M. Desai, F. Ter-kuile, F. Nosten, R. Mcgready, K. Asamoa et al., Epidemiology and burden of malaria in pregnancy, The Lancet Infectious Diseases, vol.7, issue.2, pp.93-104, 2007.
DOI : 10.1016/S1473-3099(07)70021-X

J. Beeson, N. Amin, M. Kanjala, and S. Rogerson, Selective Accumulation of Mature Asexual Stages of Plasmodium falciparum-Infected Erythrocytes in the Placenta, Infection and Immunity, vol.70, issue.10, pp.5412-5417, 2002.
DOI : 10.1128/IAI.70.10.5412-5415.2002

S. Rogerson, L. Hviid, P. Duffy, R. Leke, and D. Taylor, Malaria in pregnancy: pathogenesis and immunity, The Lancet Infectious Diseases, vol.7, issue.2, pp.105-122, 2007.
DOI : 10.1016/S1473-3099(07)70022-1

S. Rogerson, E. Pollina, A. Getachew, E. Tadesse, V. Lema et al., Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes, Am J Trop Med Hyg, vol.68, pp.115-124, 2003.

C. Menendez, J. Ordi, M. Ismail, P. Ventura, J. Aponte et al., The Impact of Placental Malaria on Gestational Age and Birth Weight, The Journal of Infectious Diseases, vol.181, issue.5, pp.1740-1745, 2000.
DOI : 10.1086/315449

M. Ismail, J. Ordi, C. Menendez, P. Ventura, J. Aponte et al., Placental pathology in malaria: A histological, immunohistochemical, and quantitative study, Human Pathology, vol.31, issue.1, pp.85-93, 2000.
DOI : 10.1016/S0046-8177(00)80203-8

M. Fried, R. Muga, A. Misore, and P. Duffy, Malaria elicits type 1 cytokines in the human placenta: IFN-gamma and TNF-alpha associated with pregnancy outcomes, J Immunol, vol.160, pp.2523-2553, 1998.

S. Rogerson, H. Brown, E. Pollina, E. Abrams, E. Tadesse et al., Placental Tumor Necrosis Factor Alpha but Not Gamma Interferon Is Associated with Placental Malaria and Low Birth Weight in Malawian Women, Infection and Immunity, vol.71, issue.1, pp.267-70, 2003.
DOI : 10.1128/IAI.71.1.267-270.2003

M. Mcdevitt, J. Xie, G. Shanmugasundaram, J. Griffith, A. Liu et al., A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia, The Journal of Experimental Medicine, vol.59, issue.5, pp.1185-96, 2006.
DOI : 10.1093/nar/gni123

P. Singh, N. Lucchi, A. Blackstock, V. Udhayakumar, and N. Singh, Intervillous Macrophage Migration Inhibitory Factor Is Associated with Adverse Birth Outcomes in a Study Population in Central India, PLoS ONE, vol.70, issue.12, p.51678, 2012.
DOI : 10.1371/journal.pone.0051678.t002

M. Stevenson and E. Riley, Innate immunity to malaria, Nature Reviews Immunology, vol.161, issue.3, pp.169-80, 2004.
DOI : 10.1038/nri1311

L. Mac-daniel and R. Menard, Plasmodium and mononuclear phagocytes, Microbial Pathogenesis, vol.78, pp.43-51, 2015.
DOI : 10.1016/j.micpath.2014.11.011

R. Silverstein and M. Febbraio, CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior, Science Signaling, vol.2, issue.72, p.3, 2009.
DOI : 10.1126/scisignal.272re3

G. Trinchieri and A. Sher, Cooperation of Toll-like receptor signals in innate immune defence, Nature Reviews Immunology, vol.181, issue.3, pp.179-90, 2007.
DOI : 10.1038/nri2038

I. Mcgilvray, L. Serghides, A. Kapus, O. Rotstein, and K. Kain, Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparumparasitized erythrocytes: a role for CD36 in malarial clearance, Blood, vol.96, pp.3231-3271, 2000.

S. Patel, L. Serghides, T. Smith, M. Febbraio, R. Silverstein et al., ???Infected Erythrocytes by Rodent Macrophages, The Journal of Infectious Diseases, vol.189, issue.2, pp.204-217, 2004.
DOI : 10.1086/380764

L. Serghides and K. Kain, Peroxisome Proliferator-Activated Receptor ??-Retinoid X Receptor Agonists Increase CD36-Dependent Phagocytosis of Plasmodium falciparum-Parasitized Erythrocytes and Decrease Malaria-Induced TNF-?? Secretion by Monocytes/Macrophages, The Journal of Immunology, vol.166, issue.11, pp.6742-6750, 2001.
DOI : 10.4049/jimmunol.166.11.6742

S. Patel, Z. Lu, K. Ayi, L. Serghides, D. Gowda et al., Disruption of CD36 Impairs Cytokine Response to Plasmodium falciparum Glycosylphosphatidylinositol and Confers Susceptibility to Severe and Fatal Malaria In Vivo, The Journal of Immunology, vol.178, issue.6, pp.3954-61, 2007.
DOI : 10.4049/jimmunol.178.6.3954

J. Zhu, X. Wu, S. Goel, N. Gowda, S. Kumar et al., MAPK-activated Protein Kinase 2 Differentially Regulates Plasmodium falciparum Glycosylphosphatidylinositol-induced Production of Tumor Necrosis Factor-?? and Interleukin-12 in Macrophages, Journal of Biological Chemistry, vol.284, issue.23, pp.15750-61, 2009.
DOI : 10.1074/jbc.M901111200

C. Ockenhouse, N. Tandon, C. Magowan, G. Jamieson, and J. Chulay, Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor, Science, vol.243, issue.4897, pp.1469-71, 1989.
DOI : 10.1126/science.2467377

M. Fried and P. Duffy, Adherence of Plasmodium falciparum to Chondroitin Sulfate A in the Human Placenta, Science, vol.272, issue.5267, pp.1502-1506, 1996.
DOI : 10.1126/science.272.5267.1502

J. Doritchamou, S. Sossou-tchatcha, G. Cottrell, A. Moussiliou, H. Houngbeme et al., Dynamics in the Cytoadherence Phenotypes of Plasmodium falciparum Infected Erythrocytes Isolated during Pregnancy, PLoS ONE, vol.3, issue.6, p.98577, 2014.
DOI : 10.1371/journal.pone.0098577.t005

URL : https://hal.archives-ouvertes.fr/hal-01345170

A. Nicholson, Expression of CD36 in Macrophages and Atherosclerosis The Role of Lipid Regulation of PPAR?? Signaling, Trends in Cardiovascular Medicine, vol.14, issue.1, pp.8-12, 2004.
DOI : 10.1016/j.tcm.2003.09.004

A. Maruyama, S. Tsukamoto, K. Nishikawa, A. Yoshida, N. Harada et al., Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements, Archives of Biochemistry and Biophysics, vol.477, issue.1, pp.139-184, 2008.
DOI : 10.1016/j.abb.2008.06.004

H. Atamna and H. Ginsburg, Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum, Molecular and Biochemical Parasitology, vol.61, issue.2, pp.231-272, 1993.
DOI : 10.1016/0166-6851(93)90069-A

M. Bilban, F. Bach, S. Otterbein, E. Ifedigbo, J. Avila et al., Carbon Monoxide Orchestrates a Protective Response through PPAR??, Immunity, vol.24, issue.5, pp.601-611, 2006.
DOI : 10.1016/j.immuni.2006.03.012

T. Yamamoto, T. Suzuki, A. Kobayashi, J. Wakabayashi, J. Maher et al., Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity, Molecular and Cellular Biology, vol.28, issue.8, pp.2758-70, 2008.
DOI : 10.1128/MCB.01704-07

D. Olagnier, R. Lavergne, E. Meunier, L. Lefèvre, C. Dardenne et al., Nrf2, a PPAR?? Alternative Pathway to Promote CD36 Expression on Inflammatory Macrophages: Implication for Malaria, PLoS Pathogens, vol.5, issue.9, p.1002254, 2011.
DOI : 10.1371/journal.ppat.1002254.s006

T. Deramaudt, C. Dill, and M. Bonay, Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases, M??decine et Maladies Infectieuses, vol.43, issue.3, pp.100-107, 2013.
DOI : 10.1016/j.medmal.2013.02.004

A. Ferreira, J. Balla, V. Jeney, G. Balla, and M. Soares, A central role for free heme in the pathogenesis of severe malaria: the missing link?, Journal of Molecular Medicine, vol.59, issue.10, pp.1097-111, 2008.
DOI : 10.1007/s00109-008-0368-5

A. Pamplona, A. Ferreira, J. Balla, V. Jeney, G. Balla et al., Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria, Nature Medicine, vol.69, issue.6, pp.703-713, 2007.
DOI : 10.1038/nm1586

V. Jeney, S. Ramos, M. Bergman, I. Bechmann, J. Tischer et al., Control of Disease Tolerance to Malaria by Nitric Oxide and Carbon Monoxide, Cell Reports, vol.8, issue.1, pp.126-162, 2014.
DOI : 10.1016/j.celrep.2014.05.054

M. Walther, D. Caul, A. Aka, P. Njie, M. Amambua-ngwa et al., HMOX1 Gene Promoter Alleles and High HO-1 Levels Are Associated with Severe Malaria in Gambian Children, PLoS Pathogens, vol.3, issue.1, p.1002579, 2012.
DOI : 10.1371/journal.ppat.1002579.s006

I. Clark, M. Awburn, C. Harper, N. Liomba, and M. Molyneux, Induction of HO-1 in tissue macrophages and monocytes in fatal falciparum malaria and sepsis, Malaria Journal, vol.2, issue.1, p.41, 2003.
DOI : 10.1186/1475-2875-2-41

A. Etzerodt and S. Moestrup, CD163 and Inflammation: Biological, Diagnostic, and Therapeutic Aspects, Antioxidants & Redox Signaling, vol.18, issue.17, pp.2352-63, 2013.
DOI : 10.1089/ars.2012.4834

G. Bertin, T. Lavstsen, F. Guillonneau, J. Doritchamou, C. Wang et al., Expression of the Domain Cassette 8 Plasmodium falciparum Erythrocyte Membrane Protein 1 Is Associated with Cerebral Malaria in Benin, PLoS ONE, vol.74, issue.7, p.68368, 2013.
DOI : 10.1371/journal.pone.0068368.s002

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

B. Brabin, C. Romagosa, S. Abdelgalil, C. Menéndez, F. Verhoeff et al., The Sick Placenta???The Role of Malaria, Placenta, vol.25, issue.5, pp.359-78, 2004.
DOI : 10.1016/j.placenta.2003.10.019

E. Dorman, C. Shulman, J. Kingdom, J. Bulmer, J. Mwendwa et al., Impaired uteroplacental blood flow in pregnancies complicated by falciparum malaria, Ultrasound in Obstetrics and Gynecology, vol.51, issue.1, pp.165-70, 2002.
DOI : 10.1016/0035-9203(83)90081-0

T. Imamura, T. Sugiyama, L. Cuevas, R. Makunde, and S. Nakamura, ???Infected Placentas, The Journal of Infectious Diseases, vol.186, issue.3, pp.436-476, 2002.
DOI : 10.1086/341507

R. Achur, M. Valiyaveettil, A. Alkhalil, C. Ockenhouse, and D. Gowda, Characterization of Proteoglycans of Human Placenta and Identification of Unique Chondroitin Sulfate Proteoglycans of the Intervillous Spaces That Mediate the Adherence of Plasmodium falciparum-infected Erythrocytes to the Placenta, Journal of Biological Chemistry, vol.275, issue.51, pp.40344-56, 2000.
DOI : 10.1074/jbc.M006398200

L. Serghides, S. Patel, K. Ayi, and K. Kain, Placental Chondroitin Sulfate A???Binding Malarial Isolates Evade Innate Phagocytic Clearance, The Journal of Infectious Diseases, vol.194, issue.1, pp.133-142, 2006.
DOI : 10.1086/504721

L. Sharma, J. Kaur, and G. Shukla, Role of Oxidative Stress and Apoptosis in the Placental Pathology of Plasmodium berghei Infected Mice, PLoS ONE, vol.4, issue.1, p.32694, 2012.
DOI : 10.1371/journal.pone.0032694.g010

J. Ordi, M. Ismail, P. Ventura, E. Kahigwa, R. Hirt et al., Massive Chronic Intervillositis of the Placenta Associated With Malaria Infection, The American Journal of Surgical Pathology, vol.22, issue.8, pp.1006-1017, 1998.
DOI : 10.1097/00000478-199808000-00011

A. Chêne, V. Briand, S. Ibitokou, S. Dechavanne, A. Massougbodji et al., Placental Cytokine and Chemokine Profiles Reflect Pregnancy Outcomes in Women Exposed to Plasmodium falciparum Infection, Infection and Immunity, vol.82, issue.9, pp.3783-3792, 2014.
DOI : 10.1128/IAI.01922-14

S. Boström, S. Ibitokou, M. Oesterholt, C. Schmiegelow, J. Persson et al., Biomarkers of Plasmodium falciparum Infection during Pregnancy in Women Living in Northeastern Tanzania, PLoS ONE, vol.21, issue.11, p.48763, 2012.
DOI : 10.1371/journal.pone.0048763.t002

D. Ochiel, G. Awandare, C. Keller, J. Hittner, P. Kremsner et al., Differential Regulation of ??-Chemokines in Children with Plasmodium falciparum Malaria, Infection and Immunity, vol.73, issue.7, pp.4190-4197, 2005.
DOI : 10.1128/IAI.73.7.4190-4197.2005

C. John, R. Opika-opoka, J. Byarugaba, R. Idro, and M. Boivin, Low Levels of RANTES Are Associated with Mortality in Children with Cerebral Malaria, The Journal of Infectious Diseases, vol.194, issue.6, pp.837-882, 2006.
DOI : 10.1086/506623

T. Were, G. Davenport, E. Yamo, J. Hittner, G. Awandare et al., Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism, Microbes and Infection, vol.11, issue.8-9, pp.811-820, 2009.
DOI : 10.1016/j.micinf.2009.04.021

L. Erdman, A. Dhabangi, C. Musoke, A. Conroy, M. Hawkes et al., Combinations of Host Biomarkers Predict Mortality among Ugandan Children with Severe Malaria: A Retrospective Case-Control Study, PLoS ONE, vol.62, issue.2, p.17440, 2011.
DOI : 10.1371/journal.pone.0017440.t004

H. Armah, N. Wilson, B. Sarfo, M. Powell, V. Bond et al., Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children, Malaria Journal, vol.6, issue.1, p.147, 2007.
DOI : 10.1186/1475-2875-6-147

J. Skrzeczy?ska-moncznik, M. Bzowska, S. Loseke, E. Grage-griebenow, M. Zembala et al., Monocytes are Main Producers of IL-10, Scandinavian Journal of Immunology, vol.138, issue.2, pp.152-161, 2008.
DOI : 10.1111/j.1365-3083.2007.02051.x

S. Sadrzadeh, E. Graf, S. Panter, P. Hallaway, and J. Eaton, Hemoglobin. A biologic fenton reagent, J Biol Chem, vol.259, pp.14354-14360, 1984.

P. Philippidis, J. Mason, B. Evans, I. Nadra, K. Taylor et al., Hemoglobin Scavenger Receptor CD163 Mediates Interleukin-10 Release and Heme Oxygenase-1 Synthesis: Antiinflammatory Monocyte-Macrophage Responses In Vitro, in Resolving Skin Blisters In Vivo, and After Cardiopulmonary Bypass Surgery, Circulation Research, vol.94, issue.1, pp.119-145, 2004.
DOI : 10.1161/01.RES.0000109414.78907.F9

K. Yunoki, T. Inoue, K. Sugioka, M. Nakagawa, M. Inaba et al., Association between hemoglobin scavenger receptor and heme oxygenase???1???related anti-inflammatory mediators in human coronary stable and unstable plaques, Human Pathology, vol.44, issue.10, pp.2256-65, 2013.
DOI : 10.1016/j.humpath.2013.05.008

C. Chua, G. Brown, J. Hamilton, M. Molyneux, S. Rogerson et al., Soluble CD163, a Product of Monocyte/Macrophage Activation, Is Inversely Associated with Haemoglobin Levels in Placental Malaria, PLoS ONE, vol.63, issue.5, p.64127, 2013.
DOI : 10.1371/journal.pone.0064127.t001

B. Davis and P. Zarev, Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels, Cytometry Part B: Clinical Cytometry, vol.37, issue.1, pp.16-22, 2005.
DOI : 10.1002/cyto.b.20031

K. Belge, F. Dayyani, A. Horelt, M. Siedlar, M. Frankenberger et al., The Proinflammatory CD14+CD16+DR++ Monocytes Are a Major Source of TNF, The Journal of Immunology, vol.168, issue.7, pp.3536-3578, 2002.
DOI : 10.4049/jimmunol.168.7.3536

A. Berry, G. Chene, F. Benoit-vical, J. Lepert, J. Bernad et al., EX VIVO AND IN VITRO IMPAIRMENT OF CD36 EXPRESSION AND TUMOR NECROSIS FACTOR-?? PRODUCTION IN HUMAN MONOCYTES IN RESPONSE TO PLASMODIUM FALCIPARUM???PARASITIZED ERYTHROCYTES, Journal of Parasitology, vol.91, issue.2, pp.316-338, 2005.
DOI : 10.1645/GE-346R

R. Tenhunen, The enzymatic degradation of heme, Semin Hematol, vol.9, pp.19-29, 1972.

C. Penha-gonçalves, R. Gozzelino, and L. De-moraes, Iron overload in Plasmodium berghei-infected placenta as a pathogenesis mechanism of fetal death, Front Pharmacol, vol.5, p.155, 2014.

M. Bardou, T. Hadi, G. Mace, M. Pesant, J. Debermont et al., Systemic increase in human maternal circulating CD14+CD16??? MCP-1+ monocytes as a marker of labor, American Journal of Obstetrics and Gynecology, vol.210, issue.1, pp.70-71, 2014.
DOI : 10.1016/j.ajog.2013.08.031