D. Gezen-ak, S. Y?lmazer, and E. Dursun, Why vitamin Din Alzheimer's disease? The hypothesis, J Alzheimers Dis, vol.40, pp.257-269, 2014.

D. Fernandes-de-abreu, D. Eyles, and F. Féron, Vitamin D, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases, Psychoneuroendocrinology, vol.34, pp.265-277, 2009.
DOI : 10.1016/j.psyneuen.2009.05.023

URL : https://hal.archives-ouvertes.fr/hal-00417412

G. Deluca, S. Kimball, J. Kolasinski, S. Ramagopalan, and G. Ebers, Review: The role of vitamin D in nervoussystem health and disease, pp.458-484, 2013.

J. Smolders, S. Moen, J. Damoiseaux, I. Huitinga, and T. Holmøy, Vitamin D in the healthy and inflamed central nervoussystem: Access and function, J NeurolSci311, pp.37-43, 2011.

C. Balion, L. Griffith, L. Strifler, M. Henderson, C. Patterson et al., Vitamin D, cognition, and dementia: A systematic review and meta-analysis, Neurology, vol.79, issue.13, 2012.
DOI : 10.1212/WNL.0b013e31826c197f

J. Kesby, D. Eyles, T. Burne, and J. Mcgrath, Theeffects of vitamin D on brain development and adult brainfunction, Mol Cell, vol.347, pp.121-127, 2011.

C. Annweiler, M. Montero-odasso, D. Llewellyn, S. Richard-devantoy, G. Duque et al., Meta-analysis ofmemory and executive dysfunctions in relation to vitamin D, J Alzheimers Dis, vol.37, pp.147-171, 2013.

A. Stewart, K. Wong, J. Cachat, M. Elegante, T. Gilder et al., Neurosteroidvitamin D system as a nontraditional drug target inneuropsychopharmacology, pp.420-426, 2010.

R. Anglin, Z. Samaan, S. Walter, and S. Mcdonald, Vitamin D deficiency and depression in adults: systematic review and meta-analysis, The British Journal of Psychiatry, vol.202, issue.2, pp.100-107, 2013.
DOI : 10.1192/bjp.bp.111.106666

M. Holick, Vitamin D Deficiency, New England Journal of Medicine, vol.357, issue.3, pp.266-281, 2007.
DOI : 10.1056/NEJMra070553

A. Norman, From vitamin D to hormone D: Fundamentalsof the vitamin D endocrine system essential for goodhealth, Am J ClinNutr88, pp.491-499, 2008.

X. Cui, M. Pelekanos, P. Liu, T. Burne, J. Mcgrath et al., The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain, Neuroscience, vol.236, pp.77-87, 2013.
DOI : 10.1016/j.neuroscience.2013.01.035

D. Eyles, S. Smith, R. Kinobe, M. Hewison, and M. , Distribution of the vitamin D receptor and 1alpha-hydroxylase in human brain, J ChemNeuroanat29, pp.21-30, 2005.

K. Prüfer, T. Veenstra, G. Jirikowski, and R. Kumar, Distributionof 1,25-dihydroxyvitamin D3 receptor immunoreactivityin the rat brain and spinal cord, J ChemNeuroanat16, pp.135-145, 1999.

*. Stumpf, W. , O. Brien, and L. , (OH)2 vitamin D3 sitesof action in the brain. An autoradiographic study, pp.25-393, 1987.

E. Garcion, N. Wion-barbot, C. Montero-menei, F. Berger, and D. Wion, New clues about vitamin D functions in thenervous system. Trends EndocrinolMetab13, pp.100-105, 2002.

E. Vanoirbeek, A. Krishnan, G. Eelen, L. Verlinden, . Bouillonr et al., The anti-cancer and anti-inflammatory actions of 1, OH)2D3. Best Pract Res ClinEndocrinolMetab25, pp.593-604, 2011.

*. 19+-annweiler, C. Llewellyn, D. Beauchet, and O. , Low serumvitamin D concentrations in Alzheimer's disease: A systematicreview and meta-analysis, J Alzheimers Dis, vol.33, pp.659-674, 2013.

J. Mcgrath, T. Burne, F. F´eron, A. Mackay-sim, and . Eylesdw, Developmental Vitamin D Deficiency and Risk of Schizophrenia: A 10-Year Update, Schizophrenia Bulletin, vol.36, issue.6, pp.1073-1078, 2010.
DOI : 10.1093/schbul/sbq101

M. Evatt, Parkinson disease: Low vitamin D and Parkinson disease???a causal conundrum, Nature Reviews Neurology, vol.10, issue.1, pp.8-9, 2014.
DOI : 10.1111/j.1469-1809.2010.00631.x

D. Eyles, T. Burne, and J. Mcgrath, Vitamin D, effectson brain development, adult brain function and the linksbetween lowlevels of vitaminDand neuropsychiatric disease.Front Neuroendocrinol34, pp.47-64, 2013.

S. Mesliniene, L. Ramrattan, S. Giddings, and . Sheikh-alim, Role of vitamin D in the onset, progression, and severity ofmultiple sclerosis, pp.129-136, 2013.

D. Stein and M. Cekic, Progesterone and Vitamin D Hormone as a Biologic Treatment of Traumatic Brain Injury in the Aged, PM&R, vol.3, issue.6, pp.100-110, 2011.
DOI : 10.1016/j.pmrj.2011.03.010

M. Nissou, J. Brocard, E. Atifi, M. Guttin, A. Andrieux et al., The transcriptomicresponse ofmixed neuron-glial cell cultures to1,25-dihydroxyvitamin D3 includes genes limiting the progression of neurodegenerative diseases, J Alzheimers Dis, vol.35, pp.553-564, 2013.

E. Dursun, . Gezen-akd, and S. Yilmazer, Anewmechanismfor amyloid-? induction of iNOS: Vitamin D-VDR pathwaydisruption, J Alzheimers Dis, vol.36, pp.459-474, 2013.

I. Neveu, P. Naveilhan, F. Jehan, C. Baudet, D. Wion et al., 25- dihydroxyvitamin D3 regulates thesynthesis of nerve growth factor in primary cultures of glialcells, Brain Res Mol Brain Res, vol.1, issue.24, pp.70-76, 1994.

S. R´emy, P. Naveilhan, P. Brachet, and I. Neveu, Differential regulation of GDNF, neurturin, and their receptors in primary cultures of rat glial cells, Journal of Neuroscience Research, vol.122, issue.3, pp.242-251, 2001.
DOI : 10.1002/jnr.1072

P. Naveilhan, I. Neveu, C. Baudet, H. Funakoshi, D. Wion et al., 25- Dihydroxyvitamin D3 regulatesthe expression of the low-affinity neurotrophin receptor, Brain Res Mol Brain Res, vol.1, issue.41, pp.259-268, 1996.

E. Garcion, S. Nataf, A. Berod, F. Darcy, and P. Brachet, 25-Dihydroxyvitamin D3 inhibits the expression of induciblenitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis, Brain Res Mol BrainRes, vol.1, issue.45, pp.255-267, 1997.

J. Correale, M. Ysrraelit, and M. Gait´an, Vitamin Dmediatedimmune regulation in multiple sclerosis, J NeurolSci311, pp.23-31, 2011.

*. 32+-lefebvre-d-'hellencourt, C. Montero-menei, C. Bernardr, and D. Couez, Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line, Journal of Neuroscience Research, vol.86, issue.4, pp.575-582, 2003.
DOI : 10.1002/jnr.10491

P. Ballabh, A. Braun, and M. Nedergaard, The blood???brain barrier: an overview, Neurobiology of Disease, vol.16, issue.1, pp.1-13, 2004.
DOI : 10.1016/j.nbd.2003.12.016

P. Dore-duffy and K. Cleary, Morphology and propertiesof pericytes, Methods, vol.686, pp.49-68, 2011.

*. 35+-d´?az-flores, L. Guti´errez, R. Madrid, J. Varelah, F. Valladares et al., Pericytes.Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche, pp.909-969, 2009.

E. Winkler, R. Bell, and B. Zlokovic, Central nervoussystem pericytes in health and disease, pp.1398-1405, 2011.

B. Zlokovic, The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders, Neuron, vol.57, issue.2, pp.178-201, 2008.
DOI : 10.1016/j.neuron.2008.01.003

K. Schlageter, P. Molnar, G. Lapin, and D. Groothuis, Microvessel Organization and Structure in Experimental Brain Tumors: Microvessel Populations with Distinctive Structural and Functional Properties, Microvascular Research, vol.58, issue.3, pp.312-328, 1999.
DOI : 10.1006/mvre.1999.2188

URL : http://hdl.handle.net/2437/121657

D. Stanimirovic and A. Friedman, Pathophysiology of theneurovascular unit: Disease cause or consequence? J CerebBlood Flow Metab32, pp.1207-1221, 2012.

I. S´a-pereira, D. Brites, and M. Brito, Neurovascular unit:A focus on pericytes, pp.327-347, 2012.

R. Bell, E. Winkler, A. Sagare, I. Singh, L. B. Deaner et al., Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging, Neuron, vol.68, issue.3, pp.409-427, 2010.
DOI : 10.1016/j.neuron.2010.09.043

D. Alcendor, A. Charest, W. Zhu, H. Vigil, and . Knobelsm, Infection and upregulation of proinflammatorycytokines in human brain vascular pericytes by humancytomegalovirus, J Neuroinflammation9, p.95, 2012.

J. Pober and G. Tellides, Participation of blood vessel cellsin human adaptive immune responses. Trends Immunol33, pp.49-57, 2012.

Z. Tu, Y. Li, D. Smith, N. Sheibani, S. Huang et al., Retinal Pericytes Inhibit Activated T Cell Proliferation, Investigative Opthalmology & Visual Science, vol.52, issue.12, pp.9005-9010, 2011.
DOI : 10.1167/iovs.11-8008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231798

A. Sagare, R. Bell, Z. Zhao, Q. Ma, E. Winkler et al., Pericyte loss influences Alzheimerlikeneurodegeneration in mice, 2013.

B. Zlokovic, Neurovascular pathways to neurodegenerationin Alzheimer's disease and other disorders, Nat RevNeurosci12, pp.723-738, 2011.
DOI : 10.1038/nrn3114

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036520

P. Naveilhan, I. Neveu, C. Baudet, . Ohyamaky, and W. Brachetp, Expression of 25(OH) vitamin D3 24-hydroxylasegene in glial cells, pp.255-257, 1993.

C. Milani, M. Katayama, E. De-lyra, J. Welsh, L. Campos et al., Transcriptional effects of 1,25 dihydroxyvitamin D(3) physiologicaland supra-physiological concentrations in breastcancer organotypic culture, BMC Cancer, vol.13, issue.119, 2013.

C. Carlberg, S. Seuter, V. De-mello, U. Schwab, S. Voutilainen et al., Primary vitamin D target genes allow a categorizationof possible benefits of vitamin D3 supplementation, 2013.

L. Verlinden, C. Kriebitzsch, G. Eelen, M. Van-camp, C. Leyssens et al., The odd-skipped related genes Osr1 and Osr2 are induced by 1,25-dihydroxyvitamin D3, The Journal of Steroid Biochemistry and Molecular Biology, vol.136, pp.94-97, 2013.
DOI : 10.1016/j.jsbmb.2012.12.001

J. Lu, K. Goldstein, P. Chen, S. Huang, and L. Gelbert, Transcriptional profiling of keratinocytes revealsa vitamin D-regulated epidermal differentiation network, NagpalS, pp.778-785, 2005.

C. Schmid, I. Schl¨apfer, M. Gosteli-peter, C. Hauri, . Froescher et al., alpha,25- dihydroxyvitamin D3 increasesIGF binding protein-5 expression in cultured osteoblasts, FEBS Lett, vol.1, issue.392, pp.21-24, 1996.

H. Lee, S. Bae, and Y. Yoon, Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of thewingless-type MMTV integration site/_-catenin pathway, Int J Mol Med, vol.30, pp.1219-1224, 2012.

N. Nguyen, C. K. Mcaleerj, and J. Kolls, VitaminDregulation ofOX40ligand in immune responses to Aspergillusfumigatus, pp.1510-1519, 2013.

J. Smolders, K. Schuurman, M. Van-strien, J. Melief, . Hendrickxd et al., Expression of vitamin D receptor and metabolizing enzymesin multiple sclerosisaffected brain tissue, J, vol.72, pp.91-105, 2013.

S. Afzal, S. Bojesen, and B. Nordestgaard, Reduced 25-hydroxyvitamin D and risk of Alzheimer???s disease and vascular dementia, Alzheimer's & Dementia, vol.10, issue.3, pp.296-302, 2014.
DOI : 10.1016/j.jalz.2013.05.1765

A. Dickens, I. Lang, K. Langa, K. Kos, and D. Llewellyn, Vitamin D, Cognitive Dysfunction and Dementia in Older Adults, CNS Drugs, vol.16, issue.6, pp.629-639, 2011.
DOI : 10.2165/11593080-000000000-00000

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097668

P. Johansson, E. Almqvist, J. Johansson, . Mattssonn, U. Andreasson et al., Cerebrospinal fluid(CSF) 25-hydroxyvitamin D concentration and CSF acetylcholinesteraseactivity are reduced in patients withAlzheimer's disease, PloS One, vol.8, 2013.
DOI : 10.1371/journal.pone.0081989

URL : http://doi.org/10.1371/journal.pone.0081989

D. Wion, D. Macgrogan, I. Neveu, F. Jehan, R. Houlgatte et al., 25-Dihydroxyvitamin D3 is a potent inducerof nerve growth factor synthesis, J Neurosci Res, vol.1, issue.28, pp.110-114, 1991.
DOI : 10.1002/jnr.490280111

J. Brown, J. Bianco, J. Mcgrath, and D. Eyles, 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons, Neuroscience Letters, vol.343, issue.2, pp.139-143, 2003.
DOI : 10.1016/S0304-3940(03)00303-3

URL : https://hal.archives-ouvertes.fr/hal-00094024

P. Naveilhan, I. Neveu, D. Wion, and P. Brachet, 25-Dihydroxyvitamin D3, an inducer of glial cell line-derivedneurotrophic factor, pp.2171-2175, 1996.

M. Griffin, N. Xing, and R. Kumar, Vitamin D and itsanalogs as regulators of immune activation and antigen presentation, pp.117-145, 2003.

C. Mathieu, E. Van-etten, B. Decallonne, A. Guilietti, . Gysemansc et al., Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system, The Journal of Steroid Biochemistry and Molecular Biology, vol.89, issue.90, pp.449-452, 2004.
DOI : 10.1016/j.jsbmb.2004.03.014

E. Garcion, L. Sindji, G. Leblondel, P. Brachet, and F. Darcy, 25-dihydroxyvitamin D3 regulates the synthesis of gammaglutamyltranspeptidase and glutathione levels in rat primaryastrocytes, J Neurochem73, vol.1, pp.859-866, 1999.

I. Furman, C. Baudet, and P. Brachet, Differential expression of M-CSF, LIF, and TNF-? genes in normal and malignant rat glial cells: Regulation by lipopolysaccharide and vitamin D, Journal of Neuroscience Research, vol.13, issue.3, pp.360-366, 1996.
DOI : 10.1002/(SICI)1097-4547(19961101)46:3<360::AID-JNR9>3.0.CO;2-I

P. Grammas and . Ovaser, Inflammatory factors are elevatedin brain microvessels in Alzheimer's disease, Neurobiol, vol.22, pp.837-842, 2001.

D. Galimberti, C. Fenoglio, C. Lovati, E. Venturelli, I. Guidi et al., Serum MCP-1 levels are increased in mildcognitive impairment and mild Alzheimer's disease, NeurobiolAging, vol.27, pp.1763-1768, 2006.

K. Westin, P. Buchhave, H. Nielsen, L. Minthon, . Janciauskienes et al., CCL2 Is Associated with a Faster Rate of Cognitive Decline during Early Stages of Alzheimer's Disease, PLoS ONE, vol.30, issue.1, p.30525, 2012.
DOI : 10.1371/journal.pone.0030525.t003

L. Izikson, R. Klein, . Charoif, H. Weiner, and A. Luster, Resistance to Experimental Autoimmune Encephalomyelitis in Mice Lacking the Cc Chemokine Receptor (Ccr2), The Journal of Experimental Medicine, vol.59, issue.7, pp.1075-1080, 2000.
DOI : 10.1038/29788

N. Ishii, T. Takahashi, P. Soroosh, and K. Sugamura, OX40-OX40 ligand interaction in T-cellmediated immunity andimmunopathology, pp.63-98, 2010.

Y. Wang and Y. Liu, OX40-OX40L interactions: a promising therapeutic target for allergic diseases?, Journal of Clinical Investigation, vol.117, issue.12, pp.3655-3657, 2007.
DOI : 10.1172/JCI34182

S. Carboni, F. Aboul-enein, C. Waltzinger, N. Killeen, H. Lasslassmann et al., CD134 plays a crucial role inthe pathogenesis of EAE and is upregulated in the CNS ofpatients with multiple sclerosis, J Neuroimmunol145, pp.1-11, 2003.

D. Kaur and C. Brightling, OX40/OX40 Ligand Interactions in T-Cell Regulation and Asthma, Chest, vol.141, issue.2, pp.494-499, 2012.
DOI : 10.1378/chest.11-1730

M. Karulf, A. Kelly, A. Weinberg, and J. Gold, OX40ligand regulates inflammation and mortality in the innateimmune response to sepsis, J Immunol185, pp.4856-4862, 2010.

W. Redmond and A. Weinberg, Targeting OX40 andOX40L for the treatment of autoimmunity and cancer, CritRev, vol.27, pp.415-436, 2007.

M. Furuhashi, S. Ishimura, H. Ota, and M. , Lipid chaperonesand metabolic inflammation, IntJ, 2011.

X. Terra, Y. Quintero, T. Auguet, J. Porras, M. Hern´andez et al., FABP 4 is associated with inflammatory markersand metabolic syndrome in morbidly obese women, Eur, vol.164, pp.539-547, 2011.
DOI : 10.1530/eje-10-1195

B. Shum, C. Mackay, C. Gorgun, M. Frost, . Kumarrk et al., The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation, Journal of Clinical Investigation, vol.116, issue.8, pp.2183-2192, 2006.
DOI : 10.1172/JCI24767DS1

A. Cerezo, L. Kuklova, M. Hulejova, H. Vernerova, Z. Pesakova et al., The level of fatty acid-binding protein 4, a novel adipokine, is increased in rheumatoid arthritis and correlates with serum cholesterol levels, Cytokine, vol.64, issue.1, pp.441-447, 2013.
DOI : 10.1016/j.cyto.2013.05.001

J. Morser, Thrombomodulin Links Coagulation to Inflammation and Immunity, Current Drug Targets, vol.13, issue.3, pp.421-431, 2012.
DOI : 10.2174/138945012799424606

URL : http://doi.org/10.2174/138945012799424606

E. Conway, Thrombomodulin and its role in inflammation, Seminars in Immunopathology, vol.125, issue.5, pp.107-125, 2012.
DOI : 10.1007/s00281-011-0282-8

S. Grey, A. Tsuchida, H. Hau, C. Orthner, H. Salem et al., Selective inhibitory effects of the anticoagulantactivated protein C on the responses of humanmononuclear phagocytes to LPS, IFN-gamma, or phorbolester, J, vol.153, pp.3664-3672, 1994.

C. Milner and A. Day, TSG-6: A multifunctional proteinassociated with inflammation, J Cell, vol.116, pp.1863-1873, 2003.

B. Shen, R. Smith, . Jr, Y. Hsu, L. Chao et al., Kruppel-like factor 4 is a novel mediator of Kallistatin ininhibiting endothelial inflammation via increased endothelialnitric-oxide synthase expression, J BiolChem284, pp.35471-35478, 2009.

. Aiw, . Liuy, and W. Langloism, Kruppel-like factor4 (KLF4) represses histidine decarboxylase gene expressionthrough an upstream Sp1 site and downstream gastrin responsiveelements, J BiolChem279, pp.8684-8693, 2004.

X. Liao, N. Sharma, F. Kapadia, G. Zhou, Y. Lu et al., Kr??ppel-like factor 4 regulates macrophage polarization, Journal of Clinical Investigation, vol.121, issue.7, pp.2736-2749, 2011.
DOI : 10.1172/JCI45444DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223832

W. Thomas, Brain macrophages: on the role of pericytes and perivascular cells, Brain Research Reviews, vol.31, issue.1, pp.42-57, 1999.
DOI : 10.1016/S0165-0173(99)00024-7

D. Kaushik, R. Mukhopadhyay, K. Kumawat, M. Gupta, and A. Basu, Therapeutic targeting of Kruppel-like factor 4abrogates microglial activation, J Neuroinflammation9, vol.57, 2012.

H. Sakuta, R. Suzuki, H. Takahashi, A. Kato, T. Shintani et al., Ventroptin: A BMP-4 Antagonist Expressed in a Double-Gradient Pattern in the Retina, Science, vol.293, issue.5527, pp.111-115, 2001.
DOI : 10.1126/science.1058379

*. 91+-kane, R. Godson, C. , O. Brien, and C. , Chordin-like 1, abone morphogenetic protein-4 antagonist, is upregulated byhypoxia in human retinal pericytes and plays a role in regulatingangiogenesis, Mol Vis, vol.14, pp.1138-1148, 2008.

D. Li, J. Tang, H. Xu, X. Fan, Y. Bai et al., Decreased hippocampal cell proliferation correlates with increased expression of BMP4 in the APPswe/PS1??E9 mouse model of Alzheimer's disease, Hippocampus, vol.355, issue.7, pp.692-698, 2008.
DOI : 10.1002/hipo.20428

J. Ara, J. See, P. Mamontov, A. Hahn, P. Bannerman et al., Bone morphogenetic proteins 4, 6, and7 are up-regulated in mouse spinal cord during experimental autoimmuneencephalomyelitis, J, vol.86, pp.125-135, 2008.

H. Jo, H. Song, and A. Mowbray, Role of NADPH Oxidases in Disturbed Flow- and BMP4- Induced Inflammation and Atherosclerosis, Antioxidants & Redox Signaling, vol.8, issue.9-10, pp.1609-1619, 2006.
DOI : 10.1089/ars.2006.8.1609

L. Osborn, C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj et al., Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes, Cell, vol.59, issue.6, pp.1203-1211, 1989.
DOI : 10.1016/0092-8674(89)90775-7

. Kokovaye, . Wangy, . Kusekg, R. Wurster, P. Lederman et al., VCAM1 is essential to maintainthe structure of the SVZ niche and acts as an environmentalsensor to regulate SVZ lineage progression, Cell Stem Cell11, pp.220-230, 2012.

J. Sengillo, E. Winkler, C. Walker, J. Sullivan, . Johnsonm et al., Deficiency in mural vascular cellscoincides with blood-brain barrier disruption in Alzheimer'sdisease, Brain, vol.23, pp.303-310, 2013.

P. Pimentel-coehlo and S. Rivest, ) the early contributionof cerebrovascular factors to the pathogenesis of Alzheimer'sdisease, Eur J Neurosci35, pp.1917-1937, 2012.