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ABSTRACT 

Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a 

pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. 

when no adaptation is performed, using wrong prior parameters. 

Methods We evaluated two one-stage designs, ξ0 and ξ∗, optimised for prior and true population 

parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For 

ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information 
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updated from the previous cohort. Optimal design was based on the determinant of the Fisher 

information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data 

simulated from Ψ*.  

Results Estimation results of two-stage ADs and  ξ∗ were close and much better than those obtained with 

ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three- 

and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced 

two-stage design. 

Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, 

more adaptations are needed but these designs are complex to implement. 

ABBREVIATIONS 

AD   Adaptive design 

FIM   Fisher information matrix 

NLMEM   Nonlinear mixed effects model 

PK   Pharmacokinetic 

PD      Pharmacodynamic 

REE   Relative estimation error 

RRMSE   Relative root mean squared error  

TGF-β    Transforming growth factor β  
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INTRODUCTION 

Nonlinear Mixed Effects Models (NLMEM) (1) are increasingly performed for analysis of pharmacokinetic 

and pharmacodynamic (PKPD) data of preclinical or clinical studies (2,3) in drug development and drug 

use.  

The design of a so-called population PKPD study, that is the number of patients, the sampling times for 

each patient and their allocation in time, plays an important role on parameter estimation (4). Choosing 

a good design when planning a study is essential and it is a crucial step as poor design can lead to 

inconclusive studies. For the evaluation and optimisation of population designs, the first approach was 

clinical trial simulation, which involves parameter estimation and thus is a time-consuming method (5). 

The  approach that avoids simulations, based on the Fisher information matrix (FIM) for NLMEM utilizing 

first-order (FO) linearization method (6), has been first proposed by Mentré et al. in 1997 and several 

developments have been done since then. Different software are in use to perform optimal design in 

NLMEM (7,8); these are: PFIM (9,10), PopED (11), PopDes (12), POPT (13). Within those, one can 

evaluate the different designs by computing FIM and perform design optimisation based on the D-

optimality criterion, i.e. maximization of the determinant of FIM. Furthermore, it was shown in (8) that 

all software provided with the same answer using the same FO approximation of FIM. 

Optimal designs depend on a priori information, both on models and parameters, which can be partially 

wrong as they may be difficult to guess. Currently, population designs are often fixed for the whole study 

with data analyzed at its end. Local optimal designs are optimised based on a set of parameters values 

known a priori, whereas in robust optimal designs (14–16), a prior parameter distribution is defined.  

Adaptive designs (ADs) are promising alternatives to local or robust designs (17). As opposite to 

traditional clinical studies, ADs are clinical trial designs that use accumulating information in order to 

decide how to modify predefined aspects of the study during its implementation instead of leaving them 
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fixed until the end (18,19). This is very important, for instance when designing a clinical trial, having only 

prior information on preclinical data, or designing a study in children from adults information. ADs are 

useful to provide some flexibility during the design but were rarely used for NLMEM (20). Nevertheless, 

according to a survey by Mentré et al.(7), adoption of adaptive design approach for population PKPD 

studies is promising in pharmaceutical industries. It was shown, in previous studies not concerning 

NLMEM, that two-stage designs could be more efficient than fully adaptive designs (21) when the 

adaptation is performed after each patient. Chen et al.(22) compared three- versus two-stage AD. They 

found that the gain of extending a two-stage design approach to three-stage design is not as relevant as 

compared to the advantage of using two-stage instead of one-stage design. Moreover, two-stage designs 

are easier to implement in clinical practice as only one adaptation is performed.  

Some important steps in AD are choosing the number of stages one wants to compute, i.e. the number 

of times parameters estimation and adaptations will be performed, and the cohort size to be set for each 

stage.  

For NLMEM, Dumont et al. (23) implemented the optimisation of the determinant of FIM for two-stage 

adaptive designs. In that paper (23) a simulation study that mimicked the design of a pediatric PK trial 

was used and it was analyzed through NLMEM. For the first stage, parameters were guessed from adults. 

Simulations of one- and two-stage designs were evaluated assuming that some parameters were 

different than the initial ones. They showed the applicability and usefulness of the approach that we 

wish to further investigated in this study in a more complex example.  

The example used for this study concerns a PKPD model in oncology, based on the SMAD 

phosphorylation (pSMAD) biomarker, and developed for a novel oral transforming growth factor β (TGF-

β) inhibitor (12,24). TGF-β, plays an important role on regulation of many physiological processes. TGF-β 

signalling leads to phosphorylation of SMAD complexes which stimulates transcription of TGF-β 
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responsive gene. The compound LY2157299, that is a small molecule TGF-β inhibitor, inhibits the TGF-β 

induced Smad phosphorylation (25).  

The objective of the present work is to evaluate by clinical trial simulation two-stage ADs for this model 

and compare them with one-stage designs, i.e. when no adaptation is performed, when wrong prior 

parameters are used. We then studied the influence of the size of each cohort in two-stage ADs. Finally 

we studied extensions of two-stage AD, not yet investigated in NLMEM, as three- and five-stage ADs. We 

used the new release of PFIM 4.0, where prior information can be incorporated on FIM evaluation 

and/or optimisation in order to perform adaptive design (10,23).  

 

MATERIALS AND METHODS 

Standard NLMEM 

In NLMEM, the vector of observations y𝑖  for the 𝑖th individual is described by a function f that depends 

nonlinearly on the 𝑝-sized vector of individual parameters ϕ𝑖 and on the elementary design ξ𝑖  of 𝑛𝑖 

sampling times (𝑡𝑖1, … 𝑡𝑛𝑖
), then y𝑖 = f( ϕ𝑖 , ξ𝑖) + ϵ𝑖. The model can also be defined as 

y𝑖 = f(g(β, b𝑖), ξ𝑖) + ϵ𝑖, with ϕ𝑖 = g(β, b𝑖), where β is the 𝑝-sized vector of fixed effects parameters, b𝑖  

are the random effects assumed normally distributed with zero mean and variance Ω. The standard 

functions for g are g(β, b𝑖) = β + b𝑖 and g(β, b𝑖) = β × exp(b𝑖), corresponding to additive or 

exponential random effects, respectively. Here it is further assumed that Ω is a 𝑝 × 𝑝 diagonal matrix 

with diagonal elements the variances 𝜔𝑠
2, 𝑠 = 1, … , 𝑝 each one corresponding to the variance of the 𝑠th 

component of the vector b𝑖. The 𝑛𝑖-vector of residual errors ϵ𝑖 is normally distributed with zero mean 

and variance equal to Σ(β, b𝑖 , σinter, σslope, ξ𝑖) = diag(σinter + σslope × f(g(β, b𝑖), ξ𝑖))2, where σinter  

and σslope are the standard deviations of the additive and proportional components respectively.  
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The vector of the population parameter Ψ is composed of the vector of fixed effects β and the vector of 

variance terms λ′ = (ω1
2, … , ω𝑝

2 , σinter, σslope), such that Ψ′ = (β′, λ′). 

Adaptive Population Design 

A fixed population design Ξ, i.e. a one-stage design, is defined by the total number N of individuals and 

the set of individual elementary designs to be performed in each individual: ξ1, … , ξN with a total number 

of observations 𝑛𝑡𝑜𝑡 = ∑ 𝑛𝑖
N
𝑖=1 , so that Ξ = {ξ1, … , ξN}. A special case is when the same elementary 

design is performed in all individuals (ξ𝑖 = ξ  for 𝑖 = 1, … , N), then 𝑛𝑡𝑜𝑡 = 𝑛 × N and Ξ = {ξ; N}. In the 

case of K-stage design, K population designs are defined for N1, … , NK groups of individuals (N1 + ⋯ +

NK = N) and are denoted by Ξ1, … , ΞK.   

In this work, the following assumptions were made: i) the same elementary design ξ𝑘 is performed for all 

individuals within each cohort 𝑘; ii) the size of each cohort N𝑘  (𝑘 = 1, … , K) is fixed, and iii) the number 

of sampling times 𝑛 in each elementary design is fixed and is the same for each cohort. 

The K-stage adaptive design schema is shown in Figure 1 and the approach can be defined as follows. For 

the first stage, data Y1 are collected for N1 individuals with a prior design ξ1 optimised from prior 

parameters Ψ0. Population parameters Ψ̂1 are then estimated from the collected data. At the 𝑘th
 stage, 

data Y𝑘  are collected for N𝑘 individuals with design ξ𝑘, where ξ𝑘
 is optimised using parameter estimates 

Ψ̂𝑘−1. Population parameters Ψ̂𝑘 can thus be estimated with both data Y1, … , Y𝑘 gathered together from  

N1 + ⋯ + N𝑘 individuals. The process of adaptation continues until the last step, that is the Kth stage, 

where the final parameters Ψ̂K are estimated using data Y1, … , Y𝑘 , … , YK, collected for N1 + ⋯ + N𝑘 +

⋯ + NK = N individuals. 

Several approaches can be used for design optimisation, here D-optimality criterion was used, which is 

the maximisation of the determinant of the Fisher information matrix. 
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Fisher information matrix 

Let l(Ψ|y) be the log-likelihood of the vector of observations 𝑦 for an individual (the index 𝑖 is omitted 

for simplicity) for the population parameters Ψ. The elementary FIM for that individual with design ξ is 

defined as 

 MF(Ψ, ξ) = E (−
∂2l(Ψ|y)

∂Ψ ∂Ψ′ ).                                                                  (1) 

Because of nonlinearity of the model f(g(β, b), ξ), there is no analytical expression of the log-likelihood 

and therefore of FIM. Several approaches have been developed in the years to compute FIM. Although 

there is no clear consensus on what is the best approximation, in this approach by FO linearization of the 

structural model around the random effects it is assumed the choice of block diagonal expression (8,26). 

As shown in Dumont et al. (23), in adaptive design, the population FIM in the first stage can be written as 

MF
1 = MF(Ψ0, N1ξ) =  N1MF(Ψ0, ξ)                (2) 

A design ξ1 maximises the determinant of MF
1. 

At the 𝑘th stage, using parameters estimates from the previous stage (Ψ̂𝑘−1), the design ξ𝑘 corresponds 

to the maximum of the determinant of Fisher information matrix MF
𝑘, where  

MF
𝑘 = MF(Ψ̂𝑘−1, N1ξ1 + ⋯ + N𝑘−1ξ𝑘−1 + N𝑘ξ)  = N1MF(Ψ̂𝑘−1, ξ1) + ⋯ + N𝑘−1MF(Ψ̂𝑘−1, ξ𝑘−1) +

N𝑘MF(Ψ̂𝑘−1, ξ)              (3) 

so that ξ𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
ξ

(det (MF
𝑘))         (4) 

The process continues until the last stage (K) where the population FIM can be written as:  
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MF
K = MF(Ψ̂K−1, N1ξ1 + ⋯ + NK−1ξK−1 + NKξ)  = N1MF(Ψ̂K−1, ξ1) + ⋯ + NK−1MF(Ψ̂K−1, ξK−1) +

NKMF(Ψ̂K−1, ξ)             (5) 

and  ξK is the optimal design for MF
K: 

ξK = 𝑎𝑟𝑔𝑚𝑎𝑥
ξ

(det (MF
K))                         (6) 

Simulation Study 

The example used in this study is based on a PKPD model published in (12) for the compound LY2157299, 

a small molecule TGF-β inhibitor. A single oral daily dose of 80 mg was considered. 

In the model reported in the literature, the PK was modelled by a one-compartment first-order 

absorption model given by: 

C(t) =
D

V
 

ka

ka−(CL V)⁄
(e−(CL V)⁄ ∙t − e−kat)                       (7) 

where D is the dose, ka is the first order rate constant of absorption, V is the volume of distribution, CL 

is the clearance. Please note that CL and V are apparent volume and clearance. As there is no data after 

intravenous administration, bioavailability of typical individual was set to 1. The inhibition of TGF-β 

signalling by the treatment is represented by a turnover model (12), that is a simplification of the semi-

mechanistic model developed by Bueno et al.(24):  

dR(t)

dt
= ksyn  (1 − Imax

C(t)

C(t)+IC50
) − koutR(t)        (8)  

where R(t) is the quantity of pSMAD (correlated to TGF-β activity); ksyn and kout are a zero order rate 

constant of synthesis and a first order rate constant of degradation of pSMAD, respectively, and IC50 is 

the concentration necessary to achieve 50% maximum inhibition. The maximum inhibitory response Imax 

was set to 1.  A graphical representation of the model is shown in Figure 2. 
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The PD used in the modelling is I(t), the relative inhibition of TGF-β defined by: 

 I(t) =
R0−R(t)

R0
             (9) 

where R0 is the baseline pSMAD equal to  
ksyn

kout
. The PD model is therefore rewritten as follow: 

dI(t)

dt
= kout Imax

C(t)

C(t)+IC50
− koutI(t)        (10) 

Two sets of PK and PD parameter values were defined for this study (Table I): prior (wrong) parameters 

Ψ0 and true parameters Ψ∗. Prior parameters for PK were those coming from a PK analysis for the 

clinical study (25), whereas for the PD, similar values to those obtained in a preclinical study (24) were 

assumed. Concerning the true parameters Ψ∗, it was assumed that prior values were correct except for 

CL and kout which were set to be four fold smaller and ten folds smaller, respectively.  The PKPD model 

for the two sets of parameters is displayed in Figure 3.  

Exponential random effect model was chosen for all parameters with similar inter-individual variability of 

70% except for ka whose variability was set to 0. Proportional error model and additive error model 

were assumed for PK and PD respectively, with σprop and σinter set to 0.2.   

Evaluated designs 

Several one-stage designs, i.e. non-adaptive designs, various two-stage ADs, two three-stage and one 

five-stage ADs were considered for a total number of N=50 patients. 

The evaluated one-stage designs were: first a rich design, ξrich, with n=6 sampling times, 0.1, 0.5, 1.5, 4, 

6, 12 hours for both PK and PD; then two optimal designs with n=3 samples among the n=6 sampling 

times in ξrich that could differ between PK and PD. These designs are: ξ0, D-optimal design for the prior 

parameters Ψ0 and ξ∗, D-optimal design for  the true parameters Ψ∗. For ξ0 the optimal sampling times 

were for PK: 0.1, 4, 12 hours and for PD: 0.5, 1.5, 4 hours. For ξ∗ the optimal sampling time were for PK: 
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0.1, 4, 12 hours and for PD: 4, 6, 12 hours. It should be noted that they are similar for PK and rather 

different for PD. A mixed design  ξ0∗ with N1=25 patients with design ξ0 and N2=25 patients with design 

ξ∗ was also evaluated. ξ0∗ can be considered as a special case of two-stage design that would occur in the 

ideal case of estimating after the first stage the exact set of true parameters values, that is Ψ̂1 = Ψ∗. 

Graphs of PK and PD simulated models with parameters Ψ0 and Ψ∗ and optimal designs ξ0 and ξ∗ are 

shown in Figure 3. 

The two-stage designs evaluated in this study were: first a balanced design ξ25−25 with the same cohorts 

size, i.e. same number of patients in the two cohorts: N1= N2= 25; then various unbalanced designs with 

different sizes in the two cohorts: ξ10−40; ξ15−35; ξ35−15; ξ40−10, where the first two designs have fewer 

patients in the first cohort whereas the second two designs have greater first cohort size.  

The two three-stage designs considered have 10 patients in the first cohort: ξ10−20−20 and ξ10−10−30, 

whereas the five-stage design is ξ10−10−10−10−10 with N1=N2=N3=N4=N5=10 patients. 

All adaptive designs (two-, three- and five-stage) start by having the first design ξ1 equal to the prior 

design ξ0 for the first cohort. 

Clinical Trial Simulation and Designs Comparison 

One hundred datasets of N=50 patients were simulated with the true parameters Ψ∗ and design ξrich 

described in the section above. In order to get datasets for the other designs only the corresponding 

sampling times were selected from the dataset of ξrich. 

Design optimisation was performed using PFIM 4.0 (10,23). Adaptive designs were implemented in PFIM 

4.0 (10,23) thanks to the new features that allow for saving FIM and for considering previous 

information, i.e. previous FIM, in the calculation of FIM. 
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Parameters estimation was performed with the Stochastic Approximation Expectation Maximisation 

(SAEM) algorithm in the software MONOLIX 4.3 (1), with five chains and initial parameters estimates Ψ0. 

By linking through an R code PFIM 4.0 and Monolix 4.3, it was thus possible to perform K-stage adaptive 

design.  

In order to compare the designs in terms of the precision of parameter estimates, relative estimation 

error (REE) and relative root mean squared error (RRMSE) were calculated from the R=100 final 

parameters estimates for 50 patients and for each design considered in this study: 

𝑅𝐸𝐸(Ψq
r) =  

Ψ̂q
r  −Ψq

∗

Ψq
∗ × 100           (11) 

𝑅𝑅𝑀𝑆𝐸(Ψq) = √1

𝑅
∑ (

Ψ̂q
r  −Ψq

∗

Ψq
∗ )

2
𝑅
𝑟=1 × 100        (12) 

In those expressions, Ψ̂q
r represents the qth estimated population parameter from the 𝑟th simulated 

dataset, and Ψq
∗ is the correspondent true parameter value. 

Furthermore, standardized RRMSEs (23) were computed for each design and each population parameter 

using as reference the RRMSE obtained with the best optimal one-stage design ξ∗ optimised with the 

true parameters Ψ∗. More precisely the RRMSE associated to each parameter for a given design was 

divided by the corresponding RRMSE obtained with ξ∗, optimised with the true parameters Ψ∗. Means of 

the standardized RRMSEs across all parameters were also calculated and the closer they are to 1 the 

better is the design performance.  

Estimated Optimal Designs for various Adaptive Designs 

For the 100 clinical trial simulations and for each studied adaptive design, the optimised designs of each 

cohort (except the first one which is fixed to ξ0) were studied and it was also compared how many 

elementary designs differed and how many were equal to the optimal design ξ∗. 
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RESULTS 

One- and two-stage designs 

Boxplots of the REEs for PK parameters ka and CL, and PD parameters kout and IC50 , for the various 

one-stage designs and the balanced two-stage adaptive design ξ25−25 are presented in Figure 4. As 

expected, as design ξ0 and ξ∗ for PK are similar, estimation of PK parameters was found good for all 

designs and medians are close to 0. Different conclusions were drawn from the boxplots for PD 

parameters, where the medians REEs for the one-stage design ξ0 in parameters kout and IC50 were very  

large (about 30% and  50%, respectively), showing a systematic bias. Good results were obtained for ξ∗  

as expected, and also for the mixed design ξ0∗ and for the balanced two-stage design ξ25−25.Those 

results were confirmed by the RRMSE values and the standardized RRMSEs to those of ξ∗ (Table II). 

RRMSE values for PK parameters were similar to those of ξ∗ in all designs. For PD parameters, large 

RRMSE values were obtained for design ξ0, with value larger than 2 for mean standardized RRMSE, 

whereas good results were observed for design ξ25−25 and design ξ0∗, similarly to those obtained with 

ξ∗, except somehow for IC50 and ωIC50

2 . 

Influence of the size of each cohort in two-stage adaptive designs 

Boxplots of REEs of PK and PD parameters for the various two-stage adaptive designs are presented in 

Figure 5 and RRMSEs are presented in Table III. As before, there is a good precision of PK parameters 

estimates among all designs, whereas for PD parameters some differences between designs are 

noticeable, with a better result for the balanced two-stage adaptive design ξ25−25. Results of RRMSEs 

and standardized RRMSEs for the various two-stage adaptive designs (Table III), confirmed a better 

performance of design ξ25−25, and worst performance of designs with a larger sample size in the first 

cohort (ξ35−15 and ξ40−10), where indeed the design adaptation is performed in only a small number of 

patients. 
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Two-, three- and five-stage adaptive designs 

Finally we compared two-, three- and five-stage ADs all with same number of patients in the first cohort 

(N1=10). Mean of standardized RRMSEs was smaller with the three-stage design ξ10−20−20 and the five-

stage design ξ10−10−10−10−10, compared to the two-stage design ξ10−40 and the three-stage design 

ξ10−10−30 (Table IV). Overall, ξ10−40 performed less well than the two three- and one five-stage designs 

considered, but those three- and five-stage designs were not better than the balanced two-stage design 

ξ25−25. Furthermore, the five-stage design was not better than the best three-stage design ξ10−20−20. 

Comparison of optimal designs at each step in adaptive design 

Considering all adaptive designs, the number of different designs for the second cohort was the largest 

(12 different designs in 100 datasets) when the first cohort had only 10 patients, and was only 6 for 

design with larger first cohort (Table V). 

For the two-stage ADs, the greatest number of datasets with optimal designs ξ2 equal to ξ∗ was obtained 

in the balanced two-stage AD ξ25−25 (Table V). Large numbers were also obtained for designs ξ35−15 and 

ξ40−10 but only a small sample of patients was affected in the second stage (15 and 10 patients, 

respectively), which explains the bad performance of the two designs (Table III).  

In three-stage designs the greatest number of simulated datasets with optimal designs ξ2 equal to ξ∗, 

was obtained for designs with smaller sample size in the second cohort (ξ10−10−30) (Table V), whereas a 

greater number of optimal designs  ξ3 equal to ξ∗ was obtained for the design that performed better, 

that is ξ10−20−20.  

Considering the first three stages of the five-stage design, results are similar to those obtained with the 

three-stage design ξ10−10−30 with the same greatest number of simulated datasets with optimal designs 

ξ2 equal to ξ∗ and with only one design ξ3 equal to ξ∗  less, but in five-stage design fewer patients were 

used (only 30 in the first three stages, versus the 50 patients included in the three-stage design). For the 
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fourth stage of five-stage designs the number of ξ4 equal to ξ∗ is smaller than the number of ξ3 equal to 

ξ∗ in the three-stage design ξ10−20−20, whereas the number of ξ5 equal to ξ∗ in the fifth stage is slightly 

bigger than the number of optimal designs equal to ξ∗ in the third stage of ξ10−20−20, and this could                                                                                                                                                                                       

explain why results of RRMSEs for the five-stage designs were similar to those obtained with ξ10−20−20. 

Discussions 

Two-stage AD in NLMEM was developed and implemented by Dumont et al. (23). They have compared 

by simulation one-stage design, i.e. no adaptive design, with two-stage design, for a PK model in 

paediatrics simulation study, showing the importance of the adaptive design method if poor prior 

information is available. One point of discussion in their work was the fact of having used a small number 

of simulated dataset after the first stage, which was due to software connection limitation that 

comported manual work to import estimated parameters after first cohort needed for the optimisation 

of the design of the second stage. The need of additional studies to provide further validation of the 

approach was therefore necessary.  

In the present study, we compared by clinical trial simulation various adaptive designs for a PKPD model 

in oncology (12), where the model is defined by ordinary differential equation. Design optimisations 

were performed in PFIM 4.0 (10), thanks to the new features that allow for saving the FIM into a text file 

and using FIM as prior information for the evaluation or optimisation of a design.  For each design we 

simulated 100 clinical trials and parameters were estimated after each cohort with MONOLIX 4.3. 

Parameter estimates were imported in R and iteratively used in PFIM through an R loop for design 

optimisation of the next cohort.  

We first compared one-stage design and two-stage AD as confirmatory analysis of the previous work by 

Dumont et al. Although with the prior design ξ0 based on wrong prior parameters, there is evident bias 

in PD parameters, estimation results with two-stage designs were close to those with the optimal design 
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ξ∗ and much better than those with ξ0. Two-stage AD thus improved the design after the first stage and 

is therefore useful when the correct prior information is not available. We also compared various two-

stage designs of different cohort size. The choice of two-stage designs with a small initial cohort is 

reasonable in some situation, for instance in early phases for ethical and safety reasons. Estimation 

results for designs with a large first cohort were less satisfactory compared with the other two-stage 

designs, because only few patients are then included in the second stage which is not enough to correct 

for the wrong initial design. In both Dumont et al. (23) and our study, results obtained with two-stage 

designs were better than those obtained with ξ0. Moreover, a balanced two-stage design, i.e. with same 

number of patients in the two cohorts, provided the smaller mean standardized RRMSE, and therefore 

was  preferable within the different cohort sizes of two-stage designs. The present results confirmed the 

results obtained in Dumont et al. (23).  

We then investigated adaptive designs with more stages, which, according to our knowledge, were never 

evaluated in NLMEM. We considered designs with a small number of patients in the first cohort (N1=10). 

Results on RRMSEs were better in the three- and five-stage design considered, than in the two-stage 

design, but not much better than those obtained for the balanced two-stage design. Of note, the three-

stage design that performed best, ξ10−20−20, is again the balanced design of the remaining 40 patients 

after the first stage. More stage designs with larger size in the first cohort were not taken into account in 

this study. Further studies on feasibility of adaptive designs with more stage in clinical practice should be 

performed, especially if the prior guess is very far from the true value of parameters. But it should be 

noted that with more stages the practical implementation  is more complex, hence two-stage AD seems 

a good approach (21). 

There are several limitations in the scope of the simulation study performed here, limitations that were 

also present in (23). First we assumed that the same elementary design was performed in patients 
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belonging to the same cohort, with a fix number of sampling times. Second, we assumed that the 

structural model was known, correct and similar for all the stages. As in early phases there usually is no 

certainty about the model whereas there are various possible models that can be considered, we suggest 

using a model averaging approach for future studies (27). Third, we assumed that the dose was fixed and 

identical in all patients in all cohorts and that design optimisation was performed only on sampling times. 

It would be interesting to expand the approach also for dose findings, optimising for instance the 

maximum tolerated doses in addition to the sampling times. 

In adaptive design, as in optimal design, it is also necessary to define at the beginning of the analysis 

some prior parameters values for the model, which are usually difficult to guess when correct 

information is not available. Prior parameters shown in Table I were assumed to be error free. Indeed D-

optimality used here at each stage does not handle uncertainty in parameters. However it should be 

noted that here, the changes in prior and true parameters (four fold for CL and tenfold for kout)  do not 

intend to represent estimation uncertainty but are mimicking a change from preclinical to clinical 

parameters. In that case taking into account estimation uncertainty using a robust design criteria, for 

instance for the first cohort, is expected to make only few changes. Further studies are needed to 

analyze the impact of the use of robust criteria in adaptive designs. Furthermore, to introduce this 

uncertainty in the parameters, several robust designs criteria were developed for optimal designs of 

fixed experiments in previous studies (17,28,29). The common characteristic that links these methods is 

the assumption of assigning prior distributions for the parameters, rather than constraining them to a 

fixed value. A perspective of this work could thus be to use a robust design approach for defining prior 

information in the first stage of adaptive design.  

In this work, we only changed two parameters, one in the PK model (CL) and one in the PD model (kout) 

and we made rather large change in order to clearly see a variation of the shape of PK and PD curves 
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with respect to time. In addition, by changing IC50 to four fold bigger or smaller, the optimal PD design 

did not change. When reducing inter-individual variability on PK parameters (30% instead of 70%), the 

design ξ∗ was only slightly changed for PK (0.1, 1.5, 12 hours), whereas ξ0 was unchanged. The full 

simulation study with that lower variability was not performed. Inter-patient variability on ka was not 

considered in the present study. 

To conclude, two-stage designs provided satisfactory results close to those of the design optimised with 

true parameters, which allowed compensating the poor information of the prior design. The balanced 

two-stage design seems the best option, as in Dumont et al. (23), although a two responses (PKPD) 

model in oncology was used. Furthermore, in case of small first cohort, more adaptations may be 

performed but those designs are more complex to implement in clinical practice. 
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Tables 

Table I PK and PD parameter of the oncology model used in the simulation studies: Prior (Ψ0) and True 

(Ψ*) 

PK Parameters Prior (Ψ0) True (Ψ*) 

ka (h−1) 2 2 

V (L) 100 100 

CL (L h−1) 40 10 

ωka

2  0 0 

ωV
2  0.49 0.49 

ωCL
2  0.49 0.49 

σinter,PK 0 0 

σslope,PK 0.2 0.2 

PD Parameters   

kout (h−1) 2 0.2 

IC50 (mg L−1) 0.3 0.3 

ωkout

2  0.49 0.49 

ωIC50

2  0.49 0.49 

σinter,PD 0.2 0.2 

 σslope,PD 0 0 
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Table II  RRMSE % (and standardized RRMSE with respect to ξ∗) of final estimated parameters in one-
stage design and in balanced two-stage adaptive design (N= 50 patients). 

  RRMSE % (standardized RRMSE) 

Parameters ξ∗ ξ0 ξ0∗ ξ25−25 

ka (h−1) 

V (L) 

CL (L h−1)  

ωV
2  

ωCL
2  

σslope,PK 

kout(h−1) 

IC50(mg L−1)  

ωkout

2  

ωIC50

2  

σinter,PD 

5.8 5.6 (0.97) 5.7 (0.98) 5.0 (0.86) 

9.9 9.9 (1.00) 9.9 (1.00) 9.3 (0.94) 

12.5 12.4 (0.99) 12.5 (1.00) 12.5 (1.00) 

22.8 22.5 (0.99) 22.5 (0.99) 22.2 (0.97) 

24.6 24.7 (1.00) 24.4 (0.99) 24.3 (0.99) 

10.1 10.2 (1.01) 10.0 (0.99) 9.9 (0.98) 

23.8 54.5 (2.29) 25.4 (1.07) 24.1 (1.01) 

22.1 91.3 (4.13) 30.4 (1.38) 30.3 (1.37) 

76.0 59.5 (0.78) 59.2 (0.78) 60.9 (0.80) 

72.2 709.8 (9.83) 95.3 (1.32) 98.6 (1.37) 

7.3 6.4 (0.88) 6.3 (0.86)  6.2 (0.85) 

Mean Standardized 
RRMSE 1.00 2.17 1.03 1.01 

RRMSE in bold have at least a two-fold increase standardized RRMSE. 
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Table III RRMSE % (and standardized RRMSE with respect to ξ∗) of final estimated parameters in 

balanced and various unbalanced two-stage adaptive designs (N= 50 patients). 

  RRMSE % (standardized RRMSE) 

Parameters ξ10−40 ξ15−35 ξ25−25 ξ35−15 ξ40−10 

ka (h−1) 

V (L) 

CL (L h−1)  

ωV
2  

ωCL
2  

σslope,PK 

kout(h−1) 

IC50(mg L−1)  

ωkout

2  

ωIC50

2  

σinter,PD  

5.5 (0.95) 5.5 (0.95) 5.0 (0.86) 5.3 (0.91) 5.6 (0.97) 

9.4 (0.95) 9.7 (0.98) 9.3 (0.94) 9.5 (0.96) 9.7 (0.98) 

12.4 (0.99) 12.5 (1.00) 12.5 (1.00) 12.5 (1.00) 12.5 (1.00) 

22.4 (0.98) 22.0 (0.96) 22.2 (0.97) 22.1 (0.97) 22.3 (0.98) 

24.1 (0.98) 24.8 (1.01) 24.3 (0.99) 24.2 (0.98) 25.1 (1.02) 

10.6 (1.05) 10.0 (0.99) 9.9 (0.98) 9.9 (0.98) 9.9 (0.98) 

28.7 (1.21) 26.4 (1.11) 24.1 (1.01) 32.0 (1.34) 33.1 (1.39) 

49.1 (2.22) 36.0 (1.63) 30.3 (1.37) 45.8 (2.07) 57.2 (2.59) 

60.5 (0.80) 63.8 (0.84) 60.9 (0.80) 58.8 (0.77) 62.9 (0.83) 

104.5 (1.45) 102.5 (1.42) 98.6 (1.37) 197.6 (2.74) 246.5 (3.41) 

6.2 (0.85) 6.7(0.92)  6.2 (0.85) 6.4 (0.88) 6.4 (0.88) 

Mean Standardized 
RRMSE 1.13 1.07 1.01 1.24 1.37 

RRMSE in bold have at least a two-fold increase standardized RRMSE. 
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Table IV   RRMSE % (and standardized RRMSE with respect to ξ∗) of final estimated parameters in a two-
stage design, two three-stage designs and five-stage design (N=50 patients). All designs are characterized 
by having 10 patients in the first cohort. 

  RRMSE % (standardized RRMSE) 

Parameters ξ10−40 ξ10−20−20 ξ10−10−30 ξ10−10−10−10−10 

ka (h−1) 

V (L) 

CL (L h−1)  

ωV
2  

ωCL
2  

σslope,PK 

kout (h−1) 

IC50 (mg L−1)  

ωkout

2  

ωIC50

2  

σinter,PD 

5.5 (0.95) 5.6 (0.97) 5.6 (0.97) 5.5 (0.95) 

9.4 (0.95) 9.7 (0.98) 9.8 (0.99) 9.7 (0.98) 

12.4 (0.99) 12.5 (1.00) 12.4 (0.99) 12.4 (0.99) 

22.4 (0.98) 22.4 (0.98) 22.2 (0.97) 22.2 (0.97) 

24.1 (0.98) 24.3 (0.99) 24.3 (0.99) 23.9 (0.97) 

10.6 (1.05) 10.7 (1.06) 10.7 (1.06) 10.8 (1.07) 

28.7 (1.21) 22.3 (0.94) 25.6 (1.08) 23.0 (0.97) 

49.1 (2.22) 27.1 (1.23) 31.8 (1.44) 26.3 (1.19) 

60.5 (0.80) 65.8 (0.87) 72.4 (0.95) 73.0 (0.96) 

104.5 (1.45) 96.6 (1.34) 95.2 (1.32) 92.2 (1.28) 

6.2 (0.85) 6.5 (0.89) 6.5 (0.89) 6.4 (0.88) 

Mean Standardized 
RRMSE 1.13 1.02 1.06 1.02 

RRMSE in bold have at least a two-fold increase of standardized RRMSE. 
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Table V Number of different elementary design (nξ) and number of datasets when the elementary 

design is equal to ξ∗ (nξ
∗), for the various stages, of the two-, three- and five-stage studied adaptive 

designs. 

 2nd Stage 3rd Stage 4th Stage 5th Stage 

 nξ  nξ
∗ nξ  nξ

∗ nξ  nξ
∗ nξ nξ

∗ 

Two-stage design         

ξ10−40 

ξ15−35 
ξ25−25 
ξ35−15 
ξ40−10 

12 24       
8 35       
6 49       
6 47       
6 45       

Three-stage design         

ξ10−20−20 12 27 5 71     

ξ10−10−30 12 28 6 61     

Five-stage design         

ξ10−10−10−10−10 12 28 7 60 4 69 4 76 
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Legend to Figures 

Fig. 1 Schema of K-stage adaptive design  

Fig. 2 Graphical representation of the PKPD model                                  

Fig. 3 PK (left) and PD (right) simulated models for a total daily dose of 80 mg, with prior parameters Ψ0, 

in dark, and optimal sampling times ξ0 , in ○, and with true parameters Ψ*, in grey, and optimal sampling 

times ξ*, in *  

Fig. 4 Boxplot of Relative Estimation Error (REE) for PK parameters ka and CL (top panel) and PD 

parameters kout and IC50 (bottom panel) in four one-stage designs and a balanced two-stage adaptive 

design  

Fig. 5 Boxplot of Relative Estimation Error (REE) for PK parameters ka and CL (top panel) and PD 

parameters kout and IC50 (bottom panel) in various two-stage adaptive designs  

 

  



26 
 

Figures 

  

Fig. 1 

  



27 
 

 

Fig. 2 

  



28 
 

                  

Fig. 3  



29 
 

                

                 

Fig. 4 
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