Coupled Hidden Markov Model-Based Method for Apnea Bradycardia Detection.

Abstract : In this paper, we present a novel framework for the coupled hidden Markov model (CHMM), based on the forward and backward recursions and conditional probabilities, given a multidimensional observation. In the proposed framework, the interdependencies of states networks are modeled with Markovian-like transition laws that influence the evolution of hidden states in all channels. Moreover, an offline inference approach by maximum likelihood estimation is proposed for the learning procedure of model parameters. To evaluate its performance, we first apply the CHMM model to classify and detect disturbances using synthetic data generated by the FitzHugh-Nagumo model. The average sensitivity and specificity of the classification are above 93.98% and 95.38% and those of the detection reach 94.49% and 99.34%, respectively. The method is also evaluated using a clinical database composed of annotated physiological signal recordings of neonates suffering from apnea-bradycardia. Different combinations of beat-to-beat features extracted from electrocardiographic signals constitute the multidimensional observations for which the proposed CHMM model is applied, to detect each apnea bradycardia episode. The proposed approach is finally compared to other previously proposed HMM-based detection methods. Our CHMM provides the best performance on this clinical database, presenting an average sensitivity of 95.74% and specificity of 91.88% while it reduces the detection delay by -0.59 s.
Type de document :
Article dans une revue
IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2016, 20 (2), pp.527-38. 〈10.1109/JBHI.2015.2405075〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01289315
Contributeur : Lotfi Senhadji <>
Soumis le : samedi 17 décembre 2016 - 12:55:15
Dernière modification le : vendredi 23 décembre 2016 - 01:05:09
Document(s) archivé(s) le : mardi 21 mars 2017 - 04:35:26

Fichier

CoupledHiddenMarkovModel-Based...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nasim Montazeri Ghahjaverestan, Samira Masoudi, Mohammad Bagher Shamsollahi, Alain Beuchee, Patrick Pladys, et al.. Coupled Hidden Markov Model-Based Method for Apnea Bradycardia Detection.. IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2016, 20 (2), pp.527-38. 〈10.1109/JBHI.2015.2405075〉. 〈inserm-01289315〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

50