S. Kiriakidis, E. Andreakos, C. Monaco, B. Foxwell, M. Feldmann et al., VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2, Journal of Cell Science, vol.116, issue.4, pp.665-74, 2003.
DOI : 10.1242/jcs.00286

A. Blann, F. Belgore, C. Mccollum, S. Silverman, P. Lip et al., Vascular endothelial growth factor and its receptor, Flt-1, in the plasma of patients with coronary or peripheral atherosclerosis, or Type II diabetes, Clinical Science, vol.102, issue.2, pp.187-94, 2002.
DOI : 10.1042/cs1020187

S. Debette, S. Visvikis-siest, M. Chen, N. Ndiaye, C. Song et al., Identification of cis- and trans-Acting Genetic Variants Explaining Up to Half the Variation in Circulating Vascular Endothelial Growth Factor Levels, Circulation Research, vol.109, issue.5, pp.554-63, 2011.
DOI : 10.1161/CIRCRESAHA.111.243790

A. Aicher, C. Heeschen, C. Mildner-rihm, C. Urbich, C. Ihling et al., Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells, Nature Medicine, vol.9, issue.11, pp.1370-1376, 2003.
DOI : 10.1038/nm948

K. Podar and K. Anderson, The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications, Blood, vol.105, issue.4, pp.1383-95, 2005.
DOI : 10.1182/blood-2004-07-2909

M. Loebig, J. Klement, A. Schmoller, S. Betz, N. Heuck et al., Evidence for a Relationship between VEGF and BMI Independent of Insulin Sensitivity by Glucose Clamp Procedure in a Homogenous Group Healthy Young Men, PLoS ONE, vol.48, issue.1, p.12610, 2010.
DOI : 10.1371/journal.pone.0012610.t001

K. Hong, M. Cho, S. Min, Y. Shin, S. Yoo et al., Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts, Clinical & Experimental Immunology, vol.279, issue.174, pp.573-582, 2007.
DOI : 10.1111/j.1365-2249.2006.03295.x

J. Isenberg, G. Martin-manso, J. Maxhimer, and D. Roberts, Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies, Nature Reviews Cancer, vol.14, issue.3, pp.182-94, 2009.
DOI : 10.1038/nrc2561

F. Pujol, B. Lucibello, F. Gehling, U. Lindemann, K. Weidner et al., Endothelial-like cells derived from human CD14 positive monocytes, Differentiation, vol.65, issue.5, pp.287-300, 2000.
DOI : 10.1046/j.1432-0436.2000.6550287.x

M. Song and S. Cho, CD14 Acts as an Angiogenic Factor by Inducing Basic Fibroblast Growth Factor (bFGF), Bull Korean Chem Soc, vol.28, issue.9, pp.1613-1617, 2007.

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nature Reviews Cancer, vol.78, issue.3, pp.161-74, 2002.
DOI : 10.1038/nrc745

J. Westermarck, S. Li, P. Jaakkola, T. Kallunki, R. Grenman et al., Activation of fibroblast collagenase-1 expression by tumor cells of squamous cell carcinomas is mediated by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase-2, Cancer Res, vol.60, issue.24, pp.7156-62, 2000.

T. Itoh, M. Tanioka, H. Matsuda, H. Nishimoto, T. Yoshioka et al., Experimental metastasis is suppressed in MMP-9-deficient mice, Clinical & Experimental Metastasis, vol.17, issue.2, pp.177-81, 1999.
DOI : 10.1023/A:1006603723759

C. Gatto, M. Rieppi, P. Borsotti, S. Innocenti, R. Ceruti et al., BAY 12?9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity, Clin Cancer Res, vol.5, issue.11, pp.3603-3610, 1999.

G. Bergers, R. Brekken, G. Mcmahon, T. Vu, T. Itoh et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nat Cell Biol, vol.2, issue.10, pp.737-781, 2000.

Z. Zhou, S. Apte, R. Soininen, R. Cao, G. Baaklini et al., Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I, Proceedings of the National Academy of Sciences, vol.97, issue.8, pp.4052-4059, 2000.
DOI : 10.1073/pnas.060037197

C. Chang and Z. Werb, The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis, Trends in Cell Biology, vol.11, issue.11, pp.37-43, 2001.
DOI : 10.1016/S0962-8924(01)82222-4

J. Silvestre, Z. Mallat, R. Tamarat, M. Duriez, A. Tedgui et al., Regulation of Matrix Metalloproteinase Activity in Ischemic Tissue by Interleukin-10: Role in Ischemia-Induced Angiogenesis, Circulation Research, vol.89, issue.3, pp.259-64, 2001.
DOI : 10.1161/hh1501.094269

C. Carr, S. Aykent, N. Kimack, and A. Levine, Disulfide assignments in recombinant mouse and human interleukin 4, Biochemistry, vol.30, issue.6, pp.1515-1538, 1991.
DOI : 10.1021/bi00220a011

D. Faffe, L. Flynt, K. Bourgeois, P. Jr, R. Shore et al., Interleukin-13 and Interleukin-4 Induce Vascular Endothelial Growth Factor Release from Airway Smooth Muscle Cells, American Journal of Respiratory Cell and Molecular Biology, vol.34, issue.2
DOI : 10.1165/rcmb.2005-0147OC

C. Haas, M. Amin, B. Allen, J. Ruth, G. Haines-3rd et al., Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis, Arthritis & Rheumatism, vol.81, issue.8, pp.2402-2416, 2006.
DOI : 10.1002/art.22034

S. Visvikis-siest and G. Siest, The STANISLAS Cohort: a 10-year follow-up of supposed healthy families. Gene-environment interactions, reference values and evaluation of biomarkers in prevention of cardiovascular diseases, Clinical Chemistry and Laboratory Medicine, vol.46, issue.6, pp.733-780, 2008.
DOI : 10.1515/CCLM.2008.178

G. Siest, S. Visvikis, B. Herbeth, R. Gueguen, M. Vincent-viry et al., Objectives, Design and Recruitment of a Familial and Longitudinal Cohort for Studying Gene-Environment Interactions in the Field of Cardiovascular Risk: The Stanislas Cohort, Clinical Chemistry and Laboratory Medicine, vol.36, issue.1, pp.35-42, 1998.
DOI : 10.1515/CCLM.1998.007

S. Fitzgerald, J. Lamont, R. Mcconnell, and O. Benchikh, Development of a High-Throughput Automated Analyzer Using Biochip Array Technology, Clinical Chemistry, vol.51, issue.7, pp.1165-76, 2005.
DOI : 10.1373/clinchem.2005.049429

W. Friedewald, R. Levy, and D. Fredrickson, Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clin Chem, vol.18, issue.6, pp.499-502, 1972.

S. Miller, D. Dykes, and H. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Research, vol.16, issue.3, p.1215, 1988.
DOI : 10.1093/nar/16.3.1215

S. Cheng, C. Pallaud, M. Grow, S. Scharf, H. Erlich et al., A Multilocus Genotyping Assay for Cardiovascular Disease, Clinical Chemistry and Laboratory Medicine, vol.36, issue.8, pp.561-567, 1998.
DOI : 10.1515/CCLM.1998.096

C. Hoppe, W. Klitz, S. Cheng, R. Apple, L. Steiner et al., Gene interactions and stroke risk in children with sickle cell anemia, Blood, vol.103, issue.6, pp.2391-2397, 2004.
DOI : 10.1182/blood-2003-09-3015

M. Ehrich, S. Bocker, and D. Van-den-boom, Multiplexed discovery of sequence polymorphisms using base-specific cleavage and MALDI-TOF MS, Nucleic Acids Research, vol.33, issue.4, p.38, 2005.
DOI : 10.1093/nar/gni038

J. Marteau, S. Mohr, M. Pfister, and S. Visvikis-siest, Collection and Storage of Human Blood Cells for mRNA Expression Profiling: A 15-Month Stability Study, Clinical Chemistry, vol.51, issue.7, pp.1250-1252, 2005.
DOI : 10.1373/clinchem.2005.048546

M. Yoshimura, H. Yasue, M. Nakayama, Y. Shimasaki, H. Sumida et al., A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese, Human Genetics, vol.103, issue.1, pp.65-74, 1998.
DOI : 10.1007/s004390050785

G. Sofowora, V. Dishy, H. Xie, H. Imamura, Y. Nishimi et al., In-vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism, Pharmacogenetics, vol.11, issue.9, pp.809-823, 2001.
DOI : 10.1097/00008571-200112000-00009

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, issue.1, p.40, 2008.
DOI : 10.1186/1471-2105-9-40

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nature Protocols, vol.59, issue.4, pp.725-763, 2010.
DOI : 10.1038/nprot.2010.5

S. Purcell, N. B. Todd-brown, K. Thomas, L. Ferreira, M. Bender et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-75, 2007.
DOI : 10.1086/519795

C. Ryk, N. Wiklund, T. Nyberg, and P. De-verdier, Polymorphisms in nitric-oxide synthase 3 may influence the risk of urinary-bladder cancer, Nitric Oxide, vol.25, issue.3, pp.338-381, 2011.
DOI : 10.1016/j.niox.2011.06.003

E. Venturelli, C. Villa, C. Fenoglio, F. Clerici, A. Marcone et al., (Glu298Asp) polymorphism is a risk factor for frontotemporal lobar degeneration, European Journal of Neurology, vol.26, issue.Suppl. 1, pp.37-42, 2009.
DOI : 10.1111/j.1468-1331.2008.02335.x

K. Hibi, T. Ishigami, K. Tamura, S. Mizushima, N. Nyui et al., Endothelial Nitric Oxide Synthase Gene Polymorphism and Acute Myocardial Infarction, Hypertension, vol.32, issue.3, pp.521-527, 1998.
DOI : 10.1161/01.HYP.32.3.521

M. Colombo, M. Andreassi, U. Paradossi, N. Botto, S. Manfredi et al., Evidence for association of a common variant of the endothelial nitric oxide synthase gene (Glu298->Asp polymorphism) to the presence, extent, and severity of coronary artery disease, Heart, vol.87, issue.6, pp.525-533, 2002.
DOI : 10.1136/heart.87.6.525

D. Mcnamara, R. Holubkov, L. Postava, R. Ramani, K. Janosko et al., Effect of the Asp298 Variant of Endothelial Nitric Oxide Synthase on Survival for Patients With Congestive Heart Failure, Circulation, vol.107, issue.12, pp.1598-602, 2003.
DOI : 10.1161/01.CIR.0000060540.93836.AA

D. Rios, D. Onofrio, L. Souza, J. Queiroz, A. Raduy-maron et al., Smoking-dependent and haplotype-specific effects of endothelial nitric oxide synthase gene polymorphisms on angiographically assessed coronary artery disease in Caucasian- and African-Brazilians, Atherosclerosis, vol.193, issue.1, pp.135-176, 2007.
DOI : 10.1016/j.atherosclerosis.2006.05.041

B. Morray, I. Goldenberg, A. Moss, W. Zareba, D. Ryan et al., Polymorphisms in the Paraoxonase and Endothelial Nitric Oxide Synthase Genes and the Risk of Early-Onset Myocardial Infarction, The American Journal of Cardiology, vol.99, issue.8, pp.1100-1105, 2007.
DOI : 10.1016/j.amjcard.2006.12.022

M. Azimi-nezhad, M. Stathopoulou, A. Bonnefond, M. Rancier, A. Saleh et al., Associations of vascular endothelial growth factor (VEGF) with adhesion and inflammation molecules in a healthy population, Cytokine, vol.61, issue.2, pp.602-609, 2013.
DOI : 10.1016/j.cyto.2012.10.024

J. Dedio, P. Konig, P. Wohlfart, C. Schroeder, W. Kummer et al., NOSIP, a novel modulator of endothelial nitric oxide synthase activity, The FASEB Journal, vol.15, issue.1, pp.79-89, 2001.
DOI : 10.1096/fj.00-0078com

I. Zachary, Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor, Am J Physiol Cell Physiol, vol.280, issue.6, pp.1375-86, 2001.

T. Levan, J. Bloom, T. Bailey, C. Karp, M. Halonen et al., A Common Single Nucleotide Polymorphism in the CD14 Promoter Decreases the Affinity of Sp Protein Binding and Enhances Transcriptional Activity, The Journal of Immunology, vol.167, issue.10, pp.5838-5882, 2001.
DOI : 10.4049/jimmunol.167.10.5838

E. Salvi, Z. Kutalik, N. Glorioso, P. Benaglio, F. Frau et al., Genomewide Association Study Using a High-Density Single Nucleotide Polymorphism Array and Case-Control Design Identifies a Novel Essential Hypertension Susceptibility Locus in the Promoter Region of Endothelial NO Synthase, Hypertension, vol.59, issue.2, pp.248-55, 2012.
DOI : 10.1161/HYPERTENSIONAHA.111.181990

T. Roger, C. Froidevaux, L. Roy, D. Reymond, M. Chanson et al., Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4, Proceedings of the National Academy of Sciences, vol.106, issue.7, pp.2348-52, 2009.
DOI : 10.1073/pnas.0808146106

K. Yamaji-kegan, Q. Su, D. Angelini, and R. Johns, IL-4 Is Proangiogenic in the Lung under Hypoxic Conditions, The Journal of Immunology, vol.182, issue.9, pp.5469-76, 2009.
DOI : 10.4049/jimmunol.0713347

M. Saleh, A. Wiegmans, Q. Malone, S. Stylli, and A. Kaye, Effect of In Situ Retroviral Interleukin-4 Transfer on Established Intracranial Tumors, JNCI Journal of the National Cancer Institute, vol.91, issue.5, pp.438-483, 1999.
DOI : 10.1093/jnci/91.5.438

S. Ye, P. Eriksson, A. Hamsten, M. Kurkinen, S. Humphries et al., Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression, J Biol Chem, vol.271, issue.22, pp.13055-60, 1996.

M. Nguyen, J. Arkell, and C. Jackson, Human endothelial gelatinases and angiogenesis, The International Journal of Biochemistry & Cell Biology, vol.33, issue.10, pp.960-70, 2001.
DOI : 10.1016/S1357-2725(01)00007-3

R. Liutkeviciene, D. Zaliaduonyte-peksiene, D. Zaliuniene, O. Gustiene, V. Jasinskas et al., Does matrix metalloproteinase-3 polymorphism play a role in age-related macular degeneration in patients with myocardial infarction?, Medicina (Kaunas), vol.48, issue.8, pp.404-413, 2012.

A. Sandhofer, T. Tatarczyk, R. Kirchmair, B. Iglseder, B. Paulweber et al., Are plasma VEGF and its soluble receptor sFlt-1 atherogenic risk factors? Cross-sectional data from the SAPHIR study, Atherosclerosis, vol.206, issue.1, pp.265-274, 2009.
DOI : 10.1016/j.atherosclerosis.2009.01.031

M. Stathopoulou, A. Bonnefond, N. Ndiaye, M. Azimi-nezhad, E. Shamieh et al., A common variant highly associated with plasma VEGFA levels also contributes to the variation of both LDL-C and HDL-C, The Journal of Lipid Research, vol.54, issue.2, pp.535-576, 2013.
DOI : 10.1194/jlr.P030551