R. Siegel, D. Naishadham, and A. Jemal, Cancer statistics, 2012, CA: A Cancer Journal for Clinicians, vol.287, issue.suppl 5, pp.10-29, 2012.
DOI : 10.3322/caac.20138

A. Leminen, A. Auranen, R. Butzow, S. Hietanen, M. Komulainen et al., Update on current care guidelines: ovarian cancer, pp.1300-1301, 2012.

F. Stehman, M. Brady, J. Thigpen, E. Rossi, and R. Burger, Cytokine use and survival in the first-line treatment of ovarian cancer: A Gynecologic Oncology Group Study, Gynecologic Oncology, vol.127, issue.3, pp.495-501
DOI : 10.1016/j.ygyno.2012.09.002

V. Mobus, H. Wandt, N. Frickhofen, C. Bengala, K. Champion et al., Phase III Trial of High-Dose Sequential Chemotherapy With Peripheral Blood Stem Cell Support Compared With Standard Dose Chemotherapy for First-Line Treatment of Advanced Ovarian Cancer: Intergroup Trial of the AGO-Ovar/AIO and EBMT, Journal of Clinical Oncology, vol.25, issue.27, pp.4187-4193, 2007.
DOI : 10.1200/JCO.2006.09.7527

M. Bookman, K. Darcy, D. Clarke-pearson, R. Boothby, and I. Horowitz, Evaluation of Monoclonal Humanized Anti-HER2 Antibody, Trastuzumab, in Patients With Recurrent or Refractory Ovarian or Primary Peritoneal Carcinoma With Overexpression of HER2: A Phase II Trial of the Gynecologic Oncology Group, Journal of Clinical Oncology, vol.21, issue.2, pp.283-290, 2003.
DOI : 10.1200/JCO.2003.10.104

I. Noguera, C. Sun, R. Broaddus, D. Branham, C. Levenback et al., Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant low-grade serous carcinoma of the ovary, peritoneum, or fallopian tube, Gynecologic Oncology, vol.125, issue.3, pp.640-645, 2012.
DOI : 10.1016/j.ygyno.2012.02.034

N. Colombo, E. Kutarska, M. Dimopoulos, D. Bae, I. Rzepka-gorska et al., Randomized, Open-Label, Phase III Study Comparing Patupilone (EPO906) With Pegylated Liposomal Doxorubicin in Platinum-Refractory or -Resistant Patients With Recurrent Epithelial Ovarian, Primary Fallopian Tube, or Primary Peritoneal Cancer, Journal of Clinical Oncology, vol.30, issue.31, pp.3841-3847, 2012.
DOI : 10.1200/JCO.2011.38.8082

R. Burger, M. Brady, M. Bookman, G. Fleming, B. Monk et al., Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer, New England Journal of Medicine, vol.365, issue.26, pp.2473-2483, 2011.
DOI : 10.1056/NEJMoa1104390

T. Perren, A. Swart, J. Pfisterer, J. Ledermann, E. Pujade-lauraine et al., A Phase 3 Trial of Bevacizumab in Ovarian Cancer, New England Journal of Medicine, vol.365, issue.26, pp.2484-2496, 2011.
DOI : 10.1056/NEJMoa1103799

J. Ledermann, P. Harter, C. Gourley, M. Friedlander, I. Vergote et al., Olaparib Maintenance Therapy in Platinum-Sensitive Relapsed Ovarian Cancer, New England Journal of Medicine, vol.366, issue.15, pp.1382-1392, 2012.
DOI : 10.1056/NEJMoa1105535

K. Jaaback, N. Johnson, and T. Lawrie, Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer, Cochrane Database Syst Rev, vol.11, p.5340, 2011.

P. Velasco, A. , C. Herraez, A. , C. Ruiperez et al., Treatment guidelines in ovarian cancer, Clinical and Translational Oncology, vol.170, issue.[Suppl1], pp.308-316, 2007.
DOI : 10.1007/s12094-007-0058-8

T. Burke and M. Morris, Secondary cytoreductive surgery for ovarian cancer, Obstet Gynecol Clin North Am, vol.21, pp.167-178, 1994.

E. Myers, L. Havrilesky, S. Kulasingam, G. Sanders, K. Cline et al., Genomic tests for ovarian cancer detection and management, Evid Rep Technol Assess, vol.145, pp.1-100, 2006.

J. Farley, L. Ozbun, and M. Birrer, Genomic analysis of epithelial ovarian cancer, Cell Research, vol.62, issue.5, pp.538-548, 2008.
DOI : 10.1186/1476-4598-3-27

J. Malek, E. Mery, Y. Mahmoud, E. Azwani, L. Roger et al., Copy Number Variation Analysis of Matched Ovarian Primary Tumors and Peritoneal Metastasis, PLoS ONE, vol.222, issue.12, p.28561, 2011.
DOI : 10.1371/journal.pone.0028561.s007

J. Joyce and J. Pollard, Microenvironmental regulation of metastasis, Nature Reviews Cancer, vol.19, issue.4, pp.239-252, 2009.
DOI : 10.1038/nrc2618

T. Udagawa and M. Wood, Tumor???stromal cell interactions and opportunities for therapeutic intervention, Current Opinion in Pharmacology, vol.10, issue.4, pp.369-374, 2010.
DOI : 10.1016/j.coph.2010.06.010

T. Tlsty and L. Coussens, TUMOR STROMA AND REGULATION OF CANCER DEVELOPMENT, Annual Review of Pathology: Mechanisms of Disease, vol.1, issue.1, pp.119-150, 2006.
DOI : 10.1146/annurev.pathol.1.110304.100224

S. Coffelt, F. Marini, K. Watson, K. Zwezdaryk, J. Dembinski et al., The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells, Proceedings of the National Academy of Sciences, vol.106, issue.10, pp.3806-3811, 2009.
DOI : 10.1073/pnas.0900244106

E. Spaeth, J. Dembinski, A. Sasser, K. Watson, A. Klopp et al., Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression, PLoS ONE, vol.72, issue.4, p.4992, 2009.
DOI : 10.1371/journal.pone.0004992.s004

L. Martinet, R. Poupot, P. Mirshahi, A. Rafii, J. Fournie et al., Hospicells derived from ovarian cancer stroma inhibit T-cell immune responses, International Journal of Cancer, vol.13, pp.2143-2152, 2010.
DOI : 10.1002/ijc.24881

M. Pasquet, M. Golzio, E. Mery, A. Rafii, N. Benabbou et al., Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis, International Journal of Cancer, vol.16, pp.2090-2101, 2010.
DOI : 10.1002/ijc.24886

R. Lis, C. Touboul, P. Mirshahi, F. Ali, S. Mathew et al., Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12, International Journal of Cancer, vol.2010, issue.3, pp.715-725, 2011.
DOI : 10.1002/ijc.25619

S. Hill and C. , Interactions between endothelial selectins and cancer cells regulate metastasis, Frontiers in Bioscience, vol.16, issue.1, pp.3233-3251, 2012.
DOI : 10.2741/3909

C. Mierke, Role of the Endothelium during Tumor Cell Metastasis: Is the Endothelium a Barrier or a Promoter for Cell Invasion and Metastasis?, Journal of Biophysics, vol.53, issue.5, p.183516, 2008.
DOI : 10.1158/0008-5472.CAN-05-0821

P. Cirri and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression, Cancer and Metastasis Reviews, vol.9, issue.5, pp.195-208, 2012.
DOI : 10.1007/s10555-011-9340-x

R. Kaplan, R. Riba, S. Zacharoulis, A. Bramley, L. Vincent et al., VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, vol.174, issue.7069, pp.820-827, 2005.
DOI : 10.1038/nature04186

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

I. Schauer, J. Zhang, Z. Xing, X. Guo, I. Mercado-uribe et al., Interleukin-1?? Promotes Ovarian Tumorigenesis through a p53/NF-??B-Mediated Inflammatory Response in Stromal Fibroblasts, Neoplasia, vol.15, issue.4, pp.409-420, 2013.
DOI : 10.1593/neo.121228

R. Lis, C. Touboul, C. Raynaud, J. Malek, K. Suhre et al., Mesenchymal Cell Interaction with Ovarian Cancer Cells Triggers Pro-Metastatic Properties, PLoS ONE, vol.474, issue.5, p.38340, 2012.
DOI : 10.1371/journal.pone.0038340.s002

C. Touboul, R. Lis, A. Farsi, H. Raynaud, C. Warfa et al., Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model, Journal of Translational Medicine, vol.11, issue.1, p.28, 2013.
DOI : 10.1158/0008-5472.CAN-10-0538

URL : https://hal.archives-ouvertes.fr/inserm-00794947

J. Roodhart, L. Daenen, E. Stigter, H. Prins, J. Gerrits et al., Mesenchymal Stem Cells Induce Resistance to Chemotherapy through the Release of Platinum-Induced Fatty Acids, Cancer Cell, vol.20, issue.3, pp.370-383, 2011.
DOI : 10.1016/j.ccr.2011.08.010

A. Caplan, Mesenchymal stem cells, Journal of Orthopaedic Research, vol.86, issue.5, pp.641-650, 1991.
DOI : 10.1002/jor.1100090504

M. Tavassoli and W. Crosby, Transplantation of Marrow to Extramedullary Sites, Science, vol.161, issue.3836, pp.54-56, 1968.
DOI : 10.1126/science.161.3836.54

A. Friedenstein, U. Deriglasova, N. Kulagina, A. Panasuk, S. Rudakowa et al., Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method, Exp Hematol, vol.2, pp.83-92, 1974.

A. Friedenstein, Osteogenic stem cells in the bone marrow, Bone and Mineral Research, pp.243-272, 1990.
DOI : 10.1016/B978-0-444-81371-8.50012-1

L. Da-silva-meirelles, T. Sand, R. Harman, D. Lennon, and A. Caplan, MSC Frequency Correlates with Blood Vessel Density in Equine Adipose Tissue, Tissue Engineering Part A, vol.15, issue.2, pp.221-229, 2009.
DOI : 10.1089/ten.tea.2008.0103

M. Bernardo, F. Locatelli, and W. Fibbe, Mesenchymal Stromal Cells, Annals of the New York Academy of Sciences, vol.22, issue.1, pp.101-117, 2009.
DOI : 10.1111/j.1749-6632.2009.04607.x

C. Raynaud, M. Maleki, R. Lis, B. Ahmed, I. Al-azwani et al., Comprehensive Characterization of Mesenchymal Stem Cells from Human Placenta and Fetal Membrane and Their Response to Osteoactivin Stimulation, Stem Cells International, vol.238, issue.5, p.658356, 2012.
DOI : 10.1006/bbrc.1995.1712

L. Da-silva-meirelles, A. Caplan, and N. Nardi, In Search of the In Vivo Identity of Mesenchymal Stem Cells, Stem Cells, vol.21, issue.9, pp.2287-2299, 2008.
DOI : 10.1634/stemcells.2007-1122

M. Crisan, S. Yap, L. Casteilla, C. Chen, M. Corselli et al., A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell, vol.3, issue.3, pp.301-313, 2008.
DOI : 10.1016/j.stem.2008.07.003

R. Boado and W. Pardridge, Differential expression of ?-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells, Journal of Neuroscience Research, vol.103, issue.4, pp.430-435, 1994.
DOI : 10.1002/jnr.490390410

A. Armulik, A. Abramsson, and C. Betsholtz, Endothelial/Pericyte Interactions, Circulation Research, vol.97, issue.6, pp.512-523, 2005.
DOI : 10.1161/01.RES.0000182903.16652.d7

C. Betsholtz, P. Lindblom, and H. Gerhardt, Role of pericytes in vascular morphogenesis, EXS, vol.94, pp.115-125, 2005.
DOI : 10.1007/3-7643-7311-3_8

P. Bianco, P. Robey, and P. Simmons, Mesenchymal Stem Cells: Revisiting History, Concepts, and Assays, Cell Stem Cell, vol.2, issue.4, pp.313-319, 2008.
DOI : 10.1016/j.stem.2008.03.002

URL : http://doi.org/10.1016/j.stem.2008.03.002

D. Prockop, Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues, Science, vol.276, issue.5309, pp.71-74, 1997.
DOI : 10.1126/science.276.5309.71

A. Caplan, The mesengenic process, Clin Plast Surg, vol.21, pp.429-435, 1994.

M. Pittenger, A. Mackay, S. Beck, R. Jaiswal, R. Douglas et al., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

T. Kinnaird, E. Stabile, M. Burnett, C. Lee, S. Barr et al., Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In Vitro and In Vivo Arteriogenesis Through Paracrine Mechanisms, Circulation Research, vol.94, issue.5, pp.678-685, 2004.
DOI : 10.1161/01.RES.0000118601.37875.AC

Y. Iso, J. Spees, C. Serrano, B. Bakondi, R. Pochampally et al., Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment, Biochemical and Biophysical Research Communications, vol.354, issue.3, pp.700-706, 2007.
DOI : 10.1016/j.bbrc.2007.01.045

A. Valle-prieto and P. Conget, Human Mesenchymal Stem Cells Efficiently Manage Oxidative Stress, Stem Cells and Development, vol.19, issue.12, pp.1885-1893, 2010.
DOI : 10.1089/scd.2010.0093

J. Krosl, P. Austin, N. Beslu, E. Kroon, R. Humphries et al., In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein, Nature Medicine, vol.9, issue.11, pp.1428-1432, 2003.
DOI : 10.1038/nm951

C. Zhang, M. Kaba, G. Ge, K. Xie, W. Tong et al., Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells, Nature Medicine, vol.340, issue.2, pp.240-245, 2006.
DOI : 10.1038/nm1342

K. Willert, J. Brown, E. Danenberg, A. Duncan, I. Weissman et al., Wnt proteins are lipid-modified and can act as stem cell growth factors, Nature, vol.367, issue.6938, pp.448-452, 2003.
DOI : 10.1084/jem.192.12.1707

J. Butler, D. Nolan, E. Vertes, B. Varnum-finney, H. Kobayashi et al., Endothelial Cells Are Essential for the Self-Renewal and Repopulation of Notch-Dependent Hematopoietic Stem Cells, Cell Stem Cell, vol.6, issue.3, pp.251-264, 2010.
DOI : 10.1016/j.stem.2010.02.001

F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka et al., Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche, Cell, vol.118, issue.2, pp.149-161, 2004.
DOI : 10.1016/j.cell.2004.07.004

L. Calvi, G. Adams, K. Weibrecht, J. Weber, D. Olson et al., Osteoblastic cells regulate the haematopoietic stem cell niche, Osteoblastic cells regulate the haematopoietic stem cell niche, pp.841-846, 2003.
DOI : 10.1038/nature02040

J. Zhang, C. Niu, L. Ye, H. Huang, X. He et al., Identification of the haematopoietic stem cell niche and control of the niche size, Nature, vol.425, issue.6960, pp.836-841, 2003.
DOI : 10.1038/nature02041

O. Kollet, A. Dar, S. Shivtiel, A. Kalinkovich, K. Lapid et al., Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells, Nature Medicine, vol.36, issue.6, pp.657-664, 2006.
DOI : 10.1038/nm1417

G. Raimondi, H. Turnquist, and A. Thomson, Frontiers of Immunological Tolerance, Methods Mol Biol, vol.380, pp.1-24, 2007.
DOI : 10.1007/978-1-59745-395-0_1

Y. Kuo, C. Chen, S. Goto, P. Lin, F. Wei et al., Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation, Clinical and Developmental Immunology, vol.9, issue.8, p.854846, 2012.
DOI : 10.3324/haematol.11240

L. Blanc, K. Ringden, and O. , Immunomodulation by mesenchymal stem cells and clinical experience, Journal of Internal Medicine, vol.24, issue.5, pp.509-525, 2007.
DOI : 10.1097/01.TP.0000048488.35010.95

M. Strioga, S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek, Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells, Stem Cells and Development, vol.21, issue.14, pp.2724-2752, 2012.
DOI : 10.1089/scd.2011.0722

M. Studeny, F. Marini, J. Dembinski, C. Zompetta, M. Cabreira-hansen et al., Mesenchymal Stem Cells: Potential Precursors for Tumor Stroma and Targeted-Delivery Vehicles for Anticancer Agents, JNCI Journal of the National Cancer Institute, vol.96, issue.21, pp.1593-1603, 2004.
DOI : 10.1093/jnci/djh299

A. Klopp, E. Spaeth, J. Dembinski, W. Woodward, A. Munshi et al., Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment, Cancer Research, vol.67, issue.24, pp.11687-11695, 2007.
DOI : 10.1158/0008-5472.CAN-07-1406

A. Karnoub, A. Dash, A. Vo, A. Sullivan, M. Brooks et al., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.9, issue.7162, pp.557-563, 2007.
DOI : 10.1038/nature06188

H. Dvorak, Tumors: Wounds That Do Not Heal--Redux, Cancer Immunology Research, vol.3, issue.1, pp.1650-1659, 1986.
DOI : 10.1158/2326-6066.CIR-14-0209

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288010

F. Balkwill and A. Mantovani, Inflammation and cancer: back to Virchow? Lancet, pp.539-545, 2001.
DOI : 10.1016/s0140-6736(00)04046-0

A. Vicari and C. Caux, Chemokines in cancer, Cytokine & Growth Factor Reviews, vol.13, issue.2, pp.143-154, 2002.
DOI : 10.1016/S1359-6101(01)00033-8

C. Ginestier, E. Charafe-jauffret, and D. Birnbaum, Breast tumor microenvironment: In the eye of the cytokine storm, Cell Cycle, vol.10, issue.15, pp.2420-2421, 2011.
DOI : 10.4161/cc.10.15.16204

URL : https://hal.archives-ouvertes.fr/hal-01431948

G. Luboshits, S. Shina, O. Kaplan, S. Engelberg, D. Nass et al., Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma, Cancer Res, vol.59, pp.4681-4687, 1999.

J. Belperio, M. Keane, D. Arenberg, C. Addison, J. Ehlert et al., CXC chemokines in angiogenesis, J Leukoc Biol, vol.68, pp.1-8, 2000.

A. Vicari, S. Ait-yahia, K. Chemin, A. Mueller, A. Zlotnik et al., Antitumor Effects of the Mouse Chemokine 6Ckine/SLC Through Angiostatic and Immunological Mechanisms, The Journal of Immunology, vol.165, issue.4, pp.1992-2000, 2000.
DOI : 10.4049/jimmunol.165.4.1992

A. Muller, B. Homey, H. Soto, N. Ge, D. Catron et al., Involvement of chemokine receptors in breast cancer metastasis, Nature, vol.410, issue.6824, pp.50-56, 2001.
DOI : 10.1038/35065016

K. Mashino, N. Sadanaga, H. Yamaguchi, F. Tanaka, M. Ohta et al., Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma, Cancer Res, vol.62, pp.2937-2941, 2002.

J. Malek, A. Martinez, E. Mery, G. Ferron, R. Huang et al., Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis, Journal of Translational Medicine, vol.10, issue.1, p.121, 2012.
DOI : 10.1097/JTO.0b013e3181b44321

J. Wels, R. Kaplan, S. Rafii, and D. Lyden, Migratory neighbors and distant invaders: tumor-associated niche cells, Genes & Development, vol.22, issue.5, pp.559-574, 2008.
DOI : 10.1101/gad.1636908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731657

A. Abramsson, P. Lindblom, and C. Betsholtz, Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors, Journal of Clinical Investigation, vol.112, issue.8, pp.1142-1151, 2003.
DOI : 10.1172/JCI200318549

K. Mclean, Y. Gong, Y. Choi, N. Deng, K. Yang et al., Human ovarian carcinoma???associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production, Journal of Clinical Investigation, vol.121, issue.8, pp.3206-3219, 2011.
DOI : 10.1172/JCI45273DS1

S. Tomchuck, K. Zwezdaryk, S. Coffelt, R. Waterman, E. Danka et al., Toll-Like Receptors on Human Mesenchymal Stem Cells Drive Their Migration and Immunomodulating Responses, Stem Cells, vol.25, issue.1, pp.99-107, 2008.
DOI : 10.1634/stemcells.2007-0563

H. Cai and Y. Xu, The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells, Cell Communication and Signaling, vol.11, issue.1, p.31, 2013.
DOI : 10.2353/ajpath.2009.090028

E. Jeon, H. Moon, M. Lee, H. Song, Y. Kim et al., Cancer-Derived Lysophosphatidic Acid Stimulates Differentiation of Human Mesenchymal Stem Cells to Myofibroblast-Like Cells, Stem Cells, vol.25, issue.Pt 3, pp.789-797, 2008.
DOI : 10.1634/stemcells.2007-0742

N. Direkze, K. Hodivala-dilke, R. Jeffery, T. Hunt, R. Poulsom et al., Bone Marrow Contribution to Tumor-Associated Myofibroblasts and Fibroblasts, Cancer Research, vol.64, issue.23, pp.8492-8495, 2004.
DOI : 10.1158/0008-5472.CAN-04-1708

J. Cho, H. Park, E. Lim, K. Kim, J. Choi et al., Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts, Gynecologic Oncology, vol.123, issue.2, pp.379-386, 2011.
DOI : 10.1016/j.ygyno.2011.08.005

S. Ko, N. Barengo, A. Ladanyi, J. Lee, F. Marini et al., HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts, Journal of Clinical Investigation, vol.122, issue.10, pp.3603-3617, 2012.
DOI : 10.1172/JCI62229DS1

B. Hall, J. Dembinski, A. Sasser, M. Studeny, M. Andreeff et al., Mesenchymal Stem Cells in Cancer: Tumor-Associated Fibroblasts and Cell-Based Delivery Vehicles, International Journal of Hematology, vol.86, issue.1, pp.8-16, 2007.
DOI : 10.1532/IJH97.06230

T. Yeung, C. Leung, K. Wong, G. Samimi, M. Thompson et al., TGF-?? Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Versican in the Tumor Microenvironment, Cancer Research, vol.73, issue.16, pp.5016-5028, 2013.
DOI : 10.1158/0008-5472.CAN-13-0023

W. Zou, V. Machelon, A. Coulomb-l-'hermin, J. Borvak, F. Nome et al., Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells, Nature Medicine, vol.7, issue.12, pp.1339-1346, 2001.
DOI : 10.1038/nm1201-1339

C. Scotton, J. Wilson, K. Scott, G. Stamp, G. Wilbanks et al., Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer, Cancer Res, vol.62, pp.5930-5938, 2002.

C. Porcile, A. Bajetto, F. Barbieri, S. Barbero, R. Bonavia et al., Stromal cell-derived factor-1?? (SDF-1??/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation, Experimental Cell Research, vol.308, issue.2, pp.241-253, 2005.
DOI : 10.1016/j.yexcr.2005.04.024

P. Kukreja, A. Abdel-mageed, D. Mondal, K. Liu, and K. Agrawal, Up-regulation of CXCR4 Expression in PC-3 Cells by Stromal-Derived Factor-1?? (CXCL12) Increases Endothelial Adhesion and Transendothelial Migration: Role of MEK/ERK Signaling Pathway-Dependent NF-??B Activation, Cancer Research, vol.65, issue.21, pp.9891-9898, 2005.
DOI : 10.1158/0008-5472.CAN-05-1293

S. Peng, V. Peek, Y. Zhai, D. Paul, Q. Lou et al., Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells, Mol Cancer Res, vol.3, pp.227-236, 2005.

I. Kryczek, A. Lange, P. Mottram, X. Alvarez, P. Cheng et al., and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers, Cancer Res, vol.65, pp.12465-472, 2005.

A. Orimo, P. Gupta, D. Sgroi, F. Arenzana-seisdedos, T. Delaunay et al., Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion, Cell, vol.121, issue.3, pp.335-348, 2005.
DOI : 10.1016/j.cell.2005.02.034

P. Dalerba, R. Cho, and M. Clarke, Cancer Stem Cells: Models and Concepts, Annual Review of Medicine, vol.58, issue.1, pp.267-284, 2007.
DOI : 10.1146/annurev.med.58.062105.204854

M. Clarke, J. Dick, P. Dirks, C. Eaves, C. Jamieson et al., Cancer Stem Cells--Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells, Cancer stem cells?perspectives on current status and future directions: AACR Workshop on cancer stem cells, pp.9339-9344, 2006.
DOI : 10.1158/0008-5472.CAN-06-3126

S. Zhang, C. Balch, M. Chan, H. Lai, D. Matei et al., Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors, Cancer Research, vol.68, issue.11, pp.4311-4320, 2008.
DOI : 10.1158/0008-5472.CAN-08-0364

P. Valent, D. Bonnet, D. Maria, R. Lapidot, T. Copland et al., Cancer stem cell definitions and terminology: the devil is in the details, Nature Reviews Cancer, vol.2, issue.11, pp.767-775, 2012.
DOI : 10.1038/nrc3368

M. Al-hajj, M. Wicha, A. Benito-hernandez, S. Morrison, and M. Clarke, Prospective identification of tumorigenic breast cancer cells, Proceedings of the National Academy of Sciences, vol.100, issue.7, pp.3983-3988, 2003.
DOI : 10.1073/pnas.0530291100

S. Liu, C. Ginestier, S. Ou, S. Clouthier, S. Patel et al., Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks, Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks, pp.614-624, 2011.
DOI : 10.1158/0008-5472.CAN-10-0538

URL : https://hal.archives-ouvertes.fr/hal-01431944

C. Ginestier, S. Liu, M. Diebel, H. Korkaya, M. Luo et al., CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts, Journal of Clinical Investigation, vol.120, issue.2, pp.1485-497, 2010.
DOI : 10.1172/JCI39397DS1

URL : https://hal.archives-ouvertes.fr/hal-01431952

A. Boiko, O. Razorenova, M. Van-de-rijn, S. Swetter, D. Johnson et al., Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271, Nature, vol.453, issue.7302, pp.133-137, 2010.
DOI : 10.1038/nature09161

P. Dalerba, S. Dylla, I. Park, R. Liu, X. Wang et al., Phenotypic characterization of human colorectal cancer stem cells, Proceedings of the National Academy of Sciences, vol.104, issue.24, pp.10158-10163, 2007.
DOI : 10.1073/pnas.0703478104

A. Collins, P. Berry, C. Hyde, M. Stower, and N. Maitland, Prospective Identification of Tumorigenic Prostate Cancer Stem Cells, Cancer Research, vol.65, issue.23, pp.10946-10951, 2005.
DOI : 10.1158/0008-5472.CAN-05-2018

S. Bapat, A. Mali, C. Koppikar, and N. Kurrey, Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer, Cancer Res, vol.65, pp.3025-3029, 2005.

F. Tomao, A. Papa, L. Rossi, M. Strudel, P. Vici et al., Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach, Journal of Experimental & Clinical Cancer Research, vol.32, issue.1, p.48, 2013.
DOI : 10.1186/1756-9966-32-48

F. Tomao, A. Papa, M. Strudel, L. Rossi, L. Russo et al., Investigating Molecular Profiles of Ovarian Cancer: An Update on Cancer Stem Cells, Journal of Cancer, vol.5, issue.5, pp.301-310, 2014.
DOI : 10.7150/jca.8610

A. Kusumbe and S. Bapat, Cancer Stem Cells and Aneuploid Populations within Developing Tumors Are the Major Determinants of Tumor Dormancy, Cancer Research, vol.69, issue.24, pp.9245-9253, 2009.
DOI : 10.1158/0008-5472.CAN-09-2802

I. Silva, S. Bai, K. Mclean, K. Yang, K. Griffith et al., Aldehyde Dehydrogenase in Combination with CD133 Defines Angiogenic Ovarian Cancer Stem Cells That Portend Poor Patient Survival, Cancer Research, vol.71, issue.11, pp.3991-4001, 2011.
DOI : 10.1158/0008-5472.CAN-10-3175

URL : https://hal.archives-ouvertes.fr/hal-01431946

I. Kryczek, S. Liu, M. Roh, L. Vatan, W. Szeliga et al., Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells, International Journal of Cancer, vol.120, issue.Suppl 1, pp.29-39, 2012.
DOI : 10.1002/ijc.25967

K. Abubaker, A. Latifi, R. Luwor, S. Nazaretian, H. Zhu et al., Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden, Molecular Cancer, vol.12, issue.1, p.24, 2013.
DOI : 10.1016/j.stem.2010.12.007

W. Chau, C. Ip, A. Mak, H. Lai, and A. Wong, c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/??-catenin???ATP-binding cassette G2 signaling, Oncogene, vol.155, issue.22, pp.2767-2781, 2013.
DOI : 10.1083/jcb.200212033

J. Pasquier and A. Rafii, Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance, BioMed Research International, vol.2, issue.5, p.630782, 2013.
DOI : 10.1007/s10585-009-9242-2

J. Seo, K. Jeong, W. Oh, H. Sul, J. Sohn et al., Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: Their inhibition by curcumin, Cancer Letters, vol.288, issue.1, pp.50-56, 2010.
DOI : 10.1016/j.canlet.2009.06.023

D. Waugh and C. Wilson, The Interleukin-8 Pathway in Cancer, Clinical Cancer Research, vol.14, issue.21, pp.6735-6741, 2008.
DOI : 10.1158/1078-0432.CCR-07-4843

S. Paget, THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST., The Lancet, vol.133, issue.3421, pp.98-101
DOI : 10.1016/S0140-6736(00)49915-0

D. Tarin, J. Price, M. Kettlewell, R. Souter, A. Vass et al., Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts, Cancer Res, vol.44, pp.3584-3592, 1984.

R. Kaplan, S. Rafii, and D. Lyden, Preparing the "Soil": The Premetastatic Niche, Cancer Research, vol.66, issue.23, pp.11089-11093, 2006.
DOI : 10.1158/0008-5472.CAN-06-2407

B. Psaila and D. Lyden, The metastatic niche: adapting the foreign soil, Nature Reviews Cancer, vol.3, issue.4, pp.285-293, 2009.
DOI : 10.1038/nrc2621

J. Erler, K. Bennewith, T. Cox, G. Lang, D. Bird et al., Hypoxia-Induced Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche, Cancer Cell, vol.15, issue.1, pp.35-44, 2009.
DOI : 10.1016/j.ccr.2008.11.012

H. Kenny, S. Kaur, L. Coussens, and E. Lengyel, The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin, Journal of Clinical Investigation, vol.118, issue.4, pp.1367-1379, 2008.
DOI : 10.1172/JCI33775

X. Zhang, J. X. Malladi, S. Zou, Y. Wen, Y. Brogi et al., Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma, Cell, vol.154, issue.5, pp.1060-1073, 2013.
DOI : 10.1016/j.cell.2013.07.036

B. Cheng, W. Lu, W. Xiaoyun, C. Yaxia, and X. Xie, Extra-abdominal Metastases From Epithelial Ovarian Carcinoma, International Journal of Gynecological Cancer, vol.22, issue.4, pp.611-614, 2009.
DOI : 10.1111/IGC.0b013e3181a416d0

G. Cormio, C. Rossi, A. Cazzolla, L. Resta, G. Loverro et al., Distant metastases in ovarian carcinoma, International Journal of Gynecological Cancer, vol.13, issue.2, pp.125-129, 2003.
DOI : 10.1046/j.1525-1438.2003.13054.x

L. Hudson, R. Zeineldin, and M. Stack, Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression, Clinical & Experimental Metastasis, vol.89, issue.12, pp.643-655, 2008.
DOI : 10.1007/s10585-008-9171-5

A. Veatch, L. Carson, and S. Ramakrishnan, Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells, International Journal of Cancer, vol.50, issue.3, pp.393-399, 1994.
DOI : 10.1002/ijc.2910580315

N. Obermajer, R. Muthuswamy, K. Odunsi, R. Edwards, and P. Kalinski, PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment, Cancer Research, vol.71, issue.24, pp.7463-7470, 2011.
DOI : 10.1158/0008-5472.CAN-11-2449

G. Zhu, J. Risteli, U. Puistola, A. Kauppila, and L. Risteli, Progressive ovarian carcinoma induces synthesis of type I and type III procollagens in the tumor tissue and peritoneal cavity, Cancer Res, vol.53, pp.5028-5032, 1993.

A. Mustea, C. Pirvulescu, D. Konsgen, E. Braicu, S. Yuan et al., Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer, Cytokine, vol.42, issue.1, pp.77-84, 2008.
DOI : 10.1016/j.cyto.2008.01.011

J. Lafky, J. Wilken, A. Baron, and N. Maihle, Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1785, issue.2, pp.232-265, 2008.
DOI : 10.1016/j.bbcan.2008.01.001

H. Salazar, A. Godwin, M. Daly, P. Laub, W. Hogan et al., Microscopic Benign and Invasive Malignant Neoplasms and a Cancer-Prone Phenotype in Prophylactic Oophorectomies, JNCI Journal of the National Cancer Institute, vol.88, issue.24, pp.1810-1820, 1996.
DOI : 10.1093/jnci/88.24.1810

G. Chene, F. Penault-llorca, L. Bouedec, G. Mishellany, F. Dauplat et al., Ovarian Epithelial Dysplasia and Prophylactic Oophorectomy for Genetic Risk, International Journal of Gynecological Cancer, vol.5, issue.1
DOI : 10.1111/IGC.0b013e3181990127

K. Nakayama, N. Nakayama, R. Kurman, L. Cope, G. Pohl et al., Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms, Cancer Biology & Therapy, vol.5, issue.7, pp.779-785, 2006.
DOI : 10.4161/cbt.5.7.2751

R. Freedman, M. Deavers, J. Liu, and E. Wang, Peritoneal inflammation -A microenvironment for Epithelial Ovarian Cancer (EOC), Journal of Translational Medicine, vol.2, issue.1, p.23, 2004.
DOI : 10.1186/1479-5876-2-23

A. Rafii, P. Mirshahi, M. Poupot, A. Faussat, A. Simon et al., Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours, PLoS ONE, vol.171, issue.2, p.3894, 2008.
DOI : 10.1371/journal.pone.0003894.s002

M. Castells, B. Thibault, E. Mery, M. Golzio, M. Pasquet et al., Ovarian ascites-derived Hospicells promote angiogenesis via activation of macrophages, Cancer Letters, vol.326, issue.1, pp.59-68, 2012.
DOI : 10.1016/j.canlet.2012.07.020

M. Castells, D. Milhas, C. Gandy, B. Thibault, A. Rafii et al., Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation, Cell Death and Disease, vol.126, issue.10, p.887, 2013.
DOI : 10.1002/pmic.200700231

A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu et al., Cancer Statistics, 2008, Cancer statistics, pp.71-96, 2008.
DOI : 10.3322/CA.2007.0010

A. Shostak, E. Chakrabarti, P. Hirszel, and J. Maher, Effects of histamine and its receptor antagonists on peritoneal permeability, Kidney International, vol.34, issue.6, pp.786-790, 1988.
DOI : 10.1038/ki.1988.250

M. Muijsken, H. Heezius, J. Verhoef, and H. Verbrugh, Role of mesothelial cells in peritoneal antibacterial defence., Journal of Clinical Pathology, vol.44, issue.7, pp.600-604, 1991.
DOI : 10.1136/jcp.44.7.600

H. Kenny, T. Krausz, S. Yamada, and E. Lengyel, Use of a novel 3D culture model to elucidate the role of mesothelial cells, fibroblasts and extra-cellular matrices on adhesion and invasion of ovarian cancer cells to the omentum, International Journal of Cancer, vol.92, issue.7, pp.1463-1472, 2007.
DOI : 10.1002/ijc.22874

L. Jones, M. Gardner, J. Catterall, and G. Turner, Hyaluronic acid secreted by mesothelial cells: a natural barrier to ovarian cancer cell adhesion, Clinical & Experimental Metastasis, vol.13, issue.5, pp.373-380, 1995.
DOI : 10.1007/BF00121913

H. Kenny, K. Nieman, A. Mitra, and E. Lengyel, The First Line of Intra-abdominal Metastatic Attack: Breaching the Mesothelial Cell Layer, Cancer Discovery, vol.1, issue.2, pp.100-102, 2011.
DOI : 10.1158/2159-8290.CD-11-0117

X. Zhang, R. Pettengell, N. Nasiri, V. Kalia, A. Dalgleish et al., Characteristics and growth patterns of human peritoneal mesothelial cells: comparison between advanced epithelial ovarian cancer and non-ovarian cancer sources, Journal of the Society for Gynecologic Investigation, vol.6, issue.6, pp.333-340, 1999.
DOI : 10.1016/S1071-5576(99)00040-4

E. Wang, Y. Ngalame, M. Panelli, H. Nguyen-jackson, M. Deavers et al., Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer, Clin Cancer Res, vol.11, pp.113-122, 2005.

A. Sako, J. Kitayama, H. Yamaguchi, S. Kaisaki, H. Suzuki et al., Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis, Journal of Surgical Research, vol.115, issue.1, pp.113-120, 2003.
DOI : 10.1016/S0022-4804(03)00307-X

R. Casey, K. Burleson, K. Skubitz, S. Pambuccian, T. Oegema et al., ??1-Integrins Regulate the Formation and Adhesion of Ovarian Carcinoma Multicellular Spheroids, The American Journal of Pathology, vol.159, issue.6, pp.2071-2080, 2001.
DOI : 10.1016/S0002-9440(10)63058-1

M. Gardner, L. Jones, J. Catterall, and G. Turner, Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis, Cancer Letters, vol.91, issue.2, pp.229-234, 1995.
DOI : 10.1016/0304-3835(95)03743-G

M. Iwanicki, R. Davidowitz, M. Ng, A. Besser, T. Muranem et al., Ovarian Cancer Spheroids Use Myosin-Generated Force to Clear the Mesothelium, Cancer Discovery, vol.1, issue.2, pp.144-147, 2011.
DOI : 10.1158/2159-8274.CD-11-0010

A. Klopp, Y. Zhang, T. Solley, F. Amaya-manzanares, F. Marini et al., Omental Adipose Tissue-Derived Stromal Cells Promote Vascularization and Growth of Endometrial Tumors, Clinical Cancer Research, vol.18, issue.3, pp.771-782, 2012.
DOI : 10.1158/1078-0432.CCR-11-1916

R. Bristow, R. Tomacruz, D. Armstrong, E. Trimble, and F. Montz, Survival Effect of Maximal Cytoreductive Surgery for Advanced Ovarian Carcinoma During the Platinum Era: A Meta-Analysis, Journal of Clinical Oncology, vol.20, issue.5, pp.1248-1259, 2002.
DOI : 10.1200/JCO.2002.20.5.1248

S. Pignata, L. Cannella, D. Leopardo, C. Pisano, G. Bruni et al., Chemotherapy in epithelial ovarian cancer, Cancer Letters, vol.303, issue.2, pp.73-83, 2011.
DOI : 10.1016/j.canlet.2011.01.026

M. Audeh, J. Carmichael, R. Penson, M. Friedlander, B. Powell et al., Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial, The Lancet, vol.376, issue.9737, pp.376245-251, 2010.
DOI : 10.1016/S0140-6736(10)60893-8

J. Pfisterer and J. Ledermann, Management of Platinum-Sensitive Recurrent Ovarian Cancer, Seminars in Oncology, vol.33, pp.12-16, 2006.
DOI : 10.1053/j.seminoncol.2006.03.012

M. Meads, R. Gatenby, and W. Dalton, Environment-mediated drug resistance: a major contributor to minimal residual disease, Nature Reviews Cancer, vol.112, issue.9, pp.665-674, 2009.
DOI : 10.1038/nrc2714

B. Teicher, T. Herman, S. Holden, Y. Wang, M. Pfeffer et al., Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo, Science, vol.247, issue.4949, pp.1457-1461, 1990.
DOI : 10.1126/science.2108497

J. Pasquier, L. Galas, C. Boulange-lecomte, D. Rioult, F. Bultelle et al., Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells, Journal of Biological Chemistry, vol.287, issue.10, pp.7374-7387, 2012.
DOI : 10.1074/jbc.M111.312157

URL : https://hal.archives-ouvertes.fr/hal-00993031

A. Levchenko, B. Mehta, X. Niu, G. Kang, L. Villafania et al., Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.1933-1938, 2005.
DOI : 10.1073/pnas.0401851102

T. Chua, G. Robertson, W. Liauw, R. Farrell, T. Yan et al., Intraoperative hyperthermic intraperitoneal chemotherapy after cytoreductive surgery in ovarian cancer peritoneal carcinomatosis: systematic review of current results, Journal of Cancer Research and Clinical Oncology, vol.28, issue.5, pp.1637-1645, 2009.
DOI : 10.1007/s00432-009-0667-4

C. Pomel, G. Ferron, G. Lorimier, A. Rey, C. Lhomme et al., Hyperthermic intra-peritoneal chemotherapy using Oxaliplatin as consolidation therapy for advanced epithelial ovarian carcinoma. Results of a phase II prospective multicentre trial. CHIPOVAC study, European Journal of Surgical Oncology (EJSO), vol.36, issue.6, pp.589-593, 2010.
DOI : 10.1016/j.ejso.2010.04.005

URL : https://hal.archives-ouvertes.fr/hal-00599226