J. Brunton, S. Steele, B. Ziehr, N. Moorman, and T. Kawula, Feeding Uninvited Guests: mTOR and AMPK Set the Table for Intracellular Pathogens, PLoS Pathogens, vol.8, issue.10, pp.1003552-1003554, 2013.
DOI : 10.1371/journal.ppat.1003552.g001

D. Hardie, F. Ross, and S. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature Reviews Molecular Cell Biology, vol.26, issue.4, pp.251-62, 2012.
DOI : 10.1038/nrm3311

D. Hardie, AMPK???Sensing Energy while Talking to Other Signaling Pathways, Cell Metabolism, vol.20, issue.6, pp.939-52, 2014.
DOI : 10.1016/j.cmet.2014.09.013

M. Foretz and B. Viollet, Regulation of hepatic metabolism by AMPK, Journal of Hepatology, vol.54, issue.4, pp.827-836, 2011.
DOI : 10.1016/j.jhep.2010.09.014

URL : https://hal.archives-ouvertes.fr/inserm-00555334

E. Richter and M. Hargreaves, Exercise, GLUT4, and Skeletal Muscle Glucose Uptake, Physiological Reviews, vol.93, issue.3, pp.993-1017, 2013.
DOI : 10.1152/physrev.00038.2012

A. Marsin, L. Bertrand, and M. Rider, Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Current Biology, vol.10, issue.20, pp.1247-55, 2000.
DOI : 10.1016/S0960-9822(00)00742-9

B. Demeulder, E. Zarrinpashneh, and A. Ginion, Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.6, pp.780-90, 2013.
DOI : 10.1016/j.bbadis.2013.02.015

S. Horman, G. Browne, and U. Krause, Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis, Current Biology, vol.12, issue.16, pp.1419-1442, 2002.
DOI : 10.1016/S0960-9822(02)01077-1

K. Inoki, H. Ouyang, and T. Zhu, TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth AMPK phosphorylation of raptor mediates a metabolic checkpoint, Cell Gwinn DM Mol Cell, vol.126, issue.30, pp.955-68, 2006.

S. Jager, C. Handschin, J. St-pierre, and B. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12039, 2007.
DOI : 10.1073/pnas.0705070104

D. Egan, D. Shackelford, and M. Mihaylova, Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy, Science, vol.331, issue.6016, pp.456-61, 2011.
DOI : 10.1126/science.1196371

J. Kim, M. Kundu, B. Viollet, K. Guan, M. Onselaer et al., AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 The Ca(2+) /calmodulin-dependent kinase kinase beta-AMP-activated protein kinase-alpha1 pathway regulates phosphorylation of cytoskeletal targets in thrombin-stimulated human platelets Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Nat Cell Biol J Thromb Haemost J Clin Invest, vol.13, issue.120, pp.132-173, 2010.

E. Vincent, P. Coelho, and J. Blagih, Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 2014. 17 Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK, Cell Metab J Biol Chem Chem Biol, vol.11, issue.21, pp.554-65, 2007.

Y. Lai, S. Kviklyte, and D. Vertommen, A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, Biochemical Journal, vol.272, issue.3, pp.363-75, 2014.
DOI : 10.1113/jphysiol.2008.167528

G. Zhou, R. Myers, and Y. Li, Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-74, 2001.
DOI : 10.1172/JCI13505

J. Bain, L. Plater, and M. Elliott, The selectivity of protein kinase inhibitors: a further update A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference, of the kinome of cytomegalovirus-infected cells reveals the functional importance of host kinases Aurora A, ABL and AMPK, pp.297-315, 2007.

T. Moser, R. Jones, C. Thompson, C. Coyne, C. S. Terry et al., A kinome RNAi screen identified AMPK as promoting poxvirus entry through the control of actin dynamics Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus, PLoS Pathog Proc Natl Acad Sci U S A J Virol, vol.6, issue.87, pp.1000954-1000980, 2010.

H. Bae, J. Zmijewski, and J. Deshane, AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells, Faseb J Biochem Biophys Res Commun, vol.25, issue.396, pp.4358-68, 2010.

C. Blume, P. Benz, and U. Walter, AMP-activated Protein Kinase Impairs Endothelial Actin Cytoskeleton Assembly by Phosphorylating Vasodilator-stimulated Phosphoprotein, Journal of Biological Chemistry, vol.282, issue.7, pp.4601-4613, 2007.
DOI : 10.1074/jbc.M608866200

J. Mcardle, N. Moorman, and J. Munger, HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication, PLoS Pathogens, vol.77, issue.1, pp.1002502-1002534, 2012.
DOI : 10.1371/journal.ppat.1002502.g008

J. Mcardle, X. Schafer, J. Munger, R. Sharon-friling, J. Goodhouse et al., Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny Human cytomegalovirus pUL37x1 induces the release of endoplasmic reticulum calcium stores, J Virol Proc Natl Acad Sci U S A, vol.85, issue.103, pp.705-719, 2006.

W. Ji, L. Lee, F. Lin, L. Wang, H. Liu et al., AMP-activated protein kinase facilitates avian reovirus to induce mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 3/6 signalling that is beneficial for virus replication, Journal of General Virology, vol.90, issue.12, pp.3002-3011, 2009.
DOI : 10.1099/vir.0.013953-0

N. Heaton, R. G. Kumar, S. Rangarajan, and A. , Dengue Virus-Induced Autophagy Regulates Lipid Metabolism, Cell Host & Microbe, vol.8, issue.5, pp.422-454, 2009.
DOI : 10.1016/j.chom.2010.10.006

URL : http://doi.org/10.1016/j.chom.2010.10.006

P. Chi, W. Huang, I. Lai, C. Cheng, and H. Liu, The p17 Nonstructural Protein of Avian Reovirus Triggers Autophagy Enhancing Virus Replication via Activation of Phosphatase and Tensin Deleted on Chromosome 10 (PTEN) and AMP-activated Protein Kinase (AMPK), as well as dsRNA-dependent Protein Kinase (PKR)/eIF2?? Signaling Pathways, Journal of Biological Chemistry, vol.288, issue.5, pp.3571-84, 2013.
DOI : 10.1074/jbc.M112.390245

B. Zhu, Y. Zhou, and F. Xu, Porcine Circovirus Type 2 Induces Autophagy via the AMPK/ERK/TSC2/mTOR Signaling Pathway in PK-15 Cells, Journal of Virology, vol.86, issue.22, pp.12003-12015, 2012.
DOI : 10.1128/JVI.01434-12

M. Laforge, S. Limou, and F. Harper, DRAM Triggers Lysosomal Membrane Permeabilization and Cell Death in CD4+ T Cells Infected with HIV, PLoS Pathogens, vol.9, issue.1, pp.1003328-1003369, 2013.
DOI : 10.1371/journal.ppat.1003328.s008

Y. Yu, T. Maguire, J. Alwine, C. Spencer, X. Schafer et al., Human cytomegalovirus activates glucose transporter 4 expression to increase glucose uptake during infection Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection, J Virol J Virol J Virol, vol.85, issue.81, pp.1573-80, 2007.

N. Moorman, I. Cristea, and S. Terhune, Human Cytomegalovirus Protein UL38 Inhibits Host Cell Stress Responses by Antagonizing the Tuberous Sclerosis Protein Complex, Cell Host & Microbe, vol.3, issue.4, pp.253-62, 2008.
DOI : 10.1016/j.chom.2008.03.002

J. Seo and P. Cresswell, Viperin Regulates Cellular Lipid Metabolism during Human Cytomegalovirus Infection, PLoS Pathogens, vol.23, issue.8, pp.1003497-1003544, 2013.
DOI : 10.1371/journal.ppat.1003497.s006

C. Martin, L. Leyton, and Y. Arancibia, Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1, J Alzheimers Dis Am J Physiol Endocrinol Metab, vol.42, issue.298, pp.301-313, 2010.

J. Tsalikis, D. Croitoru, D. Philpott, and S. Girardin, Nutrient sensing and metabolic stress pathways in innate immunity, Cellular Microbiology, vol.85, pp.1632-1673, 2013.
DOI : 10.1111/cmi.12165

T. Moser, D. Schieffer, and S. Cherry, AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis, PLoS Pathogens, vol.276, issue.Pt 10, pp.1002661-51, 2012.
DOI : 10.1371/journal.ppat.1002661.s013

URL : http://doi.org/10.1371/journal.ppat.1002661

J. Mankouri, P. Tedbury, and S. Gretton, Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11549-54, 2010.
DOI : 10.1073/pnas.0912426107

R. Johnson, X. Wang, X. Ma, S. Huong, E. Huang et al., Human cytomegalovirus upregulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491, J Virol J Biol Chem, vol.75, issue.281, pp.6022-6054, 2001.

A. Lo, K. Lo, C. Ko, L. Young, C. Dawson et al., Inhibition of the LKB1-AMPK pathway by the Epstein-Barr virus-encoded LMP1 promotes proliferation and transformation of human nasopharyngeal epithelial cells SIRT1 regulates Tat-induced HIV-1 transactivation through activating AMP-activated protein kinase SIRT1 regulates HIV transcription via Tat deacetylation HIV-1 tat transcriptional activity is regulated by acetylation, J Pathol Virus Res PLoS Biol Embo J, vol.230, issue.18, pp.336-382, 1999.

M. Shahidi, E. Tay, and S. Read, Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents, Journal of General Virology, vol.95, issue.Pt_11, pp.2468-79, 2014.
DOI : 10.1099/vir.0.067231-0

C. Moseley, R. Webster, and J. Aldridge, Original Article: Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice, Influenza and Other Respiratory Viruses, vol.12, issue.5, pp.307-318, 2010.
DOI : 10.1111/j.1750-2659.2010.00155.x

H. Zhang, X. Chen, T. Wu, and F. Zhang, Tanshinone II A inhibits tat-induced HIV-1

A. Transactivation-through-redox-regulated, . Nampt, M. Sorbara, S. Girardin, Y. Tang et al., Emerging themes in bacterial autophagy Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling, J Cell Physiol Curr Opin Microbiol Vet Microbiol Cell Microbiol Med Microbiol Immunol, vol.229, issue.199, pp.1193-201, 2010.

I. Tattoli, M. Sorbara, and D. Vuckovic, Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program, Cell Host & Microbe, vol.11, issue.6, pp.563-75, 2012.
DOI : 10.1016/j.chom.2012.04.012

S. Chakrabarti, P. Liehl, N. Buchon, and B. Lemaitre, Infection-Induced Host Translational Blockage Inhibits Immune Responses and Epithelial Renewal in the Drosophila Gut, Cell Host & Microbe, vol.12, issue.1, pp.60-70, 2012.
DOI : 10.1016/j.chom.2012.06.001

C. Yang, J. Kim, and H. Lee, The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy Metformin as adjunct antituberculosis therapy Metformin: from mechanisms of action to therapies, Autophagy Sci Transl Med Cell Metab, vol.10, issue.20, pp.785-802, 2014.

J. Macrae, L. Sheiner, and A. Nahid, Mitochondrial Metabolism of Glucose and Glutamine Is Required for Intracellular Growth of Toxoplasma gondii, Cell Host & Microbe, vol.12, issue.5, pp.682-92, 2012.
DOI : 10.1016/j.chom.2012.09.013

Y. Wang, J. Utzinger, and J. Saric, Global metabolic responses of mice to Trypanosoma brucei brucei infection, Proceedings of the National Academy of Sciences, vol.105, issue.16, pp.6127-6159, 2008.
DOI : 10.1073/pnas.0801777105

I. Rabhi, S. Rabhi, and R. Ben-othman, Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View, PLoS Neglected Tropical Diseases, vol.6, issue.8, pp.1763-75, 2012.
DOI : 10.1371/journal.pntd.0001763.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00726648

J. Li, Y. Wang, and J. Saric, Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection Host metabolism regulates intracellular growth of Trypanosoma cruzi Metabolic regulation of Type 2 immunity controls tissue repair. 63rd annual ASTMH meeting, J Proteome Res Cell Host Microbe BMC Genomics, vol.7, issue.8, pp.3948-56, 2007.

D. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nature Reviews Molecular Cell Biology, vol.367, issue.10, pp.774-85, 2007.
DOI : 10.1038/nrm2249

C. Polge, T. M. Snf1, and . Ampk, SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?, Trends in Plant Science, vol.12, issue.1, pp.20-28, 2007.
DOI : 10.1016/j.tplants.2006.11.005

URL : https://hal.archives-ouvertes.fr/hal-00154622

R. Tewari, U. Straschil, and A. Bateman, The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission, Cell Host & Microbe, vol.8, issue.4, pp.377-87, 2010.
DOI : 10.1016/j.chom.2010.09.006

V. Bracchi, G. Langsley, J. Thelu, W. Eling, P. Ambroise-thomas et al., PfKIN, an SNF1 type protein kinase of Plasmodium falciparum predominantly expressed in gametocytes, Molecular and Biochemical Parasitology, vol.76, issue.1-2, pp.299-303, 1996.
DOI : 10.1016/0166-6851(96)02564-9

H. Ng, M. Singh, and K. Jeyaseelan, Identification of two protein serine/threonine kinase genes and molecular cloning of a SNF1 type protein kinase gene from Toxoplasma gondii

H. Ng, M. Singh, and K. Jeyaseelan, Nucleotide sequence of ToxPK1 gene from Toxoplasma gondii, Biochem Mol Biol Int DNA Seq, vol.35, issue.7, pp.155-65, 1995.

L. Gissot, C. Polge, and M. Jossier, AKINbeta?? Contributes to SnRK1 Heterotrimeric Complexes and Interacts with Two Proteins Implicated in Plant Pathogen Resistance through Its KIS/GBD Sequence, PLANT PHYSIOLOGY, vol.142, issue.3, pp.931-975, 2006.
DOI : 10.1104/pp.106.087718

L. Hao, H. Wang, G. Sunter, D. Bisaro, V. Bulusu et al., Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase Mechanism of growth inhibition of intraerythrocytic stages of Plasmodium falciparum by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), Plant Cell Mol Biochem Parasitol, vol.15, issue.177, pp.1034-1082, 2003.

H. Huang, R. Kang, and J. Wang, Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses Trypanosoma cruzi: in vitro and in vivo antiproliferative effects of epigallocatechin gallate (EGCg) Effects of the green tea catechin (-)-epigallocatechin gallate on Trypanosoma brucei, Autophagy PLoS One Exp Parasitol Int J Parasitol Drugs Drug Resist, vol.93432, issue.2, pp.175-95, 2007.

. Abbreviations, AMP-activated protein kinase; ARV, avian reovirus; CB1, cannabinoid 1; CaMKK, calcium/calmodulin-dependent proteinkinasekinase; EGCG, (-)-epigallocatechin-3-gallate (EGCG)HCMV, human cytomegalovirus ;HCV, hepatitis C virus; HIV-1, human immunodeficiency virus-1;KUNV,kunjin virus; L. infantum, Leishmaniainfantum; Mtb, Mycobacterium tuberculosis; Pl. falciparum, Plasmodium falciparum