A meta-approach for improving the prediction and the functional annotation of ortholog groups

Cécile Pereira 1, 2 Alain Denise 2, 1 Olivier Lespinet 2, 1, *
* Auteur correspondant
2 AMIB - Algorithms and Models for Integrative Biology
CNRS - Centre National de la Recherche Scientifique : UMR8623, X - École polytechnique, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique, LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau]
Abstract : Background: In comparative genomics, orthologs are used to transfer annotation from genes already characterized to newly sequenced genomes. Many methods have been developed for finding orthologs in sets of genomes. However, the application of different methods on the same proteome set can lead to distinct orthology predictions. Methods: We developed a method based on a meta-approach that is able to combine the results of several methods for orthologous group prediction. The purpose of this method is to produce better quality results by using the overlapping results obtained from several individual orthologous gene prediction procedures. Our method proceeds in two steps. The first aims to construct seeds for groups of orthologous genes; these seeds correspond to the exact overlaps between the results of all or several methods. In the second step, these seed groups are expanded by using HMM profiles. Results: We evaluated our method on two standard reference benchmarks, OrthoBench and Orthology Benchmark Service. Our method presents a higher level of accurately predicted groups than the individual input methods of orthologous group prediction. Moreover, our method increases the number of annotated orthologous pairs without decreasing the annotation quality compared to twelve state-of-the-art methods. Conclusions: The meta-approach based method appears to be a reliable procedure for predicting orthologous groups. Since a large number of methods for predicting groups of orthologous genes exist, it is quite conceivable to apply this meta-approach to several combinations of different methods.
Type de document :
Article dans une revue
BMC Genomics, BioMed Central, 2014, 〈10.1186/1471-2164-15-S6-S16〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01229454
Contributeur : Christine Dupuis <>
Soumis le : lundi 16 novembre 2015 - 16:21:32
Dernière modification le : jeudi 10 mai 2018 - 02:06:12
Document(s) archivé(s) le : vendredi 28 avril 2017 - 17:58:04

Fichier

1471-2164-15-S6-S16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cécile Pereira, Alain Denise, Olivier Lespinet. A meta-approach for improving the prediction and the functional annotation of ortholog groups. BMC Genomics, BioMed Central, 2014, 〈10.1186/1471-2164-15-S6-S16〉. 〈inserm-01229454〉

Partager

Métriques

Consultations de la notice

513

Téléchargements de fichiers

927