M. Foretz, B. Guigas, L. Bertrand, M. Pollak, and B. Viollet, Metformin: From Mechanisms of Action to Therapies, Cell Metabolism, vol.20, issue.6, pp.953-966, 2014.
DOI : 10.1016/j.cmet.2014.09.018

URL : https://hal.archives-ouvertes.fr/inserm-01171739

M. Foretz, Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-2369, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746

R. A. Miller, Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP, Nature, vol.126, issue.7436, pp.256-260, 2013.
DOI : 10.1038/nature11808

A. K. Madiraju, Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase, Nature, vol.148, issue.7506, pp.542-546, 2014.
DOI : 10.1021/jm001017v

C. J. Bailey, C. Wilcock, and J. H. Scarpello, Metformin and the intestine, Diabetologia, vol.12, issue.8, pp.1552-1553, 2008.
DOI : 10.1007/s00125-008-1053-5

F. A. Duca, Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats, Nat Med, 2015.

A. Maida, B. J. Lamont, X. Cao, and D. J. Drucker, Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-?? in mice, Diabetologia, vol.59, issue.Suppl 1, pp.339-349, 2011.
DOI : 10.1007/s00125-010-1937-z

A. Napolitano, Novel Gut-Based Pharmacology of Metformin in Patients with Type 2 Diabetes Mellitus, PLoS ONE, vol.141, issue.5, p.100778, 2014.
DOI : 10.1371/journal.pone.0100778.s002

C. D. Cote, Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network, Nat Med, 2015.

. Pullquotes, metformin-induced activation of AMPK in the intestinal mucosa could stimulate the release of GLP-1