Flanagan, Y. Ju, B. Marg, M. Osterfield, and P. A. Janmey, Neurite branching on deformable substrates, NeuroReport, vol.13, issue.18, pp.2411-2415, 2002.
DOI : 10.1097/00001756-200212200-00007

G. Van-tetering, Metalloprotease ADAM10 Is Required for Notch1 Site 2 Cleavage, Journal of Biological Chemistry, vol.284, issue.45, pp.31018-31027, 2009.
DOI : 10.1074/jbc.M109.006775

L. Atapattu, M. Lackmann, and P. W. Janes, The role of proteases in regulating Eph/ephrin signaling, Cell Adhesion & Migration, vol.15, issue.4, pp.294-307, 2014.
DOI : 10.1038/nature09938

C. Santiskulvong, E. Rozengurt, and . Galardin, Galardin (GM 6001), a broad-spectrum matrix metalloproteinase inhibitor, blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells, Experimental Cell Research, vol.290, issue.2, pp.437-446, 2003.
DOI : 10.1016/S0014-4827(03)00355-0

R. Klein, Eph/ephrin signalling during development, Development, vol.139, issue.22, pp.4105-4114, 2012.
DOI : 10.1242/dev.074997

D. F. Newgreen, Physical influences on neural crest cell migration in avian embryos: Contact guidance and spatial restriction, Developmental Biology, vol.131, issue.1, pp.136-148, 1989.
DOI : 10.1016/S0012-1606(89)80045-4

N. R. Druckenbrod and M. L. Epstein, The pattern of neural crest advance in the cecum and colon, Developmental Biology, vol.287, issue.1, pp.125-133, 2005.
DOI : 10.1016/j.ydbio.2005.08.040

C. Nishiyama, Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system, Nature Neuroscience, vol.128, issue.9, pp.1211-1218, 2012.
DOI : 10.1016/j.tig.2006.09.005

N. R. Druckenbrod and M. L. Epstein, Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors, Development, vol.136, issue.18, pp.3195-3203, 2009.
DOI : 10.1242/dev.031302

R. Hotta, R. B. Anderson, K. Kobayashi, D. F. Newgreen, and H. M. Young, Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies, Neurogastroenterology & Motility, vol.262, issue.3, pp.17-19, 2010.
DOI : 10.1111/j.1365-2982.2009.01411.x

A. J. Barlow, J. Dixon, M. J. Dixon, and P. A. Trainor, Balancing neural crest cell intrinsic processes with those of the microenvironment in Tcof1 haploinsufficient mice enables complete enteric nervous system formation, Human Molecular Genetics, vol.21, issue.8, pp.1782-1793, 2012.
DOI : 10.1093/hmg/ddr611

A. J. Barlow, J. Dixon, M. Dixon, and P. A. Trainor, Tcof1 acts as a modifier of Pax3 during enteric nervous system development and in the pathogenesis of colonic aganglionosis, Human Molecular Genetics, vol.22, issue.6, pp.1206-1217, 2013.
DOI : 10.1093/hmg/dds528

R. Bolande, The neurocristopathiesA unifying concept of disease arising in neural crest maldevelopment, Human Pathology, vol.5, issue.4, pp.409-429, 1974.
DOI : 10.1016/S0046-8177(74)80021-3

N. E. Butler-tjaden and P. A. Trainor, The developmental etiology and pathogenesis of Hirschsprung disease, Translational Research, vol.162, issue.1, pp.1-15, 2013.
DOI : 10.1016/j.trsl.2013.03.001

R. Hotta, Transplanted progenitors generate functional enteric neurons in the postnatal colon, Journal of Clinical Investigation, vol.123, issue.3, pp.1182-1191, 2013.
DOI : 10.1172/JCI65963DS1

A. J. Burns and N. Thapar, Neural stem cell therapies for enteric nervous system disorders, Nature Reviews Gastroenterology & Hepatology, vol.53, issue.5, pp.1-12, 2013.
DOI : 10.1172/JCI58200

E. Theveneau and R. Mayor, Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration, Developmental Biology, vol.366, issue.1, pp.34-54, 2012.
DOI : 10.1016/j.ydbio.2011.12.041

B. R. Southwell, Staging of intestinal development in the chick embryo, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.101, issue.8, pp.909-920, 2006.
DOI : 10.1002/ar.a.20349

L. Stanchina, Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development, Developmental Biology, vol.295, issue.1, pp.232-249, 2006.
DOI : 10.1016/j.ydbio.2006.03.031

J. R. Tse and A. J. Engler, Preparation of Hydrogel Substrates with Tunable Mechanical Properties, Curr. Protoc. Cell Biol, vol.19, issue.10, p.16, 2010.
DOI : 10.1002/0471143030.cb1016s47

F. Gobeaux, Fibrillogenesis in Dense Collagen Solutions: A Physicochemical Study, Journal of Molecular Biology, vol.376, issue.5, pp.1509-1522, 2008.
DOI : 10.1016/j.jmb.2007.12.047

URL : https://hal.archives-ouvertes.fr/hal-00277303