M. Clarke, J. Dick, and P. Dirks, Cancer Stem Cells--Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells, Cancer Research, vol.66, issue.19, pp.9339-9344, 2006.
DOI : 10.1158/0008-5472.CAN-06-3126

L. Patrawala, T. Calhoun, and R. Schneider-broussard, Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2- Cancer Cells Are Similarly Tumorigenic, Cancer Research, vol.65, issue.14, pp.6207-6219, 2005.
DOI : 10.1158/0008-5472.CAN-05-0592

H. Loewe and J. Urbanietz, [Basic-substituted 2,6-bisbenzimidazole derivates, a novel class of substances with chemotherapeutic activity], Arzneimittelforschung, vol.24, issue.12, pp.1927-1933, 1974.

D. Arndt-jovin and T. Jovin, Analysis and sorting of living cells according to deoxyribonucleic acid content., Journal of Histochemistry & Cytochemistry, vol.25, issue.7, pp.585-589, 1977.
DOI : 10.1177/25.7.70450

T. Petersen, S. Ibrahim, and A. Diercks, Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342, Cytometry, vol.41, issue.2, pp.173-181, 2004.
DOI : 10.1002/cyto.a.20058

C. Scharenberg, M. Harkey, and B. Torok-storb, The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors, Blood, vol.99, issue.2, pp.507-512, 2002.
DOI : 10.1182/blood.V99.2.507

S. Zhou, J. Morris, and Y. Barnes, Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo, Proceedings of the National Academy of Sciences, vol.99, issue.19, pp.9912339-12344, 2002.
DOI : 10.1073/pnas.192276999

S. Zhou, J. Schuetz, and K. Bunting, The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype, Nature Medicine, vol.7, issue.9, pp.1028-1034, 2001.
DOI : 10.1038/nm0901-1028

J. Jonker, J. Freeman, and E. Bolscher, Contribution of the ABC Transporters Bcrp1 and Mdr1a/1b to the Side Population Phenotype in Mammary Gland and Bone Marrow of Mice, Stem Cells, vol.101, issue.8, pp.1059-1065, 2005.
DOI : 10.1634/stemcells.2005-0150

M. Dean, T. Fojo, and S. Bates, Tumour stem cells and drug resistance, Nature Reviews Cancer, vol.22, issue.4, pp.275-284, 2005.
DOI : 10.1006/gyno.2002.6762

N. Platet, J. Mayol, and F. Berger, Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line, FEBS Letters, vol.294, issue.7, pp.1435-1440, 2007.
DOI : 10.1016/j.febslet.2007.02.071

URL : https://hal.archives-ouvertes.fr/inserm-00383790

M. Smalley and R. Clarke, The Mammary Gland ???Side Population???: A Putative Stem/Progenitor Cell Marker?, Journal of Mammary Gland Biology and Neoplasia, vol.55, issue.2, pp.37-47111, 2005.
DOI : 10.1007/s10911-005-2539-0

J. Fried, J. Doblin, and S. Takamoto, Effects of hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells, Cytometry, vol.36, issue.1, pp.42-47, 1982.
DOI : 10.1002/cyto.990030110

D. Adamski, J. Mayol, and N. Platet, Effects of Hoechst 33342 on C2C12 and PC12 cell differentiation, FEBS Letters, vol.4, issue.16, pp.3076-3080, 2007.
DOI : 10.1016/j.febslet.2007.05.073

URL : https://hal.archives-ouvertes.fr/inserm-00382266

B. Steuer, B. Breuer, and A. A. , Differentiation of EC cells in vitro by the fluorescent dye Hoechst 33342, Experimental Cell Research, vol.186, issue.1, pp.149-157, 1990.
DOI : 10.1016/0014-4827(90)90221-U

Y. Zhong, C. Zhou, and W. Ma, Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342, Biochemical and Biophysical Research Communications, vol.364, issue.2, pp.338-381, 2007.
DOI : 10.1016/j.bbrc.2007.10.016

A. Chen, C. Yu, and A. Bodley, A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures, Cancer Res, vol.53, issue.6, pp.1332-1337, 1993.

K. Kondo, K. Tsuneizumi, and T. Watanabe, Induction of in vitro differentiation of mouse embryonal carcinoma (F9) cells by inhibitors of topoisomerases, Cancer Res, vol.51, pp.5398-5404, 1991.

A. Larsen, Involvement of DNA topoisomerases and DNA topoisomerase inhibitors in the induction of leukemia cell differentiation, Annals of Oncology, vol.5, issue.8, pp.679-688, 1994.
DOI : 10.1093/oxfordjournals.annonc.a058969

X. Zhang and F. Kiechle, Hoechst 33342 Induces Apoptosis and Alters Tata Box Binding Protein/DNA Complexes in Nuclei from BC3H-1 Myocytes, Biochemical and Biophysical Research Communications, vol.248, issue.1, pp.18-21, 1998.
DOI : 10.1006/bbrc.1998.8906

B. Moshaver, A. Van-rhenen, and A. Kelder, Identification of a Small Subpopulation of Candidate Leukemia-Initiating Cells in the Side Population of Patients with Acute Myeloid Leukemia, STEM CELLS, vol.96, issue.12, pp.3059-67, 2008.
DOI : 10.1634/stemcells.2007-0861

G. Wulf, R. Wang, and I. Kuehnle, A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia, Blood, vol.98, issue.4, pp.1166-73, 2001.
DOI : 10.1182/blood.V98.4.1166

K. Noguchi, K. Katayama, and J. Mitsuhashi, Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy, Advanced Drug Delivery Reviews, vol.61, issue.1, pp.26-33226, 2009.
DOI : 10.1016/j.addr.2008.07.003

M. Al-hajj, M. Wicha, and A. Benito-hernandez, Prospective identification of tumorigenic breast cancer cells, Proceedings of the National Academy of Sciences, vol.100, issue.7, pp.3983-3988, 2003.
DOI : 10.1073/pnas.0530291100

P. Dalerba, S. Dylla, and I. Park, Phenotypic characterization of human colorectal cancer stem cells, Proceedings of the National Academy of Sciences, vol.104, issue.24, pp.10158-10163, 2007.
DOI : 10.1073/pnas.0703478104

O. Brien, C. Pollett, A. Gallinger, and S. , A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, vol.4457123, pp.106-110, 2007.

L. Ricci-vitiani, D. Lombardi, and E. Pilozzi, Identification and expansion of human colon-cancer-initiating cells, Nature, vol.37, issue.7123, pp.111-115, 2007.
DOI : 10.1038/nature05384

S. Singh, C. Hawkins, and I. Clarke, Identification of human brain tumour initiating cells, Nature, vol.64, issue.7015, pp.396-401, 2004.
DOI : 10.1038/nature03128

S. Zhang, C. Balch, and M. Chan, Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors, Cancer Research, vol.68, issue.11, pp.4311-4320, 2008.
DOI : 10.1158/0008-5472.CAN-08-0364

T. Lapidot, C. Sirard, and J. Vormoor, A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, vol.367, issue.6464, pp.645-648, 1994.
DOI : 10.1038/367645a0

E. Monzani, F. Facchetti, and E. Galmozzi, Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential Identification and expansion of the tumorigenic lung cancer stem cell population Prospective identification of tumorigenic prostate cancer stem cells, Eur J Cancer Cell Death Differ Cancer Res, vol.43, issue.6523, pp.935-946504, 2005.

S. Shmelkov, J. Butler, and A. Hooper, CD133 expression is not restricted to stem cells, and both CD133+ and CD133??? metastatic colon cancer cells initiate tumors, Journal of Clinical Investigation, vol.118, issue.6, pp.2111-2120, 2008.
DOI : 10.1172/JCI34401DS1

D. Krause, M. Fackler, and C. Civin, CD34: structure, biology, and clinical utility, Blood, vol.87, issue.1, pp.1-13, 1996.

S. Bao, Q. Wu, and R. Mclendon, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.8, issue.7120, pp.756-760, 2006.
DOI : 10.1038/nature05236

E. Blazek, J. Foutch, and G. Maki, Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133??? cells, and the CD133+ sector is enlarged by hypoxia, International Journal of Radiation Oncology*Biology*Physics, vol.67, issue.1, pp.1-5, 2007.
DOI : 10.1016/j.ijrobp.2006.09.037

X. Yao, Y. Ping, and J. Chen, Glioblastoma stem cells produce vascular endothelial growth factor by activation of a G-protein coupled formylpeptide receptor FPR, The Journal of Pathology, vol.6, issue.4, pp.369-376, 2008.
DOI : 10.1002/path.2356

M. Munz, C. Kieu, and B. Mack, The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation, Oncogene, vol.23, issue.34, pp.5748-5758, 2004.
DOI : 10.1038/sj.onc.1207610

H. Shapiro, Practical Flow Cytometry, 2003.
DOI : 10.1002/0471722731

J. Lee, J. Spidlen, and K. Boyce, MIFlowCyt: The minimum information about a flow cytometry experiment, Cytometry Part A, vol.10, issue.10, pp.926-930, 2008.
DOI : 10.1002/cyto.a.20623

A. Schwartz and E. Fernandez-repollet, Quantitative flow cytometry, Clin Lab Med, vol.21, issue.4, pp.743-761, 2001.

C. Wu and B. Alman, Side population cells in human cancers, Cancer Letters, vol.268, issue.1, pp.1-9, 2008.
DOI : 10.1016/j.canlet.2008.03.048

V. Srivastava and J. Nalbantoglu, Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype, Cytometry Part A, vol.67, issue.10, pp.940-948, 2008.
DOI : 10.1002/cyto.a.20633

D. Beier, P. Hau, and M. Proescholdt, CD133+ and CD133- Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles, Cancer Research, vol.67, issue.9, pp.4010-4015, 2007.
DOI : 10.1158/0008-5472.CAN-06-4180

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.477.883

K. Joo, S. Kim, and J. X. , Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas, Laboratory Investigation, vol.55, issue.8, pp.808-815505, 2008.
DOI : 10.1186/1476-4598-5-67

J. Wang, P. Sakariassen, and O. Tsinkalovsky, CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells, International Journal of Cancer, vol.11, issue.4, pp.761-768, 2008.
DOI : 10.1002/ijc.23130

L. Merlo, J. Pepper, and B. Reid, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, vol.695, issue.12, pp.924-935, 2006.
DOI : 10.1007/BF00377518

P. Nowell, The clonal evolution of tumor cell populations, Science, vol.194, issue.4260, pp.23-28, 1976.
DOI : 10.1126/science.959840

C. Griguer, C. Oliva, and E. Gobin, CD133 Is a Marker of Bioenergetic Stress in Human Glioma, PLoS ONE, vol.36, issue.3, p.3655, 2008.
DOI : 10.1371/journal.pone.0003655.g007

N. Platet, S. Liu, and M. Atifi, Influence of oxygen tension on CD133 phenotype in human glioma cell cultures, Cancer Letters, vol.258, issue.2, pp.286-290, 2007.
DOI : 10.1016/j.canlet.2007.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00382779

M. Bene, Immunophenotyping of acute leukaemias, Immunology Letters, vol.98, issue.1, pp.9-21, 2005.
DOI : 10.1016/j.imlet.2004.10.008

D. Noto, R. Mirabelli, P. , D. Vecchio, L. Lubbert et al., Flow cytometry analysis of acute promyelocytic leukemia: the power of ???surface hematology???, CD34(+) or CD34(-): which is the more primitive, pp.4-81603, 2002.
DOI : 10.1002/cyto.b.20001

Y. Morita, H. Ema, and S. Yamazaki, Non-side-population hematopoietic stem cells in mouse bone marrow, Blood, vol.108, issue.8, pp.2850-2856, 2006.
DOI : 10.1182/blood-2006-03-010207

E. Garcion, P. Naveilhan, and F. Berger, Cancer stem cells: Beyond Koch's postulates. Cancer Lett in press, 2008.
DOI : 10.1016/j.canlet.2008.09.006

URL : https://hal.archives-ouvertes.fr/inserm-01194481

R. Hill, Identifying Cancer Stem Cells in Solid Tumors: Case Not Proven, Cancer Research, vol.66, issue.4, pp.1891-1895, 2006.
DOI : 10.1158/0008-5472.CAN-05-3450

S. Sell, Stem cell origin of cancer and differentiation therapy, Critical Reviews in Oncology/Hematology, vol.51, issue.1, pp.1-28, 2004.
DOI : 10.1016/j.critrevonc.2004.04.007

R. Petri, Eine kliene Modification des Koch'shen Platten-verfahrens, Zentralbl. Bakteriol. Parasitenkd, vol.1, pp.279-280

J. Vandercappellen, J. Van-damme, and S. Struyf, The role of CXC chemokines and their receptors in cancer, Cancer Letters, vol.267, issue.2, pp.226-270, 2008.
DOI : 10.1016/j.canlet.2008.04.050

R. Benelli and A. Albini, In vitro models of angiogenesis: the use of Matrigel, Int J Biol Markers, vol.14, issue.4, pp.243-249, 1999.

A. Albini, R. Benelli, and D. Noonan, The "chemoinvasion assay": a tool to study tumor and endothelial cell invasion of basement membranes, The International Journal of Developmental Biology, vol.48, issue.5-6, pp.5-6563, 2004.
DOI : 10.1387/ijdb.041822aa

M. Hu and K. Polyak, Microenvironmental regulation of cancer development, Current Opinion in Genetics & Development, vol.18, issue.1, pp.27-34, 2008.
DOI : 10.1016/j.gde.2007.12.006

M. Bissell, M. Labarge, R. Van-os, L. Kamminga, and G. De-haan, Context, tissue plasticity, and cancer, Cancer Cell, vol.7, issue.1, pp.17-231181, 2004.
DOI : 10.1016/j.ccr.2004.12.013

URL : http://doi.org/10.1016/j.ccr.2004.12.013