J. South, B. Blass, J. Veldhuis, D. Keenan, and S. Pincus, Handbook of Neuroendocrinology Regulation of complex pulsatile and rhythmic neuroendocrine systems: the male gonadal axis as a prototype, Prog Brain Res, vol.2, issue.18108, pp.79-11010, 2010.

D. Bosco, J. Haefliger, and M. P. , Connexins: Key Mediators of Endocrine Function, Physiological Reviews, vol.91, issue.4, 2010.
DOI : 10.1152/physrev.00027.2010

I. Potolicchio, V. Cigliola, S. Velazquez-garcia, P. Klee, A. Valjevac et al., Connexin-dependent signaling in neuro-hormonal systems, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, pp.1919-1936, 2012.
DOI : 10.1016/j.bbamem.2011.09.022

M. Ehrhart-bornstein and U. Hilbers, Neuroendocrine Properties of Adrenocortical Cells, Hormone and Metabolic Research, vol.30, issue.06/07, pp.6-7436, 1998.
DOI : 10.1055/s-2007-978911

D. Friend and N. Gilula, A DISTINCTIVE CELL CONTACT IN THE RAT ADRENAL CORTEX, The Journal of Cell Biology, vol.53, issue.1, pp.148-163, 1972.
DOI : 10.1083/jcb.53.1.148

H. Willenberg, M. Schott, W. Saeger, A. Tries, W. Scherbaum et al., Expression of Connexins in Chromaffin Cells of Normal Human Adrenals and in Benign and Malignant Pheochromocytomas, Annals of the New York Academy of Sciences, vol.21, issue.1, pp.578-583, 2006.
DOI : 10.1093/carcin/bgh071

P. Meda, M. Pepper, O. Traub, K. Willecke, D. Gros et al., Differential expression of gap junction connexins in endocrine and exocrine glands, Endocrinology, vol.133, issue.5, pp.2371-2378, 1993.

S. Murray, S. Pharrams, U. Shah, and S. Murray, Comparison of gap junction expression in the adrenal gland doi:10.1002/(SICI) The role of alpha1 (connexin-43) gap junction expression in adrenal cortical cell function, Microsc Res Tech Endocrinology, vol.3636, issue.13812, pp.510-5191097, 1997.

S. Murray, K. Davis, L. Fishman, and S. Bornstein, Alpha1 connexin 43 gap junctions are decreased in human adrenocortical tumors, J Clin Endocrinol Metab, vol.85, issue.2, pp.890-895, 2000.

M. Desarmenien, C. Jourdan, B. Toutain, E. Vessieres, S. Hormuzdi et al., Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo Characterization of gap junction expression in the adrenal gland, Nat Commun Endocr Res, vol.4, issue.2112, pp.221-229, 1995.

K. Davis, N. Prentice, V. Gay, and S. Murray, Gap junction proteins and cell-cell communication in the three functional zones of the adrenal gland, Journal of Endocrinology, vol.173, issue.1, pp.13-21, 2002.
DOI : 10.1677/joe.0.1730013

A. Martin, M. Mathieu, C. Chevillard, and N. Guerineau, Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine release, J Neurosci, vol.21, issue.15, pp.5397-5405, 2001.

G. Palacios, Cell junctions in the adrenal cortex of the postnatal rat, J Anat, vol.129, pp.695-701, 1979.

E. Dahl, E. Winterhager, O. Traub, and K. Willecke, Expression of gap junction genes, connexin40 and connexin43, during fetal mouse development, Anatomy and Embryology, vol.191, issue.3, pp.267-278, 1995.
DOI : 10.1007/BF00187825

T. Joseph, C. Slack, and R. Gould, Gap junctions and electrotonic coupling in foetal rabbit adrenal cortical cells, J Embryol Exp Morphol, vol.29, issue.3, pp.681-696, 1973.

T. Mcdonald, C. Li, G. Massmann, and J. Figueroa, Connexin 43 ontogeny in fetal sheep adrenal glands, Steroids, vol.68, issue.7-8, pp.613-620, 2003.
DOI : 10.1016/S0039-128X(03)00087-4

N. Mcnutt and A. Jones, Observations on the ultrastructure of cytodifferentiation in the human fetal adrenal cortex, Lab Invest, vol.22, issue.6, pp.513-527, 1970.

S. Murray and W. Fletcher, Hormone-induced intercellular signal transfer dissociates cyclic AMP- dependent protein kinase, The Journal of Cell Biology, vol.98, issue.5, pp.1710-1719, 1984.
DOI : 10.1083/jcb.98.5.1710

Y. Munari-silem and B. Rousset, Gap junction-mediated cell-to-cell communication in endocrine glands--molecular and functional aspects: a review, European Journal of Endocrinology, vol.135, issue.3, pp.251-264, 1996.
DOI : 10.1530/eje.0.1350251

S. Murray, K. Davis, and V. Gay, ACTH and adrenocortical gap junctions, Microscopy Research and Technique, vol.323, issue.3, pp.240-246, 2003.
DOI : 10.1002/jemt.10332

S. Murray, B. Nickel, and V. Gay, Gap junctions as modulators of adrenal cortical cell proliferation and steroidogenesis, Molecular and Cellular Endocrinology, vol.300, issue.1-2, pp.51-56, 2009.
DOI : 10.1016/j.mce.2008.09.027

S. Murray and U. Shah, Modulation of Adrenal Gap Junction Expression, Hormone and Metabolic Research, vol.30, issue.06/07, pp.426-431, 1998.
DOI : 10.1055/s-2007-978909

U. Shah and S. Murray, Bimodal inhibition of connexin 43 gap junctions decreases ACTH-induced steroidogenesis and increases bovine adrenal cell population growth, Journal of Endocrinology, vol.171, issue.1, pp.199-208, 2001.
DOI : 10.1677/joe.0.1710199

K. Davis, I. Mcduffie, L. Mawhinney, and S. Murray, Hypophysectomy Results in a Loss of Connexin Gap Junction Protein from the Adrenal Cortex, Endocrine Research, vol.212, issue.4, pp.561-570, 2000.
DOI : 10.3109/07435800009048571

Y. Munari-silem, M. Lebrethon, I. Morand, B. Rousset, J. Saez et al., Gap junction-mediated cell-tocell communication in bovine and human adrenal cells. A process whereby cells increase their responsiveness to physiological corticotropin concentrations Migrating cells retain gap junction plaque structure and function, J Clin Invest Cell Commun Adhes, vol.95, issue.153, pp.1429-1439273, 1080.

O. Grynszpan-wynograd and N. G. , Intercellular junctions in the adrenal medulla: A comparative freeze-fracture study, Tissue and Cell, vol.12, issue.4, pp.661-672, 1980.
DOI : 10.1016/0040-8166(80)90020-8

D. Anderson, Cellular and molecular biology of neural crest cell lineage determination, Trends in Genetics, vol.13, issue.7, pp.276-280, 1997.
DOI : 10.1016/S0168-9525(97)01187-6

S. Massey, O. Brien, J. Trexler, E. Li, W. Keung et al., Multiple neuronal connexins in the mammalian retina, Cell Commun Adhes, vol.10, pp.4-6425, 2003.

J. Eiberger, M. Kibschull, N. Strenzke, A. Schober, H. Bussow et al., Expression pattern and functional characterization of connexin29 in transgenic mice, Glia, vol.19, issue.6, pp.601-611, 2006.
DOI : 10.1002/glia.20315

C. Colomer, O. Ore, L. Coutry, N. Mathieu, M. Arthaud et al., Functional Remodeling of Gap Junction-Mediated Electrical Communication between Adrenal Chromaffin Cells in Stressed Rats, Journal of Neuroscience, vol.28, issue.26, pp.6616-662610, 2008.
DOI : 10.1523/JNEUROSCI.5597-07.2008

URL : https://hal.archives-ouvertes.fr/inserm-00281272

J. Hill, S. Lee, P. Samasilp, and C. Smith, Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla, AJP: Cell Physiology, vol.303, issue.3, pp.257-266, 2012.
DOI : 10.1152/ajpcell.00119.2012

V. Cena, G. Nicolas, P. Sanchez-garcia, S. Kirpekar, and A. Garcia, Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release, Neuroscience, vol.10, issue.4, pp.1455-1462, 1983.
DOI : 10.1016/0306-4522(83)90126-4

C. Colomer, A. Martin, M. Desarmenien, and N. Guerineau, Gap junction-mediated intercellular communication in the adrenal medulla: An additional ingredient of stimulus???secretion coupling regulation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1818, issue.8, 2012.
DOI : 10.1016/j.bbamem.2011.07.034

URL : https://hal.archives-ouvertes.fr/inserm-00617505

A. Martin, M. Mathieu, and N. Guerineau, Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells, J Neurosci, vol.23, issue.9, pp.3669-3678, 2003.

A. Martin, G. Alonso, and N. Guerineau, Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis, The Journal of Cell Biology, vol.9, issue.3, pp.503-514, 2005.
DOI : 10.1074/jbc.M309652200

URL : https://hal.archives-ouvertes.fr/hal-00017507

C. Colomer, M. Desarmenien, and N. Guerineau, Revisiting the Stimulus-Secretion Coupling in the Adrenal Medulla: Role of Gap Junction-Mediated Intercellular Communication, Molecular Neurobiology, vol.44, issue.Suppl, pp.87-100, 2009.
DOI : 10.1007/s12035-009-8073-0

URL : https://hal.archives-ouvertes.fr/inserm-00398108

C. Colomer, C. Lafont, and N. Guerineau, Stress-induced Intercellular Communication Remodeling in the Rat Adrenal Medulla, Annals of the New York Academy of Sciences, vol.307, issue.1, 2008.
DOI : 10.1196/annals.1410.040

B. Kuri, S. Chan, C. Smith, B. Kuri, T. Mustafa et al., PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway, Journal of Neurochemistry, vol.182, issue.Pt 2, pp.1214-1225330, 1210.
DOI : 10.1111/j.1471-4159.2009.06206.x

C. Colomer, L. Olivos-ore, A. Vincent, J. Mcintosh, A. Artalejo et al., Functional Characterization of ??9-Containing Cholinergic Nicotinic Receptors in the Rat Adrenal Medulla: Implication in Stress-Induced Functional Plasticity, Journal of Neuroscience, vol.30, issue.19, pp.6732-6742, 2010.
DOI : 10.1523/JNEUROSCI.4997-09.2010

URL : https://hal.archives-ouvertes.fr/inserm-00483826

H. Rodriguez, V. Filippa, F. Mohamed, S. Dominguez, L. Scardapane et al., Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus) Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro, Anat Histol Embryol J Biol Chem Biochem Biophys Res Commun, vol.36, issue.3681, pp.182-18520920, 2006.

S. John, R. Kondo, S. Wang, J. Goldhaber, and J. Weiss, Connexin-43 Hemichannels Opened by Metabolic Inhibition, Journal of Biological Chemistry, vol.274, issue.1, pp.236-240, 1999.
DOI : 10.1074/jbc.274.1.236

N. Wang, D. Bock, M. Decrock, E. Bol, M. Gadicherla et al., Paracrine signaling through plasma membrane hemichannels, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.1, pp.35-50, 2013.
DOI : 10.1016/j.bbamem.2012.07.002

URL : http://doi.org/10.1016/j.bbamem.2012.07.002

G. Sahu, S. Sukumaran, and A. Bera, Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins, Scientific Reports, vol.93, pp.4955-4965, 2014.
DOI : 10.1038/srep04955

F. Momboisse, M. Olivares, X. Baez-matus, M. Guerra, C. Flores-munoz et al., Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells, Frontiers in Cellular Neuroscience, vol.14, 2014.
DOI : 10.1385/ep:14:1:25

F. Vanden-abeele, G. Bidaux, D. Gordienko, B. Beck, Y. Panchin et al., Functional implications of calcium permeability of the channel formed by pannexin 1, The Journal of Cell Biology, vol.33, issue.4, pp.535-546, 2006.
DOI : 10.1021/bi00099a015

R. Iglesias, G. Dahl, F. Qiu, D. Spray, and E. Scemes, Pannexin 1: The Molecular Substrate of Astrocyte "Hemichannels", Journal of Neuroscience, vol.29, issue.21, pp.7092-7097, 2009.
DOI : 10.1523/JNEUROSCI.6062-08.2009

L. Tissier, P. Hodson, D. Lafont, C. Fontanaud, P. Schaeffer et al., Anterior pituitary cell networks, Frontiers in Neuroendocrinology, vol.33, issue.3, pp.252-266, 2012.
DOI : 10.1016/j.yfrne.2012.08.002

T. Nakajima, H. Yamaguchi, and K. Takahashi, S100 protein in folliculostellate cells of the rat pituitary anterior lobe, Brain Research, vol.191, issue.2, pp.523-531, 1980.
DOI : 10.1016/0006-8993(80)91300-1

T. Fauquier, A. Lacampagne, P. Travo, K. Bauer, and P. Mollard, Hidden face of the anterior pituitary, Trends in Endocrinology & Metabolism, vol.13, issue.7, pp.304-309, 2002.
DOI : 10.1016/S1043-2760(02)00616-1

P. Mollard, D. Hodson, C. Lafont, K. Rizzoti, and J. Drouin, A tridimensional view of pituitary development and function, Trends in Endocrinology & Metabolism, vol.23, issue.6, pp.261-269, 2012.
DOI : 10.1016/j.tem.2012.02.004

D. Hodson and P. Mollard, Pituitary endocrine cell networks???????10 years and beyond, Annales d'Endocrinologie, vol.73, issue.2, pp.56-58, 2012.
DOI : 10.1016/j.ando.2012.03.033

D. Hodson, N. Romano, M. Schaeffer, P. Fontanaud, C. Lafont et al., Coordination of calcium signals by pituitary endocrine cells in situ, Cell Calcium, vol.51, issue.3-4, 2012.
DOI : 10.1016/j.ceca.2011.11.007

D. Hodson and P. Mollard, Navigating Pituitary Structure and Function - Defining a Roadmap for Hormone Secretion, Journal of Neuroendocrinology, vol.25, issue.7, pp.674-675, 2013.
DOI : 10.1111/jne.12041

T. Fauquier, N. Guerineau, R. Mckinney, K. Bauer, and P. Mollard, Folliculostellate cell network: A route for long-distance communication in the anterior pituitary, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.8891-8896, 2001.
DOI : 10.1073/pnas.151339598

X. Bonnefont, A. Lacampagne, A. Sanchez-hormigo, E. Fino, A. Creff et al., Revealing the large-scale network organization of growth hormone-secreting cells, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16880-16885, 2005.
DOI : 10.1073/pnas.0508202102

URL : https://hal.archives-ouvertes.fr/hal-00021488

C. Sanchez-cardenas, P. Fontanaud, Z. He, C. Lafont, A. Meunier et al., Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood, Proceedings of the National Academy of Sciences, vol.107, issue.50, pp.21878-21883, 2010.
DOI : 10.1073/pnas.1010849107

L. Budry, C. Lafont, E. Yandouzi, T. Chauvet, N. Conejero et al., Related pituitary cell lineages develop into interdigitated 3D cell networks, Proceedings of the National Academy of Sciences, vol.108, issue.30, pp.12515-12520, 2011.
DOI : 10.1073/pnas.1105929108

URL : https://hal.archives-ouvertes.fr/hal-00613180

D. Hodson, M. Schaeffer, N. Romano, P. Fontanaud, C. Lafont et al., Existence of long-lasting experience-dependent plasticity in endocrine cell networks Pulsatile patterns of pituitary hormone gene expression change during development, Nat Commun J Cell Sci, vol.3, issue.124, pp.3484-3491, 2011.

C. Sanchez-cardenas and A. Hernandez-cruz, GnRH-Induced [Ca<sup>2+</sup>]<sub>i</sub>-Signalling Patterns in Mouse Gonadotrophs Recorded from Acute Pituitary Slices in vitro, Neuroendocrinology, vol.91, issue.3, pp.239-255, 2010.
DOI : 10.1159/000274493

W. Schlegel, B. Winiger, P. Mollard, P. Vacher, F. Wuarin et al., Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials, Nature, vol.329, issue.6141, pp.719-72110, 1038.
DOI : 10.1038/329719a0

P. Mollard and W. Schlegel, Why are endocrine pituitary cells excitable?, Trends in Endocrinology & Metabolism, vol.7, issue.10, pp.361-365, 1996.
DOI : 10.1016/S1043-2760(96)00186-5

S. Stojilkovic, J. Tabak, and R. Bertram, Ion Channels and Signaling in the Pituitary Gland, Endocrine Reviews, vol.31, issue.6, pp.845-915, 2010.
DOI : 10.1210/er.2010-0005

W. Fletcher, N. Anderson, J. Everett, and J. , Intercellular communication in the rat anterior pituitary gland: an in vivo and in vitro study, The Journal of Cell Biology, vol.67, issue.2, pp.469-476, 1975.
DOI : 10.1083/jcb.67.2.469

E. Horvath, K. Kovacs, and C. Ezrin, Junctional contract between lactotrophs and gonadotrophs in the rat pituitary, IRCS Med Sci, vol.5, p.511, 1977.

T. Soji and D. Herbert, Intercellular communication between rat anterior pituitary cells, The Anatomical Record, vol.24, issue.4, pp.523-533, 1989.
DOI : 10.1002/ar.1092240410

N. Guerineau, R. Mckinney, D. Debanne, P. Mollard, and B. Gahwiler, Organotypic cultures of the rat anterior pituitary: morphology, physiology and cell-to-cell communication, Journal of Neuroscience Methods, vol.73, issue.2, pp.169-176, 1997.
DOI : 10.1016/S0165-0270(97)02224-3

T. Yamamoto, M. Hossain, E. Hertzberg, H. Uemura, L. Murphy et al., Connexin43 in rat pituitary: localization at pituicyte and stellate cell gap junctions and within gonadotrophs, Histochemistry, vol.84, issue.1, pp.53-64, 1993.
DOI : 10.1007/BF00268878

N. Belluardo, G. Mudo, A. Trovato-salinaro, L. Gurun, S. Charollais et al., Expression of Connexin36 in the adult and developing rat brain, Brain Research, vol.865, issue.1, pp.121-138, 2000.
DOI : 10.1016/S0006-8993(00)02300-3

I. Morand, P. Fonlupt, A. Guerrier, J. Trouillas, A. Calle et al., Cellto-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells, Endocrinology, vol.137, issue.8, pp.3356-3367, 1996.

N. Guerineau, X. Bonnefont, L. Stoeckel, and P. Mollard, Synchronized Spontaneous Ca2+ Transients in Acute Anterior Pituitary Slices, Journal of Biological Chemistry, vol.273, issue.17, pp.10389-10395, 1998.
DOI : 10.1074/jbc.273.17.10389

K. Horiguchi, K. Fujiwara, T. Kouki, M. Kikuchi, and T. Yashiro, Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculostellate cells, Anat Sci Int, vol.83, issue.4, 2008.

M. Vitale, J. Cardin, N. Gilula, M. Carbajal, and R. Pelletier, Dynamics of Connexin 43 Levels and Distribution in the Mink (Mustela vison) Anterior Pituitary Are Associated with Seasonal Changes in Anterior Pituitary Prolactin Content1, Biology of Reproduction, vol.64, issue.2, pp.625-633, 2001.
DOI : 10.1095/biolreprod64.2.625

S. Stojilkovic, A novel view of the function of pituitary folliculo-stellate cell network, Trends in Endocrinology and Metabolism, vol.12, issue.9, pp.378-380, 2001.
DOI : 10.1016/S1043-2760(01)00476-3

B. Lewis, A. Pexa, K. Francis, V. Verma, A. Mcnicol et al., Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells, The FASEB Journal, vol.20, issue.14, pp.2585-2587, 2006.
DOI : 10.1096/fj.06-6121fje

E. Castrique, M. Fernandez-fuente, L. Tissier, P. Herman, A. Levy et al., Use of a prolactin-Cre/ROSA-YFP transgenic mouse provides no evidence for lactotroph transdifferentiation after weaning, or increase in lactotroph/somatotroph proportion in lactation, Journal of Endocrinology, vol.205, issue.1, pp.49-60, 2012.
DOI : 10.1677/JOE-09-0414

H. Christian, L. Imirtziadis, and D. Tortonese, Ultrastructural changes in lactotrophs and folliculostellate cells in the ovine pituitary during the annual reproductive cycle, J Neuroendocrinol, 2015.

E. Winterhager, N. Pielensticker, J. Freyer, A. Ghanem, J. Schrickel et al., Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart, BMC Developmental Biology, vol.7, issue.1, pp.26-36, 2007.
DOI : 10.1186/1471-213X-7-26

I. Robinson and P. Hindmarsh, The importance of the secretory pattern of growth hormone for statural growth Hormonal control of growth, Physiology. Section The endocrine system, vol.7, issue.5, pp.329-395, 1999.

R. Aisman, G. Field, and P. , Sexual dimorphism in the neurophil of the preoptic area of the rat and its dependence on neonatal androgen, Brain Research, vol.54, pp.1-29, 1973.
DOI : 10.1016/0006-8993(73)90030-9

S. Mcarthur, I. Robinson, and G. Gillies, Novel Ontogenetic Patterns of Sexual Differentiation in Arcuate Nucleus GHRH Neurons Revealed in GHRH-Enhanced Green Fluorescent Protein Transgenic Mice, Endocrinology, vol.152, issue.2, pp.607-617102010, 1210.
DOI : 10.1210/en.2010-0798

E. Waite, C. Lafont, D. Carmignac, N. Chauvet, N. Coutry et al., Different Degrees of Somatotroph Ablation Compromise Pituitary Growth Hormone Cell Network Structure and Other Pituitary Endocrine Cell Types, Endocrinology, vol.151, issue.1, pp.234-243, 2010.
DOI : 10.1210/en.2009-0539

S. Li, I. Bjelobaba, Z. Yan, M. Kucka, M. Tomic et al., Expression and Roles of Pannexins in ATP Release in the Pituitary Gland, Endocrinology, vol.152, issue.6, pp.2342-2352102010, 1210.
DOI : 10.1210/en.2010-1216

J. Sandilos and D. Bayliss, Physiological mechanisms for the modulation of pannexin??1 channel activity, The Journal of Physiology, vol.75, issue.24, pp.6257-6266, 2012.
DOI : 10.1113/jphysiol.2012.240911

S. Li, M. Tomic, and S. Stojilkovic, Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels, General and Comparative Endocrinology, vol.174, issue.2, 2011.
DOI : 10.1016/j.ygcen.2011.08.019

M. Tomic, R. Jobin, L. Vergara, and S. Stojilkovic, Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane-and endoplasmic reticulum-derived calcium oscillations, J Biol Chem, vol.271, issue.35, pp.21200-21208, 1996.

T. Koshimizu, M. Tomic, F. Van-goor, and S. Stojilkovic, Functional role of alternative splicing in pituitary P2X2 receptor-channel activation and desensitization, Mol Endocrinol, vol.12, issue.7, 1998.

M. He, A. Gonzalez-iglesias, and S. Stojilkovic, Role of nucleotide P2 receptors in calcium signaling and prolactin release in pituitary lactotrophs (2013) P2X receptor channels in endocrine glands, J Biol Chem Wiley Interdiscip Rev Membr Transp Signal, vol.278, issue.24, pp.46270-46277173, 2003.

P. Daniel, Anatomy of the hypothalamus and pituitary gland, J Clin PatholAssoc Clin Pathol), vol.7, pp.1-7, 1976.

G. Leng, C. Brown, and J. Russell, Physiological pathways regulating the activity of magnocellular neurosecretory cells, Progress in Neurobiology, vol.57, issue.6, pp.625-655, 1999.
DOI : 10.1016/S0301-0082(98)00072-0

C. Brown, J. Bains, M. Ludwig, and J. Stern, Physiological Regulation of Magnocellular Neurosecretory Cell Activity: Integration of Intrinsic, Local and Afferent Mechanisms, Journal of Neuroendocrinology, vol.7, issue.Suppl. 8, pp.678-710, 2013.
DOI : 10.1111/jne.12051

G. Hatton, Pituicytes, glia and control of terminal secretion, J Exp Biol, vol.139, pp.67-79, 1988.

H. Arumugam, X. Liu, P. Colombo, R. Corriveau, and A. Belousov, NMDA receptors regulate developmental gap junction uncoupling via CREB signaling, Nature Neuroscience, vol.276, issue.12, pp.1720-172610, 1038.
DOI : 10.1038/nn1588

R. Andrew, B. Macvicar, F. Dudek, and G. Hatton, Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus, Science, vol.211, issue.4487, pp.1187-1189, 1981.
DOI : 10.1126/science.7466393

Q. Yang and G. Hatton, Direct evidence for electrical coupling among rat supraoptic nucleus neurons, Brain Research, vol.463, issue.1, pp.47-56, 1988.
DOI : 10.1016/0006-8993(88)90525-2

G. Hatton, Q. Yang, and K. Smithson, Synaptic inputs and electrical coupling among magnocellular neuroendocrine cells, Brain Research Bulletin, vol.20, issue.6, pp.751-755, 1988.
DOI : 10.1016/0361-9230(88)90087-1

L. Westberg, E. Sawa, A. Wang, L. Gunaydin, A. Ribeiro et al., Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain, BMC Neuroscience, vol.10, issue.1, pp.41-51, 2009.
DOI : 10.1186/1471-2202-10-41

S. Hosny and L. Jennes, Identification of Gap Junctional Connexin-32 mRNA and Protein in Gonadotropin-Releasing Hormone Neurons of the Female Rat, Neuroendocrinology, vol.67, issue.1, pp.101-108, 1998.
DOI : 10.1159/000054304

S. Tsukahara, F. Maekawa, H. Tsukamura, K. Hirunagi, and K. Maeda, Morphological characterization of relationship between gap junctions and gonadotropin releasing hormone nerve terminals in the rat median eminence, Neuroscience Letters, vol.261, issue.1-2, pp.105-108, 1999.
DOI : 10.1016/S0304-3940(99)00017-8

R. Campbell, E. Ducret, R. Porteous, X. Liu, M. Herde et al., Gap Junctions between Neuronal Inputs But Not Gonadotropin-Releasing Hormone Neurons Control Estrous Cycles in the Mouse, Endocrinology, vol.152, issue.6, pp.2290-23012010, 2011.
DOI : 10.1210/en.2010-1311

C. Allard, L. Carneiro, S. Grall, B. Cline, X. Fioramonti et al., Hypothalamic Astroglial Connexins are Required for Brain Glucose Sensing-Induced Insulin Secretion, Journal of Cerebral Blood Flow & Metabolism, vol.5, issue.2, pp.339-346, 2014.
DOI : 10.1126/science.1164022

URL : https://hal.archives-ouvertes.fr/hal-01185034

L. Duan, H. Yuan, C. Su, Y. Liu, and Z. Rao, Ultrastructure of junction areas between neurons and astrocytes in rat supraoptic nuclei, World J Gastroenterol, vol.10, issue.1, pp.117-121, 2004.

G. Sohl, S. Maxeiner, and K. Willecke, Expression and functions of neuronal gap junctions, Nature Reviews Neuroscience, vol.10, issue.3, pp.191-20010, 2005.
DOI : 10.1136/jmg.2003.017954

A. Cornell-bell, S. Finkbeiner, M. Cooper, and S. Smith, Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, vol.247, issue.4941, pp.470-473, 1990.
DOI : 10.1126/science.1967852

P. Cobbett and G. Hatton, Dye coupling in hypothalamic slices: dependence on in vivo hydration state and osmolality of incubation medium, J Neurosci, vol.4, issue.12, pp.3034-3038, 1984.

P. Micevych, P. Popper, and G. Hatton, Connexin 32 mRNA Levels in the Rat Supraoptic Nucleus: Up-Regulation prior to Parturition and during Lactation, Neuroendocrinology, vol.63, issue.1, pp.39-45, 1996.
DOI : 10.1159/000126933

G. Hatton, Q. Yang, and P. Cobbett, Dye coupling among immunocytochemically identified neurons in the supraoptic nucleus: Increased incidence in lactating rats, Neuroscience, vol.21, issue.3, pp.923-930, 1987.
DOI : 10.1016/0306-4522(87)90047-9

G. Hatton and Q. Yang, Incidence of neuronal coupling in supraoptic nuclei of virgin and lactating rats: estimation by neurobiotin and Lucifer yellow, Brain Research, vol.650, issue.1, pp.63-69, 1994.
DOI : 10.1016/0006-8993(94)90207-0

P. Cobbett, Q. Yang, and G. Hatton, Incidence of dye coupling among magnocellular paraventricular nucleus neurons in male rats is testosterone dependent, Brain Research Bulletin, vol.18, issue.3, pp.365-370, 1987.
DOI : 10.1016/0361-9230(87)90014-1

G. Hatton, Q. Yang, and L. Koran, Effects of ovariectomy and estrogen replacement on dye coupling among rat supraoptic nucleus neurons, Brain Research, vol.572, issue.1-2, pp.291-295, 1992.
DOI : 10.1016/0006-8993(92)90487-T

J. Orellana, P. Saez, C. Cortes-campos, R. Elizondo, K. Shoji et al., Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels, Glia, vol.94, issue.Part 9, pp.53-68, 2012.
DOI : 10.1002/glia.21246

C. Giaume, L. Leybaert, C. Naus, and J. Saez, Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles, Frontiers in Pharmacology, vol.4, 2013.
DOI : 10.3389/fphar.2013.00088

F. Langlet, B. Levin, S. Luquet, M. Mazzone, A. Messina et al., Tanycytic VEGF-A Boosts Blood-Hypothalamus Barrier Plasticity and Access of Metabolic Signals to the Arcuate Nucleus in Response to Fasting, Cell Metabolism, vol.17, issue.4, pp.607-617, 2013.
DOI : 10.1016/j.cmet.2013.03.004

S. Jiang, H. Yuan, L. Duan, R. Cao, B. Gao et al., Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model, Brain Research, vol.1392, 2011.
DOI : 10.1016/j.brainres.2011.03.056

Z. Ye, M. Wyeth, S. Baltan-tekkok, and B. Ransom, Functional hemichannels in astrocytes: a novel mechanism of glutamate release, J Neurosci, vol.23, issue.9, pp.3588-3596, 2003.

H. Yuan, L. Duan, Y. Qiu, L. Gao, P. Zhang et al., Response of son astrocytes and neurons to hyperosmotic stimulation after carbenoxolone injection into the lateral ventricle, Acta Anatomica Sinica, vol.35, pp.127-131, 2004.

A. Ray, G. Zoidl, S. Weickert, P. Wahle, and R. Dermietzel, Site-specific and developmental expression of pannexin1 in the mouse nervous system, European Journal of Neuroscience, vol.69, issue.12, 2005.
DOI : 10.1111/j.1460-9568.2005.04139.x

T. Ohbuchi, T. Yokoyama, T. Saito, J. Ohkubo, H. Suzuki et al., Possible contribution of pannexin channel to ATP-induced currents in vitro in vasopressin neurons isolated from the rat supraoptic nucleus, Brain Research, vol.1394, pp.71-78, 2011.
DOI : 10.1016/j.brainres.2011.04.017

E. Maronde and J. Stehle, The mammalian pineal gland: known facts, unknown facets, Trends in Endocrinology & Metabolism, vol.18, issue.4, pp.142-149, 2007.
DOI : 10.1016/j.tem.2007.03.001

V. Berthoud, D. Hall, E. Strahsburger, E. Beyer, and J. Saez, Gap junctions in the chicken pineal gland, Brain Research, vol.861, issue.2, pp.257-270, 2000.
DOI : 10.1016/S0006-8993(00)01987-9

R. Krstic, Ultrastructure of rat pineal gland after preparation by Freeze-etching technique, Cell and Tissue Research, vol.69, issue.3, pp.371-379, 1974.
DOI : 10.1007/BF00224264

R. Taugner, A. Schiller, and E. Rix, Gap junctions between pinealocytes. A freeze-fracture study of the pineal gland in rats, Cell Tissue Res, vol.218, issue.2, pp.303-314, 1981.
DOI : 10.1007/bf00210346

D. Condorelli, N. Belluardo, A. Trovato-salinaro, and G. Mudo, Expression of Cx36 in mammalian neurons, Brain Research Reviews, vol.32, issue.1, pp.72-85, 2000.
DOI : 10.1016/S0165-0173(99)00068-5

S. Huang and R. Taugner, Gap junctions between guinea-pig pinealocytes, Cell and Tissue Research, vol.235, issue.1, pp.137-141, 1984.
DOI : 10.1007/BF00213733

T. Ichimura, The ultrstructure of neuronal-pinealocytic interconnections in the monkey pineal, Microscopy Research and Technique, vol.145, issue.2, pp.124-135, 1992.
DOI : 10.1002/jemt.1070210205

M. Moller, The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions, Cell Tissue Res, vol.169, issue.1, pp.7-21, 1976.

L. Cieciura and G. Krakowski, Junctional systems in the pineal gland of the Wistar rat (Ratus ratus). A freeze-fracture and thin section study, J Submicrosc Cytol Pathol, vol.23, issue.2, pp.327-330, 1991.

V. Berthoud and J. Saez, Changes in connexin43, the gap junction protein of astrocytes, during development of the rat pineal gland, Journal of Pineal Research, vol.114, issue.2, pp.67-72, 1993.
DOI : 10.1083/jcb.66.1.60

J. Saez, V. Berthoud, R. Kadle, O. Traub, B. Nicholson et al., Pinealocytes in rats: connexin identification and increase in coupling caused by norepinephrine, Brain Research, vol.568, issue.1-2, pp.265-275, 1991.
DOI : 10.1016/0006-8993(91)91407-R

J. Schenda and L. Vollrath, An intrinsic neuronal-like network in the rat pineal gland, Brain Research, vol.823, issue.1-2, pp.231-233, 1999.
DOI : 10.1016/S0006-8993(99)01199-3

C. Giaume, A. Tabernero, and J. Medina, Metabolic trafficking through astrocytic gap junctions, Glia, vol.21, issue.1, pp.114-123, 1997.
DOI : 10.1002/(SICI)1098-1136(199709)21:1<114::AID-GLIA13>3.0.CO;2-V

E. Benarroch, Neuron-Astrocyte Interactions: Partnership for Normal Function and Disease in the Central Nervous System, Mayo Clinic Proceedings, vol.80, issue.10, 2005.
DOI : 10.4065/80.10.1326

N. Rouach, A. Koulakoff, V. Abudara, K. Willecke, and C. Giaume, Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission, Science, vol.322, issue.5907, pp.1551-1555, 2008.
DOI : 10.1126/science.1164022

H. Lin, M. Mitasikova, K. Dlugosova, L. Okruhlicova, I. Imanaga et al., Thyroid hormones suppress epsilon-PKC signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts, J Physiol Pharmacol, vol.59, issue.2, pp.271-285, 2008.

N. Almeida, A. Cordeiro, D. Machado, L. Souza, T. Ortiga-carvalho et al., Connexin40 Messenger Ribonucleic Acid Is Positively Regulated by Thyroid Hormone (TH) Acting in Cardiac Atria via the TH Receptor, Endocrinology, vol.150, issue.1, pp.546-5542008, 2009.
DOI : 10.1210/en.2008-0451

M. Mitasikova, H. Lin, T. Soukup, I. Imanaga, and N. Tribulova, Diabetes and thyroid hormones affect connexin-43 and PKC-epsilon expression in rat heart atria, Physiol Res, vol.58, issue.2, pp.211-217, 2009.

E. Potter, M. Schoenermark, O. Bock, C. Hoang-vu, Y. Munari-silem et al., Cell adhesion receptors and gap junctions in normal and neoplastic transformed thyrocytes, Experimental and Clinical Endocrinology & Diabetes, vol.104, issue.S 04, pp.24-2810, 1996.
DOI : 10.1055/s-0029-1211695

E. Darr, A. Patel, G. Yu, Z. Komorowski, S. Mccormick et al., Reduced Cx43 Gap Junction Plaque Expression Differentiates Thyroid Carcinomas From Benign Disease, Archives of Otolaryngology???Head & Neck Surgery, vol.137, issue.11, pp.1161-1165, 2011.
DOI : 10.1001/archoto.2011.186

C. Dominguez, L. Karayan-tapon, T. Desurmont, H. Gibelin, S. Crespin et al., Altered Expression of the Gap Junction Protein Connexin43 Is Associated with Papillary Thyroid Carcinomas When Compared with Other Noncancer Pathologies of the Thyroid, Thyroid, vol.21, issue.10, pp.1057-1066, 2011.
DOI : 10.1089/thy.2011.0041

URL : https://hal.archives-ouvertes.fr/hal-00993028

A. Guerrier, P. Fonlupt, I. Morand, R. Rabilloud, C. Audebet et al., Gap junctions and cell polarity: connexin32 and connexin43 expressed in polarized thyroid epithelial cells assemble into separate gap junctions, which are located in distinct regions of the lateral plasma membrane domain, J Cell Sci, vol.108, pp.2609-2617, 1995.

Y. Munari-silem, A. Guerrier, C. Fromaget, R. Rabilloud, D. Gros et al., Differential control of connexin-32 and connexin-43 expression in thyroid epithelial cells: evidence for a direct relationship between connexin-32 expression and histiotypic morphogenesis, Endocrinology, vol.135, issue.2, pp.724-734, 1994.

Z. Kostrouch, F. Bernier-valentin, Y. Munari-silem, F. Rajas, R. Rabilloud et al., Thyroglobulin molecules internalized by thyrocytes are sorted in early endosomes and partially recycled back to the follicular lumen, Endocrinology, vol.132, issue.6, pp.2645-2653, 1993.

T. Setoguti, Y. Inoue, and T. Suematsu, Intercellular junctions of the hen parathyroid gland. A freezefracture study, J Anat, vol.135, issue.2, pp.395-406, 1982.

S. Green, The electrophysiological properties of the parathyroid cell: results of a study employing Sprague-Dawley rats and a review of the literature, Biomed Pharmacother, vol.42, issue.1, pp.61-64, 1988.

H. Tonoli, V. Flachon, C. Audebet, A. Calle, T. Jarry-guichard et al., Formation of Three-Dimensional Thyroid Follicle-Like Structures by Polarized FRT Cells Made Communication Competent by Transfection and Stable Expression of the Connexin-32 Gene, Endocrinology, vol.141, issue.4, pp.1403-1413, 2000.
DOI : 10.1210/en.141.4.1403

M. Statuto, C. Audebet, H. Tonoli, S. Selmi-ruby, B. Rousset et al., Restoration of Cell-to-Cell Communication in Thyroid Cell Lines by Transfection with and Stable Expression of the Connexin-32 Gene: IMPACT ON CELL PROLIFERATION AND TISSUE-SPECIFIC GENE EXPRESSION, Journal of Biological Chemistry, vol.272, issue.39, pp.24710-24716, 1997.
DOI : 10.1074/jbc.272.39.24710

V. Flachon, H. Tonoli, S. Selmi-ruby, C. Durand, R. Rabilloud et al., Thyroid cell proliferation in response to forced expression of gap junction proteins, European Journal of Cell Biology, vol.81, issue.5, pp.243-252, 2002.
DOI : 10.1078/0171-9335-00245

G. Prost, F. Bernier-valentin, Y. Munari-silem, S. Selmi-ruby, and B. Rousset, Connexin-32 acts as a downregulator of growth of thyroid gland, AJP: Endocrinology and Metabolism, vol.294, issue.2, pp.291-299, 2007.
DOI : 10.1152/ajpendo.00281.2007

V. Cigliola, V. Chellakudam, W. Arabieter, and M. P. , Connexins and ??-cell functions, Diabetes Research and Clinical Practice, vol.99, issue.3, pp.250-259, 2013.
DOI : 10.1016/j.diabres.2012.10.016

W. Head, M. Orseth, C. Nunemaker, L. Satin, D. Piston et al., Connexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse, Diabetes, vol.61, issue.7, pp.1700-170710, 2012.
DOI : 10.2337/db11-1312

G. Pointis, C. Fiorini, J. Gilleron, D. Carette, and D. Segretain, Connexins as Precocious Markers and Molecular Targets for Chemical and Pharmacological Agents in Carcinogenesis, Current Medicinal Chemistry, vol.14, issue.21, pp.2288-2303, 2007.
DOI : 10.2174/092986707781696564

S. Devries and E. Schwartz, Hemi-gap-junction channels in solitary horizontal cells of the catfish retina., The Journal of Physiology, vol.445, issue.1, pp.201-230, 1992.
DOI : 10.1113/jphysiol.1992.sp018920

R. Bruzzone, S. Hormuzdi, M. Barbe, A. Herb, and H. Monyer, Pannexins, a family of gap junction proteins expressed in brain, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13644-13649, 2003.
DOI : 10.1073/pnas.2233464100

J. Degen, C. Meier, R. Van-der-giessen, G. Sohl, E. Petrasch-parwez et al., Expression pattern of lacZ reporter gene representing connexin36 in transgenic mice, Journal of Comparative Neurology, vol.310, issue.4, pp.511-525, 2004.
DOI : 10.1002/cne.20085

X. Li, C. Olson, S. Lu, and J. Nagy, Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland, Histochem Cell Biol, vol.122, issue.5, pp.485-498, 2004.

V. Nassar-gentina, H. Pollard, and E. Rojas, Electrical activity in chromaffin cells of intact mouse adrenal gland, Am J Physiol, vol.2545, pp.675-683, 1988.