L. Tang and J. Cheng, Nonporous silica nanoparticles for nanomedicine application, Nano Today, vol.8, issue.3, pp.290-312, 2013.
DOI : 10.1016/j.nantod.2013.04.007

G. Oberdorster, E. Oberdorster, and J. Oberdorster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-862, 2005.
DOI : 10.1289/ehp.7339

R. Lovewell, Y. Patankar, and B. Berwin, Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa, AJP: Lung Cellular and Molecular Physiology, vol.306, issue.7, pp.591-603, 2014.
DOI : 10.1152/ajplung.00335.2013

A. Aderem and D. Underhill, MECHANISMS OF PHAGOCYTOSIS IN MACROPHAGES, Annual Review of Immunology, vol.17, issue.1, pp.593-623, 1999.
DOI : 10.1146/annurev.immunol.17.1.593

J. Chastre and J. Fagon, Ventilator-associated Pneumonia, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.7, pp.867-903, 2002.
DOI : 10.1164/ajrccm.165.7.2105078

M. Gaspar, W. Couet, J. Olivier, A. Pais, and J. Sousa, Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review, European Journal of Clinical Microbiology & Infectious Diseases, vol.35, issue.1, pp.1231-52, 2013.
DOI : 10.1007/s10096-013-1876-y

E. Lavoie, T. Wangdi, and B. Kazmierczak, Innate immune responses to Pseudomonas aeruginosa infection, Microbes and Infection, vol.13, issue.14-15, pp.1133-1178, 2011.
DOI : 10.1016/j.micinf.2011.07.011

A. Anas, J. Jiya, M. Rameez, P. Anand, M. Anantharaman et al., , a multiple antibiotic-resistant bacterium, Letters in Applied Microbiology, vol.44, issue.1, pp.57-62, 2013.
DOI : 10.1111/lam.12015

A. Carpenter, D. Slomberg, K. Rao, and M. Schoenfisch, Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles, ACS Nano, vol.5, issue.9, pp.7235-7279, 2011.
DOI : 10.1021/nn202054f

M. Geiser, B. Rothen-rutishauser, N. Kapp, S. Schurch, W. Kreyling et al., Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells, Environmental Health Perspectives, vol.113, issue.11, pp.1555-60, 2005.
DOI : 10.1289/ehp.8006

Q. Mu, N. Hondow, L. Krzeminski, A. Brown, L. Jeuken et al., Mechanism of cellular uptake of genotoxic silica nanoparticles, Particle and Fibre Toxicology, vol.9, issue.1, p.29, 2012.
DOI : 10.1016/j.snb.2007.01.014

O. Lunov, T. Syrovets, C. Rocker, K. Tron, G. Nienhaus et al., Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes, Biomaterials, vol.31, issue.34, pp.9015-9037, 2010.
DOI : 10.1016/j.biomaterials.2010.08.003

C. Tsai, S. Lu, C. Hu, C. Yeh, G. Lee et al., Size-Dependent Attenuation of TLR9 Signaling by Gold Nanoparticles in Macrophages, The Journal of Immunology, vol.188, issue.1, pp.68-76, 2012.
DOI : 10.4049/jimmunol.1100344

H. Wu, M. Chung, C. Wang, C. Huang, H. Liang et al., Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells, Particle and Fibre Toxicology, vol.10, issue.1, p.46, 2013.
DOI : 10.1016/j.bcp.2008.09.014

B. Prietl, C. Meindl, E. Roblegg, T. Pieber, G. Lanzer et al., Nano-sized and micro-sized polystyrene particles affect phagocyte function, Cell Biology and Toxicology, vol.41, issue.Suppl 1, pp.1-16, 2014.
DOI : 10.1007/s10565-013-9265-y

A. Wagner, C. Bleckmann, R. Murdock, A. Schrand, J. Schlager et al., Cellular Interaction of Different Forms of Aluminum Nanoparticles in Rat Alveolar Macrophages, The Journal of Physical Chemistry B, vol.111, issue.25, pp.7353-7362, 2007.
DOI : 10.1021/jp068938n

R. Liu, X. Zhang, Y. Pu, L. Yin, Y. Li et al., Small-Sized Titanium Dioxide Nanoparticles Mediate Immune Toxicity in Rat Pulmonary Alveolar Macrophages <I>In Vivo</I>, Journal of Nanoscience and Nanotechnology, vol.10, issue.8, pp.5161-5170, 2010.
DOI : 10.1166/jnn.2010.2420

J. Kim, A. Adamcakova-dodd, O. Shaughnessy, P. Grassian, V. Thorne et al., Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model, Particle and Fibre Toxicology, vol.8, issue.1, p.29, 2011.
DOI : 10.1073/pnas.0800599106

A. Shvedova, J. Fabisiak, E. Kisin, A. Murray, J. Roberts et al., Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and Infectivity, American Journal of Respiratory Cell and Molecular Biology, vol.38, issue.5, pp.579-90, 2008.
DOI : 10.1165/rcmb.2007-0255OC

S. Vranic, N. Boggetto, V. Contremoulins, S. Mornet, N. Reinhardt et al., Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry, Particle and Fibre Toxicology, vol.10, issue.1, 2013.
DOI : 10.1016/j.tiv.2012.01.019

URL : https://hal.archives-ouvertes.fr/hal-00813978

S. Vranic, I. Garcia-verdugo, C. Darnis, J. Sallenave, N. Boggetto et al., Internalization of SiO2 nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf??, Environmental Science and Pollution Research, vol.2, issue.5, pp.2761-70, 2013.
DOI : 10.1007/s11356-012-1436-5

S. Smulders, J. Kaiser, S. Zuin, V. Landuyt, K. Golanski et al., Contamination of nanoparticles by endotoxin: evaluation of different test methods, Particle and Fibre Toxicology, vol.9, issue.1, p.41, 2012.
DOI : 10.1080/1023624021000019315

V. G. De-moraes, M. Singer, B. Vargaftig, and M. Chignard, Effects of rolipram on cyclic AMP levels in alveolar macrophages and lipopolysaccharide-induced inflammation in mouse lung, British Journal of Pharmacology, vol.84, issue.4, pp.631-637, 1998.
DOI : 10.1038/sj.bjp.0701649

S. Kantrow, Z. Shen, T. Jagneaux, P. Zhang, and S. Nelson, Neutrophil-mediated lung permeability and host defense proteins, AJP: Lung Cellular and Molecular Physiology, vol.297, issue.4, pp.738-783, 2009.
DOI : 10.1152/ajplung.00045.2009

T. Hallstrand, T. Hackett, W. Altemeier, G. Matute-bello, P. Hansbro et al., Airway epithelial regulation of pulmonary immune homeostasis and inflammation, Clinical Immunology, vol.151, issue.1, pp.1-15, 2014.
DOI : 10.1016/j.clim.2013.12.003

L. Johnston, C. Rims, S. Gill, J. Mcguire, and A. Manicone, Pulmonary Macrophage Subpopulations in the Induction and Resolution of Acute Lung Injury, American Journal of Respiratory Cell and Molecular Biology, vol.47, issue.4, pp.417-443, 2012.
DOI : 10.1165/rcmb.2012-0090OC

G. Matute-bello, G. Downey, B. Moore, S. Groshong, M. Matthay et al., An Official American Thoracic Society Workshop Report: Features and Measurements of Experimental Acute Lung Injury in Animals, American Journal of Respiratory Cell and Molecular Biology, vol.44, issue.5, pp.725-763, 2011.
DOI : 10.1165/rcmb.2009-0210ST

Y. Liu, M. Di, H. Chu, X. Liu, L. Wang et al., Increased Susceptibility to Pulmonary Pseudomonas Infection in Splunc1 Knockout Mice, The Journal of Immunology, vol.191, issue.8, pp.4259-68, 2013.
DOI : 10.4049/jimmunol.1202340

R. Ramphal, V. Balloy, J. Jyot, A. Verma, M. Si-tahar et al., Control of Pseudomonas aeruginosa in the Lung Requires the Recognition of Either Lipopolysaccharide or Flagellin, The Journal of Immunology, vol.181, issue.1, pp.586-92, 2008.
DOI : 10.4049/jimmunol.181.1.586

URL : https://hal.archives-ouvertes.fr/pasteur-00277620

V. Rodriguez, T. Moalli, F. Polentarutti, N. Paroni, M. Bonavita et al., Role of Toll Interleukin-1 Receptor (IL-1R) 8, a Negative Regulator of IL-1R/Toll-Like Receptor Signaling, in Resistance to Acute Pseudomonas aeruginosa Lung Infection, Infection and Immunity, vol.80, issue.1, pp.100-109, 2012.
DOI : 10.1128/IAI.05695-11

L. Braydich-stolle, J. Speshock, A. Castle, M. Smith, R. Murdock et al., Nanosized Aluminum Altered Immune Function, ACS Nano, vol.4, issue.7, pp.3661-70, 2010.
DOI : 10.1021/nn9016789

D. Descamps, L. Gars, M. Balloy, V. Barbier, D. Maschalidi et al., Toll-like receptor 5 (TLR5), IL-1?? secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing, Proceedings of the National Academy of Sciences, vol.109, issue.5, pp.1619-1643, 2012.
DOI : 10.1073/pnas.1108464109

URL : https://hal.archives-ouvertes.fr/pasteur-00667246

R. Guadagnini, K. Moreau, S. Hussain, F. Marano, and S. Boland, Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells, Nanotoxicology, vol.21, issue.sup1
DOI : 10.1186/1743-8977-10-2

F. Marano, S. Hussain, F. Rodrigues-lima, A. Baeza-squiban, and S. Boland, Nanoparticles: molecular targets and cell signalling, Archives of Toxicology, vol.6, issue.Suppl 1, pp.733-774, 2011.
DOI : 10.1007/s00204-010-0546-4

D. Napierska, L. Thomassen, D. Lison, J. Martens, and P. Hoet, The nanosilica hazard: another variable entity, Particle and Fibre Toxicology, vol.7, issue.1, p.39, 2010.
DOI : 10.1186/1743-8977-7-39

R. Roy, S. Kumar, A. Tripathi, M. Das, and P. Dwivedi, Interactive threats of nanoparticles to the biological system, Immunology Letters, vol.158, issue.1-2, pp.79-87, 2013.
DOI : 10.1016/j.imlet.2013.11.019

B. Zolnik, A. Gonzalez-fernandez, N. Sadrieh, and M. Dobrovolskaia, Minireview: Nanoparticles and the Immune System, Endocrinology, vol.151, issue.2, pp.458-65, 2010.
DOI : 10.1210/en.2009-1082

E. Witasp, N. Kupferschmidt, L. Bengtsson, K. Hultenby, C. Smedman et al., Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells, Toxicology and Applied Pharmacology, vol.239, issue.3, pp.306-325, 2009.
DOI : 10.1016/j.taap.2009.06.011

P. Fu, V. Mohan, S. Mansoor, C. Tiruppathi, R. Sadikot et al., ???Induced Lung Inflammation and Permeability, American Journal of Respiratory Cell and Molecular Biology, vol.48, issue.4, pp.477-88, 2013.
DOI : 10.1165/rcmb.2012-0242OC

Z. Suntres, A. Omri, and P. Shek, Pseudomonas aeruginosa-induced lung injury: role of oxidative stress, Microbial Pathogenesis, vol.32, issue.1, pp.27-34, 2002.
DOI : 10.1006/mpat.2001.0475

E. Raoust, V. Balloy, I. Garcia-verdugo, L. Touqui, R. Ramphal et al., Pseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells, PLoS ONE, vol.180, issue.10, p.7259, 2009.
DOI : 10.1371/journal.pone.0007259.g008

L. Swedin, R. Arrighi, B. Andersson-willman, A. Murray, Y. Chen et al., Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii, Particle and Fibre Toxicology, vol.9, issue.1, p.16, 2012.
DOI : 10.1128/IAI.70.4.1750-1760.2002

M. Setyawati, C. Tay, S. Chia, S. Goh, W. Fang et al., Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE???cadherin, Nature Communications, vol.278, p.1673, 2013.
DOI : 10.1038/ncomms2655

D. Moir, D. Ming, T. Opperman, H. Schweizer, and T. Bowlin, Gyrase Inhibitors and Other DNA-Damaging Agents, Journal of Biomolecular Screening, vol.45, issue.56, pp.855-64, 2007.
DOI : 10.1177/1087057107304729