D. Hardie, Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease, FEBS Letters, vol.3, issue.1, pp.81-90, 2008.
DOI : 10.1016/j.febslet.2007.11.018

D. Hardie, F. Ross, and S. Hawley, AMP-Activated Protein Kinase: A Target for Drugs both Ancient and Modern, Chemistry & Biology, vol.19, issue.10, pp.1222-1258, 2012.
DOI : 10.1016/j.chembiol.2012.08.019

C. Canto and J. Auwerx, AMP-activated protein kinase and its downstream transcriptional pathways, Cellular and Molecular Life Sciences, vol.106, issue.11, pp.3407-3430, 2010.
DOI : 10.1007/s00018-010-0454-z

W. Winder and D. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am J Physiol, vol.277, pp.1-10, 1999.

T. Jensen, J. Wojtaszewski, and E. Richter, AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?, Acta Physiologica, vol.99, issue.Suppl. 1, pp.155-74, 2009.
DOI : 10.1111/j.1748-1716.2009.01979.x

J. Treebak, C. Pehmoller, and J. Kristensen, Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, The Journal of Physiology, vol.298, issue.2, 2013.
DOI : 10.1113/jphysiol.2013.266338

X. Stephenne, M. Foretz, and N. Taleux, Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status, Diabetologia, vol.25, issue.12, pp.3101-3111, 2011.
DOI : 10.1007/s00125-011-2311-5

B. Crute, K. Seefeld, J. Gamble, B. Kemp, L. Witters et al., Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase, J Biol Chem. Mol Biol Cell, vol.273, issue.21, pp.35347-543433, 1998.

B. Xiao, R. Heath, and P. Saiu, Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, vol.278, issue.7161, pp.496-500, 2007.
DOI : 10.1038/nature06161

B. Xiao, M. Sanders, and E. Underwood, Structure of mammalian AMPK and its regulation by ADP, Nature, vol.50, issue.7342, pp.230-233, 2011.
DOI : 10.1038/nature09932

E. Hudson, D. Pan, and J. James, A Novel Domain in AMP-Activated Protein Kinase Causes Glycogen Storage Bodies Similar to Those Seen in Hereditary Cardiac Arrhythmias, Current Biology, vol.13, issue.10, pp.861-867, 2003.
DOI : 10.1016/S0960-9822(03)00249-5

G. Polekhina, A. Gupta, and B. Michell, AMPK ?? Subunit Targets Metabolic Stress Sensing to Glycogen, Current Biology, vol.13, issue.10, pp.867-71, 2003.
DOI : 10.1016/S0960-9822(03)00292-6

J. Oakhill, Z. Chen, and J. Scott, ??-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK), Proceedings of the National Academy of Sciences, vol.107, issue.45, pp.19237-19278, 2010.
DOI : 10.1073/pnas.1009705107

. Post, M. Sanders, Z. Ali, B. Hegarty, R. Heath et al., Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream Kinase Signaling, Biochem J. J Biol Chem. Chem Biol. 2014. J Biol, vol.354, issue.2, pp.275-8332539, 2001.

R. Shaw, M. Kosmatka, and N. Bardeesy, The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proceedings of the National Academy of Sciences, vol.101, issue.10, pp.3329-352004, 2003.
DOI : 10.1073/pnas.0308061100

S. Hawley, D. Pan, and K. Mustard, Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-1921, 2005.
DOI : 10.1016/j.cmet.2005.05.009

K. Anderson, R. Means, and Q. Huang, Components of a Calmodulin-dependent Protein Kinase Cascade: MOLECULAR CLONING, FUNCTIONAL CHARACTERIZATION AND CELLULAR LOCALIZATION OF Ca2+/CALMODULIN-DEPENDENT PROTEIN KINASE KINASE ??, Journal of Biological Chemistry, vol.273, issue.48, pp.31880-31889, 1998.
DOI : 10.1074/jbc.273.48.31880

D. Carling, C. Thornton, A. Woods, and M. Sanders, AMP-activated protein kinase: new regulation, new roles?, Biochemical Journal, vol.1812, issue.1, pp.11-27, 2012.
DOI : 10.1016/j.cmet.2011.04.011

F. Moore, J. Weekes, D. Hardie, J. Oakhill, R. Steel et al., Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion, European Journal of Biochemistry, vol.217, issue.3, pp.691-71433, 1991.
DOI : 10.1038/337078a0

L. Chen, J. Wang, and Y. Zhang, AMP-activated protein kinase undergoes nucleotide-dependent conformational changes, Nature Structural & Molecular Biology, vol.1804, issue.7, pp.716-724, 2012.
DOI : 10.1016/S1046-5928(03)00126-8

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the Role of 5'-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.281, issue.43, pp.32207-32223, 2006.
DOI : 10.1074/jbc.M606357200

URL : https://hal.archives-ouvertes.fr/inserm-00390888

B. Viollet, B. Guigas, and J. Leclerc, AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives, Acta Physiologica, vol.108, issue.Pt 1, pp.81-98558, 1995.
DOI : 10.1111/j.1748-1716.2009.01970.x

URL : https://hal.archives-ouvertes.fr/inserm-00363222

S. Hawley, F. Ross, and C. Chevtzoff, Use of Cells Expressing ?? Subunit Variants to Identify Diverse Mechanisms of AMPK Activation, Cell Metabolism, vol.11, issue.6, pp.554-65403, 2006.
DOI : 10.1016/j.cmet.2010.04.001

G. Zhou, R. Myers, and Y. Li, Role of AMP-activated protein kinase in mechanism of metformin action Cellular and molecular mechanisms of metformin: an overview Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, The Journal of clinical investigation. Clin Sci (Lond). The Journal of clinical investigation, vol.108, issue.120, pp.1167-74253, 2001.

K. Staniek and F. Gras, Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo Biochemical and biophysical research communications Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes, Brunmair B, vol.314, issue.53, pp.580-51052, 2004.

A. Nawrocki, M. Rajala, and E. Tomas, Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor ?? Agonists, Journal of Biological Chemistry, vol.281, issue.5, pp.2654-60, 2006.
DOI : 10.1074/jbc.M505311200

M. Assifi, G. Suchankova, S. Constant, M. Prentki, A. Saha et al., AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats, AJP: Endocrinology and Metabolism, vol.289, issue.5, pp.794-800, 2005.
DOI : 10.1152/ajpendo.00144.2005

W. Jiang, Z. Zhu, H. Thompson, L. Witters, G. Gao et al., Dietary Energy Restriction Modulates the Activity of AMP-Activated Protein Kinase, Akt, and Mammalian Target of Rapamycin in Mammary Carcinomas, Mammary Gland, and Liver, Cancer Research, vol.68, issue.13, pp.5492-9413, 1994.
DOI : 10.1158/0008-5472.CAN-07-6721

K. Takekoshi, M. Fukuhara, and Z. Quin, Long-term exercise stimulates adenosine monophosphate-activated protein kinase activity and subunit expression in rat visceral adipose tissue and liver Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise, 47. Carlson CL, Winder WW. Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise, pp.1122-1130, 1985.

F. Lan, J. Cacicedo, N. Ruderman, Y. Ido, X. Hou et al., cytosolic localization and activity of LKB1; possible role in AMP-activated protein kinase activation SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase AMPK and SIRT1: a long-standing partnership? Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver The Journal of clinical investigation, SIRT1 modulation of the acetylation status, pp.20015-26152, 2008.

T. Yamauchi, J. Kamon, and Y. Minokoshi, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase, Nat Med. J Biol Chem, vol.8, issue.267, pp.1288-952864, 1992.

R. Banerjee, S. Rangwala, and J. Shapiro, Regulation of Fasted Blood Glucose by Resistin, Science, vol.303, issue.5661, pp.1195-1203, 2004.
DOI : 10.1126/science.1092341

B. Kola, E. Hubina, and S. Tucci, Cannabinoids and Ghrelin Have Both Central and Peripheral Metabolic and Cardiac Effects via AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.280, issue.26, pp.25196-201, 2005.
DOI : 10.1074/jbc.C500175200

D. Fu, Y. Wakabayashi, J. Lippincott-schwartz, I. Arias, R. Bergeron et al., Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway, Proceedings of the National Academy of Sciences, vol.108, issue.4, pp.1403-81076, 2001.
DOI : 10.1073/pnas.1018376108

P. Lochhead, I. Salt, K. Walker, D. Hardie, and C. Sutherland, 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase, Diabetes, vol.49, issue.6, pp.896-903, 2000.
DOI : 10.2337/diabetes.49.6.896

M. Foretz, N. Ancellin, and F. Andreelli, AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis 5-Aminoimidazole-4-carboxamide-1- beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP The Journal of clinical investigation, Diabetes. Cell. J Biol Chem. Nature, vol.54, issue.121, pp.1331-9607, 2005.

A. Mcbride, D. Hardie, L. Bultot, B. Guigas, V. Wilamowitz-moellendorff et al., AMP-activated protein kinase--a sensor of glycogen as well as AMP and ATP? AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase Role of the AMP-activated protein kinase in the cellular stress response, Acta Physiol (Oxf). Biochem J. Corton JM Curr Biol, vol.196, issue.4, pp.99-113193, 1994.

N. Henin, M. Vincent, H. Gruber, G. Van-den-berghe, G. Velasco et al., Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase Control of hepatic fatty acid oxidation by 5'- AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoAindependent mechanism AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Faseb J. Archives of biochemistry and biophysics. Muoio DM Biochem J, vol.9, issue.72, pp.541-6169, 1995.

Y. Li, S. Xu, and M. Mihaylova, AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice, Cell Metabolism, vol.13, issue.4, pp.376-88, 2011.
DOI : 10.1016/j.cmet.2011.03.009

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for Fatty Acid "Sparing" Effect on Glucose-induced Transcription: REGULATION OF CARBOHYDRATE-RESPONSIVE ELEMENT-BINDING PROTEIN BY AMP-ACTIVATED PROTEIN KINASE, Journal of Biological Chemistry, vol.277, issue.6, pp.3829-3864, 2002.
DOI : 10.1074/jbc.M107895200

H. Lin, S. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet et al., Metformin reverses fatty liver disease in obese, leptin-deficient mice The ancient drug salicylate directly activates AMP-activated protein kinase, Nat Med. Science, vol.6, issue.336, pp.998-1003918, 2000.

M. Fullerton, S. Galic, and K. Marcinko, Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin, Nature Medicine, vol.261, issue.12, pp.1649-54, 2013.
DOI : 10.1111/j.1749-6632.1959.tb44923.x

B. Sid, J. Verrax, and P. Calderon, Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease, Biochemical Pharmacology, vol.86, issue.2, pp.200-209, 2013.
DOI : 10.1016/j.bcp.2013.05.007

J. Baur, K. Pearson, and N. Price, Resveratrol improves health and survival of mice on a high-calorie diet, Nature, vol.35, issue.7117, pp.337-379, 2006.
DOI : 10.1038/nature05354

S. Jager, C. Handschin, J. St-pierre, B. Spiegelman, B. Guigas et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-22499, 2007.
DOI : 10.1073/pnas.0705070104

D. Egan, D. Shackelford, and M. Mihaylova, Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy, Science, vol.331, issue.6016, pp.456-61, 2011.
DOI : 10.1126/science.1196371

K. Inoki, T. Zhu, K. Guan, D. Gwinn, D. Shackelford et al., TSC2 mediates cellular energy response to control cell growth and survival AMPK phosphorylation of raptor mediates a metabolic checkpoint, Cell. Mol Cell, vol.115, issue.30, pp.577-90214, 2003.

S. Cheng, L. Fryer, D. Carling, and P. Shepherd, Thr2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status, Journal of Biological Chemistry, vol.279, issue.16, pp.15719-15741, 2004.
DOI : 10.1074/jbc.C300534200

U. Krause, L. Bertrand, and L. Hue, Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes, European Journal of Biochemistry, vol.294, issue.15, pp.3751-3760, 2002.
DOI : 10.1046/j.1432-1033.2002.03074.x

S. Horman, G. Browne, and U. Krause, Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis Current biology Evidence for LKB1/AMP- activated protein kinase/ endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation Role of AMPactivated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration, Hepatology. Exp Biol Med, vol.12, issue.236, pp.1419-23608, 2002.

G. Merlen, G. Gentric, and S. Celton-morizur, AMPK??1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression, Journal of Hepatology, vol.60, issue.1, pp.152-161, 2014.
DOI : 10.1016/j.jhep.2013.08.025

M. Adachi, D. Brenner, C. Bertolani, and C. Guerra, High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase, Hepatology, vol.40, issue.2, pp.677-85668, 2008.
DOI : 10.1002/hep.21991

R. Jones, D. Plas, and S. Kubek, AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint, Molecular Cell, vol.18, issue.3, pp.283-93562, 2001.
DOI : 10.1016/j.molcel.2005.03.027

Z. Qu, Y. Zhang, M. Liao, Y. Chen, J. Zhao et al., In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma, Hepatology Research, vol.6, issue.9, pp.922-955, 2012.
DOI : 10.1111/j.1872-034X.2012.01007.x

J. Cheng, T. Huang, and Y. Li, AMP-Activated Protein Kinase Suppresses the In Vitro and In Vivo Proliferation of Hepatocellular Carcinoma Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clinical cancer research Pharmacological activation of AMPK suppresses inflammatory response evoked by IL-6 signalling in mouse liver and in human hepatocytes, PLoS One. Gut. Mol Cell Endocrinol. Cancer Prev Res, vol.9, issue.5, pp.93256-96606, 2012.

C. Lee, L. Wong, and E. Tse, AMPK Promotes p53 Acetylation via Phosphorylation and Inactivation of SIRT1 in Liver Cancer Cells, Cancer Research, vol.72, issue.17, pp.4394-404, 2012.
DOI : 10.1158/0008-5472.CAN-12-0429

D. Fu, Y. Wakabayashi, Y. Ido, J. Lippincott-schwartz, and I. Arias, Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1, Journal of Cell Science, vol.123, issue.19, pp.3294-302, 2010.
DOI : 10.1242/jcs.068098

D. Fu, K. Mitra, P. Sengupta, M. Jarnik, J. Lippincott-schwartz et al., Coordinated elevation of mitochondrial oxidative phosphorylation and autophagy help drive hepatocyte polarization, Proceedings of the National Academy of Sciences, vol.110, issue.18, pp.7288-93, 2013.
DOI : 10.1073/pnas.1304285110

A. Woods, A. Heslegrave, and P. Muckett, LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice, Biochemical Journal, vol.67, issue.1, pp.49-60, 2011.
DOI : 10.1242/jcs.068098

URL : https://hal.archives-ouvertes.fr/hal-00560694

A. Chopra, R. Kommagani, and P. Saha, Cellular Energy Depletion Resets Whole-Body Energy by Promoting Coactivator-Mediated Dietary Fuel Absorption, Cell Metabolism, vol.13, issue.1, pp.35-43, 2011.
DOI : 10.1016/j.cmet.2010.12.001

J. Lizcano, O. Goransson, and R. Toth, LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, The EMBO Journal, vol.23, issue.4, pp.833-876, 2004.
DOI : 10.1038/sj.emboj.7600110

F. Lien, A. Berthier, and E. Bouchaert, Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. The Journal of clinical investigation, pp.1037-51, 2014.

J. Treebak, C. Pehmoller, and J. Kristensen, Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, The Journal of Physiology, vol.298, issue.2, pp.351-75, 2014.
DOI : 10.1113/jphysiol.2013.266338

F. Giordanetto and D. Karis, Direct AMP-activated protein kinase activators: a review of evidence from the patent literature, Expert Opinion on Therapeutic Patents, vol.283, issue.12, pp.1467-77, 2012.
DOI : 10.1042/BJ20080557

J. Scott, B. Van-denderen, and S. Jorgensen, Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase ??1-Containing Complexes, Chemistry & Biology, vol.15, issue.11, pp.1220-1250, 2008.
DOI : 10.1016/j.chembiol.2008.10.005

B. Xiao, M. Sanders, and D. Carmena, Structural basis of AMPK regulation by small molecule activators, Nature Communications, vol.269, p.3017, 2013.
DOI : 10.1107/S0907444994003112