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Abstract. Multi-compartment diffusion models (MCM) are increasingly
used to characterize the brain white matter microstructure from diffusion
MRI. We address the problem of interpolation and averaging of MCM
images as a simplification problem based on spectral clustering. As a
core part of the framework, we propose novel solutions for the averaging
of MCM compartments. Evaluation is performed both on synthetic and
clinical data, demonstrating better performance for the “covariance ana-
lytic” averaging method. We then present an MCM template of normal
controls constructed using the proposed interpolation.

1 Introduction

Diffusion Weighted Imaging (DWI) is a unique MRI acquisition strategy, which
can provide invaluable insights into the white matter architecture in-vivo and
non-invasively. A number of diffusion models have been devised, with the aim to
characterize the underlying tissue microstructure. The most widespread model
is known as Diffusion Tensor Imaging (DTI) [3] which, under the assumption
of homogeneous diffusion in each voxel, describes the random motion of water
as a single Gaussian process with a diffusion tensor. However, many regions
of crossing fibers exist in low-resolution clinical DWI and the DTI model fails
at correctly representing them. Multi-compartment models (MCM) have been
extensively proposed and studied as alternative diffusion models to cope with
the intrinsic voxelwise diffusion heterogeneity [4]. The key principle of MCM
is to explicitly model the diffusion in a number of pre-specified compartments
akin to groups of cells inducing similar diffusion properties. MCMs may have
a great impact on patient care, as they allow for a better characterization of
brain tissue microstructure, which enables the identification of more specific
biomarkers such as proportion of free water (edema), proportion of water in
axons (partial disruption or complete loss of axons, axonal injury), etc.

A critical step to identify relevant biomarkers on a large database is the
creation of an atlas from individual estimated MCM images. This is achieved
using registration and interpolation of MCMs. To date, only few approaches
have addressed this issue. Among them, Barmpoutis et al. [2] or Geng et al.
[5] introduced registration methods specifically tuned for Orientation Distribu-
tion Functions (ODF) on the sphere. Goh et al. [6] introduced an interpolation
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method for ODFs in a spherical harmonics basis as a Riemannian average. How-
ever, this approach does not apply to MCMs as they are not expressed in the
same basis. Taquet et al. [13] proposed an interpolation approach seen as a sim-
plification problem of all weighted compartments from a set of voxels into a
smaller set of compartments. However, they assume that a single compartment
belongs to the exponential family which is not the case for all MCMs.

We introduce a new interpolation method for MCM images also as a simpli-
fication problem. It relies on the fuzzy spectral clustering [9] of input compart-
ments, from MCMs provided e.g. from trilinear interpolation, into a predefined
number of output compartments. Then, each cluster is used to compute an inter-
polated compartment, providing an output MCM. This method is very generic as
it relies only on the definition of a similarity measure between compartments and
of a weighted averaging scheme for compartments. It can therefore be applied
to any MCM as long as those two components may be defined.

In the following, we present MCM interpolation / averaging as a simplifi-
cation problem based on spectral clustering (Section 2.1). Then, we define 4
possible compartment averaging methods for the Diffusion Directions Imaging
(DDI) model [11] in Section 3 and similarity measures related to each of those
averaging schemes. We demonstrate qualitatively and quantitatively the interest
of both the averaging schemes and interpolation framework on simulated and in
vivo data. We finally apply this framework to compute an atlas of DDI (Section
3) which clearly highlights average crossing fiber regions.

2 Theory

2.1 Model interpolation as a simplification problem

We consider m MCM M i(i = 1, ...,m) each containing c(i) compartments of
constrained water diffusion and a free water compartment describing isotropic
unconstrained water diffusion. We note F ij the j-th compartment ofM i and F ifree
its free water compartment, their respective weights being wij and wifree and sum
to 1. Each of theseM i has an associated weight αi. For example, in the case of a
trilinear interpolation, we have 8 MCM with spatial weights αi. We formulate the
interpolation problem as merging the M i into one MCM with a predetermined
number of compartments q and one free water compartment. There are therefore
two different averaging parts: compartments and free water compartment.

The averaging of all compartments coming from M i into q compartments
is performed using spectral clustering [9]. Having defined a similarity matrix S
between compartments, spectral vectors are extracted from S. These spectral
vectors are then clustered using fuzzy C-Means. Hence, we obtain q sets of n
weights (n being the total number of compartments) βij,k that are probabilities
for the j-th compartment of M i to belong to the k-th cluster. We define θij,k the
weight of the j-th compartment of M i in the k-th cluster and θi the weight of
the free water compartment of M i:
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θij,k = αiwijβ
i
j,k, θi = αiwifree (1)

From θij,k and θi, we compute weights φk and φfree of the output compartments.

∀k = 1, ..., q φk =

m∑
i=1

c(i)∑
j=1

θij,k, φfree =

m∑
i=1

θi (2)

We also define θ̂ij,k and θ̂i two different sets of normalized weights from θij,k
and θi. This framework is very generic and can be applied to any MCM as long
as we provide a way to compute a similarity matrix between compartments.
Free water averaging is common to any MCM and is described in Section 2.2.
We derive MCM compartments averaging for DDI in Section 2.3 and similarity
matrix computation in Section 2.4.

2.2 Free water compartments averaging

We estimate from the isotropic diffusivities difree ofM i the diffusivity dfree of the
average model associated to weight φfree. Free diffusion follows an isotropic Gaus-
sian distribution with covariance matrix Di

free = difreeI3 (where I3 is the identity
matrix). The averaging is performed using the log-Euclidean framework [1]:

Dfree = exp(

m∑
i=1

θ̂i log(Di
free)) ⇒ dfree = exp(

m∑
i=1

θ̂i log(difree)) (3)

2.3 MCM Compartments Averaging

We propose four different methods to average DDI compartments into a single
one: classic, tensor, log VMF, and covariance analytic. For each cluster k, we wish
to average the set of F ij with weights θ̂ij,k into a compartment Ck with weight
φk. To simplify notations, we now just consider n compartments Fi(i = 1, ..., n)
with their corresponding weights wi.

2.3.1 Specification of the DDI model Each MCM has specific parameters
and models for compartments. The compartment averaging part therefore cannot
be exactly similar for any MCM. We choose to detail several compartments
averaging methods for one particular MCM: the DDI model.

In addition to the free water compartment, a number of axonal compart-
ments can be added to DDI to model how water molecules diffuse in axonal
bundles with various orientations. Diffusing water molecules in a particular ax-
onal compartment are assumed to undergo a random displacement that is the
independent sum of a von Mises & Fisher (VMF) vector on S2 of radius r and a
Gaussian vector on R3. Hence, the resulting diffusion probability density func-
tion describing this random displacement is given by the 3D convolution of the
VMF distribution with the Gaussian distribution:
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pµ,κ,d,ν = Convolution(VMF(µ, κ, r),Gaussian(0,
(1− ν)d

κ+ 1
[I3 + κµµT ]) (4)

where µ ∈ S2 is the principal axis of diffusion, κ an index of the concentration
of diffusion around µ, d the diffusivity along µ, ν the proportion of extra-axonal
space in the compartment, r the radius of the VMF sphere given by r =

√
νd. Σ

is the covariance matrix of the Gaussian part. Let µi, κi, νi, di be the parameters
of Fi and µ, κ, ν, d be the parameters of the average compartment F .

2.3.2 Common part of compartment averaging We choose to average
the sphere of radius r as the one whose surface is the average of the input
sphere surfaces. This corresponds to a Euclidean average of the individual r2i :
r2 =

∑n
i=1 wir

2
i . This also gives us a direct relation between ν and d leading to

only 3 parameters to estimate (µ, κ and ν), d being computed as d = r2/ν.

2.3.3 Simple averaging The simplest approach performs a weighted Eu-
clidean averaging on each parameter except µ. Each µi is a direction in S2.
However, for the DDI model, they do not represent a direction but an orienta-
tion. The simplest way to solve this problem (as two opposite directions) is to
put all µi in the top hemisphere and average them on the sphere to obtain µ.

2.3.4 Tensor averaging The simple averaging is however only a partial so-
lution, especially for directions close to the sphere equator. We now consider µi
as orientations instead of directions. µi is represented as a cigar-shaped tensor
Ti ∈ S+3 (R) defined as:

Ti = µiµ
T
i + εI3 (5)

With ε small to have non degenerated tensors. Then, we can average Ti using
the log-Euclidean framework similarly to Eq. (3). We define the average µ as
the principal direction of T (eigenvector with the largest eigenvalue). The other
parameters are obtained as for simple averaging.

2.3.5 Covariance analytic Another approach uses information from covari-
ance matrices Σi of DDI compartments. These Σi matrices belong to S+

3 (R) and
can be averaged into Σ similarly to Eq. (3). We wish to extract all parameters
from the average Σ. We start by approximating Σ by a cigar-shaped tensor to
match the DDI compartment model. To do that, we need to enforce two equal
secondary eigenvalues λ⊥. In the log-Euclidean framework, this amounts to com-
pute λ⊥ as λ⊥ =

√
λ2λ3 where λ2, λ3 are the two lowest eigenvalues of Σ. We

now have Σ̂ the cigar-shaped tensor of F :

Σ̂ =
(1− ν)d

κ+ 1
[I3 + κµµT ] (6)
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Proceeding by identification and given that r2 = νd, we obtain that µ is the
principal eigenvector of Σ̂. ν and κ are given by:

ν =
r2

λ+ r2
, κ = 2

λ− λ⊥
λ⊥

(7)

2.3.6 log VMF We now explore the option to use the VMF to compute µ
and κ and recover only ν from Σ̂. We consider a VMF distribution as a point
in a Riemannian manifold, similarly to the approach presented by McGraw et
al. [8]. To interpolate several points, a geodesic on these manifolds is defined
(refer to [8] for details). Orientation averaging is similar to tensor averaging as
in Section 2.3.4. The interpolation of κ is done recursively by projection as in
McGraw et al. Letting κ = κ1, repeat until convergence (i.e until lκ < ε):

lκ =

n∑
i=1

wi log(
κi
κ

) (8)

κ = κ exp(lκ) (9)

Knowing all parameters except ν, we obtain it from Σ̂ as:

ν =
r2[2r2 + λ+ λ⊥(1 + κ)]

2(r2 + λ)[r2 + λ⊥(1 + κ)]
(10)

2.4 Similarity measure between compartments

To perform spectral clustering, we need a similarity measure between compart-
ments. To stay coherent with the compartment averaging part, they are defined
following metrics associated with each method. In each case except covariance
analytic, we compute separately the distance between µ, κ, r and add them with
normalization terms α, β to give each parameters the same influence. For two
compartments F1 and F2, the similarity measures are defined as follows:


dsimple(F1, F2) =< µ1, µ2 >

2 +α|κ1 − κ2|+β|r1 − r2|
dtensor(F1, F2) = ||log(T1)− log(T2)||+α|κ1 − κ2|+β|r1 − r2|
dlogVMF(F1, F2) = ||log(T1)− log(T2)||+α|log(κ1)− log(κ2)|+β|r1 − r2|
dcovariance analytic(F1, F2) = ||log(Σ1)− log(Σ2)||

(11)

3 Experiments and Results

3.1 Compartment averaging evaluation on simulated data

We first evaluate compartment averaging into a single one. To do so, we simulate
random DDI compartments by drawing parameter values from uniform distri-
bution between different bounds depending on the parameter: 0 and 20 for κ,
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5.10−4m.s−2 and 5.10−3m.s−2 for d, 0 and 1 for ν, and random orientation on
S2 for µ. Four random DDI compartments are computed, they correspond to the
four corners of a grid of size 11× 11 that we want to extrapolate. To perform a
robust experiment, we created a database of 500 sets of 4 corners. The reference
is a grid containing 4 compartments per pixel with a weight proportional to the
position of the voxel with respect to each corner (see Fig. 1.e). For each method,
we average each pixel of the reference image into only one DDI compartment.
To quantitatively evaluate DDI averaging, we simulate, for each method and the
reference, a DWI signal from DDI models following Eq. (6) in [11] on 60 direc-
tions for each of 3 different b-values. A Euclidean distance between simulated
DWIs of the 4 methods and the reference provides quantitative results.

The Euclidean distances on the 500 random images are normalized so that
the simple error mean is 100. The result for the different methods are: simple:
100, tensor: 31.6, log VMF: 28.0, covariance analytic: 11.1. We present in Fig.
1 representative images from averaged DDI models superimposed on the corre-
sponding error maps. The simple method has a large error explained by direction
averaging. The tensor method is better: thanks to the orientation averaging part.
However, there are still large errors which can be explained by large κ values in
regions averaging orthogonal directions, which is not realistic. log VMF suffers
from the same problem as tensor. Covariance analytic performs much better than
all other methods. This is mainly due to smaller errors in crossing fibers. This
is logical as when two orthogonal compartments are averaged, the best single
compartment representing them is almost spherical, meaning a low κ value. The
Euclidean distance map in the DWI signal confirms this idea.

3.2 MCM extrapolation on real data

The second experiment was to test the entire MCM interpolation pipeline in-
cluding spectral clustering and free water compartment averaging. We tested
methods on a set of 20 real DDI images estimated from DWI with 128×128×55
voxels with a 2 × 2 × 2mm3 resolution, 30 gradient directions with one b-value
= 1000 s.mm−2. In order to assess the quality of interpolation, we extrapolate
voxels from their neighborhood. To do so, one in every two voxels are removed
and extrapolated from the known remaining values. Input DDI models have
three compartments, and so will the extrapolated DDI. Again we compute the
Euclidean distance between extrapolated DDI and the original one on the DWI
corresponding images. Means are respectively simple: 100, tensor: 84.6, log VMF:
107.0, covariance analytic: 66.2. These results show that covariance analytic per-
forms significantly better than all other methods (paired t-test, p < 1.0× 10−5)
also when used in the complete MCM interpolation framework on real data.

3.3 DDI Atlas Construction

The ultimate step of registration of MCM images is the production of an aver-
age atlas of the white matter microstructure. We computed an atlas from the 20
DDI images following Guimond et al. atlas construction method [7]. This atlas
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(a) simple (b) tensor (c) log VMF

(d) covariance analytic (e) reference (f) scalar bar

Fig. 1. First four images (a-d) illustrate DDI averaging using the four methods super-
imposed on their local error maps. Image (d) is the reference.

construction was performed using non linear DTI registration as proposed by
Suarez et al. [12]. Then, the obtained transformations were applied to the DDI
models. We interpolated the DDI models using our clustering approach with the
covariance analytic averaging. In addition, when applying a transformation to
oriented models, it is necessary to apply the local linear part of the transfor-
mation to the interpolated models. We used a technique similar to finite-strain
reorientation for tensors [10] by applying the local rotation to the µi directions
of each compartment of the interpolated DDI. We present the visual result of
the atlas and a zoomed area in Fig. 2. This atlas provides a clear distinction of
crossing fibers and will be of great interest in future studies for example of white
matter microstructure destruction in diseases.

(a) (b) (c) (d)

Fig. 2. Example of a DDI atlas superimposed on the average B0 image.
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4 Conclusion

We have addressed the problem of interpolation and averaging of MCM images.
As MCMs become increasingly popular and used, the issue of interpolation (e.g.
for a registration purpose) or averaging (e.g. for atlas creation) becomes acute
in the absence of relevant dedicated solutions yet. We have proposed to perform
interpolation as a MCM simplification problem, relying on spectral clustering
and compartment averaging methods handling both free water and compart-
ment parameters. For this latter part, we have proposed and compared four
different alternatives, these methods being evaluated with synthetic and real
data. According to these different experimental conditions, the covariance ana-
lytic solution exhibits significantly better performance than the others. This can
be explained by its capability to better handle the diffusion dispersion parame-
ter (κ) around each compartment principal orientation. Although this study has
been validated on one MCM model (DDI), the method proposed is generic and
may be extended to all currently available MCMs.
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