C. Algire, L. Amrein, M. Bazile, S. David, M. Zakikhani et al., Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo, Oncogene, vol.62, issue.10, pp.1174-1182, 2011.
DOI : 10.1158/1940-6207.CAPR-08-0081

S. Andrzejewski, S. Gravel, M. Pollak, and J. St-pierre, Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab, pp.2049-3002, 2014.

J. Bai, N. Zhang, Y. Hua, B. Wang, L. Ling et al., Metformin Inhibits Angiotensin II-Induced Differentiation of Cardiac Fibroblasts into Myofibroblasts, PLoS ONE, vol.55, issue.9, 2013.
DOI : 10.1371/journal.pone.0072120.t001

M. Balteau, N. Tajeddine, C. De-meester, A. Ginion, C. Des-rosiers et al., NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1, Cardiovascular Research, vol.92, issue.2, pp.237-246, 2011.
DOI : 10.1093/cvr/cvr230

M. Balteau, A. Van-steenbergen, A. D. Timmermans, C. Dessy, G. Behets-wydemans et al., AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes, AJP: Heart and Circulatory Physiology, vol.307, issue.8, 2014.
DOI : 10.1152/ajpheart.00210.2014

C. Batandier, B. Guigas, D. Detaille, M. Y. El-mir, E. Fontaine et al., The ROS Production Induced by a Reverse-Electron Flux at Respiratory-Chain Complex 1 is Hampered by Metformin, Journal of Bioenergetics and Biomembranes, vol.79, issue.1, pp.33-42, 2006.
DOI : 10.1007/s10863-006-9003-8

URL : https://hal.archives-ouvertes.fr/inserm-00388702

B. Batchuluun, T. Inoguchi, N. Sonoda, S. Sasaki, T. Inoue et al., Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells, Atherosclerosis, vol.232, issue.1, pp.156-164, 2014.
DOI : 10.1016/j.atherosclerosis.2013.10.025

M. L. Becker, L. E. Visser, R. H. Van-schaik, A. Hofman, A. G. Uitterlinden et al., Genetic Variation in the Multidrug and Toxin Extrusion 1 Transporter Protein Influences the Glucose-Lowering Effect of Metformin in Patients With Diabetes: A Preliminary Study, Diabetes, vol.58, issue.3, pp.745-749, 2009.
DOI : 10.2337/db08-1028

B. Sahra, I. Laurent, K. Giuliano, S. Larbret, F. Ponzio et al., Targeting Cancer Cell Metabolism: The Combination of Metformin and 2-Deoxyglucose Induces p53-Dependent Apoptosis in Prostate Cancer Cells, Cancer Research, vol.70, issue.6, pp.2465-2475, 2010.
DOI : 10.1158/0008-5472.CAN-09-2782

L. Bertrand, A. Ginion, C. Beauloye, A. D. Hebert, B. Guigas et al., AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B, AJP: Heart and Circulatory Physiology, vol.291, issue.1, pp.239-250, 2006.
DOI : 10.1152/ajpheart.01269.2005

G. S. Bhamra, D. J. Hausenloy, S. M. Davidson, R. D. Carr, M. Paiva et al., Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening, Basic Research in Cardiology, vol.108, issue.Pt 3, pp.274-284, 2008.
DOI : 10.1007/s00395-007-0691-y

M. P. Bhatt, Y. C. Lim, Y. M. Kim, H. , and K. S. , C-Peptide Activates AMPK?? and Prevents ROS-Mediated Mitochondrial Fission and Endothelial Apoptosis in Diabetes, Diabetes, vol.62, issue.11, pp.3851-3862, 2013.
DOI : 10.2337/db13-0039

K. Birsoy, R. Possemato, F. K. Lorbeer, E. C. Bayraktar, P. Thiru et al., Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides, Nature, vol.7, issue.7494, pp.108-112, 2014.
DOI : 10.1038/nature13110

R. Boussageon, I. Supper, T. Bejan-angoulvant, N. Kellou, M. Cucherat et al., Reappraisal of Metformin Efficacy in the Treatment of Type 2 Diabetes: A Meta-Analysis of Randomised Controlled Trials, PLoS Medicine, vol.170, issue.Suppl 1, 2012.
DOI : 10.1371/journal.pmed.1001204.s002

URL : https://hal.archives-ouvertes.fr/inserm-00700878

H. R. Bridges, A. J. Jones, M. N. Pollak, and J. Hirst, Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria, Biochemical Journal, vol.58, issue.3, pp.475-487, 2014.
DOI : 10.1038/nature13110

B. Brunmair, K. Staniek, F. Gras, N. Scharf, A. Althaym et al., Thiazolidinediones, Like Metformin, Inhibit Respiratory Complex I: A Common Mechanism Contributing to Their Antidiabetic Actions?, Diabetes, vol.53, issue.4, pp.1052-1059, 2004.
DOI : 10.2337/diabetes.53.4.1052

H. Bugger, A. , and E. D. , Molecular mechanisms of diabetic cardiomyopathy, Diabetologia, vol.304, issue.4, pp.660-671, 2014.
DOI : 10.1007/s00125-014-3171-6

M. Buzzai, R. G. Jones, R. K. Amaravadi, J. J. Lum, R. J. Deberardinis et al., Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth, Cancer Research, vol.67, issue.14, pp.6745-6752, 2007.
DOI : 10.1158/0008-5472.CAN-06-4447

F. Cabreiro, C. Au, K. Y. Leung, N. Vergara-irigaray, H. M. Cocheme et al., Metformin Retards Aging in C.??elegans by Altering Microbial Folate and Methionine Metabolism, Cell, vol.153, issue.1, pp.228-239, 2013.
DOI : 10.1016/j.cell.2013.02.035

J. Cao, S. Meng, E. Chang, K. Beckwith-fickas, L. Xiong et al., Low Concentrations of Metformin Suppress Glucose, 2014.

P. W. Caton, N. K. Nayuni, J. Kieswich, N. Q. Khan, M. M. Yaqoob et al., Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5, Journal of Endocrinology, vol.205, issue.1, pp.97-106, 2010.
DOI : 10.1677/JOE-09-0345

W. S. Cheang, X. Y. Tian, W. T. Wong, C. W. Lau, S. S. Lee et al., Metformin Protects Endothelial Function in Diet-Induced Obese Mice by Inhibition of Endoplasmic Reticulum Stress Through 5' Adenosine Monophosphate-Activated Protein Kinase-Peroxisome Proliferator-Activated Receptor ?? Pathway, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.34, issue.4, pp.830-836, 2014.
DOI : 10.1161/ATVBAHA.113.301938

D. Jager, J. Kooy, A. Lehert, P. Bets, D. Wulffele et al., Effects of short-term treatment with metformin on markers of endothelial function and inflammatory activity in type 2 diabetes mellitus: a randomized, placebo-controlled trial, Journal of Internal Medicine, vol.29, issue.1, pp.100-109, 2005.
DOI : 10.1053/meta.2001.28078

D. Detaille, B. Guigas, C. Chauvin, C. Batandier, E. Fontaine et al., Metformin Prevents High-Glucose-Induced Endothelial Cell Death Through a Mitochondrial Permeability Transition-Dependent Process, Diabetes, vol.54, issue.7, pp.2179-2187, 2005.
DOI : 10.2337/diabetes.54.7.2179

URL : https://hal.archives-ouvertes.fr/inserm-00388755

Z. Drahota, E. Palenickova, R. Endlicher, M. Milerova, J. Brejchova et al., Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties, Physiol Res, vol.63, pp.1-11, 2014.

M. Y. El-mir, D. Detaille, G. , R. V. Delgado-esteban, M. Guigas et al., Neuroprotective Role of Antidiabetic Drug Metformin Against Apoptotic Cell Death in Primary Cortical Neurons, Journal of Molecular Neuroscience, vol.279, issue.Suppl 4bis, pp.77-87, 2008.
DOI : 10.1007/s12031-007-9002-1

URL : https://hal.archives-ouvertes.fr/inserm-00388540

M. Y. El-mir, V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet et al., Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. The Journal of biological chemistry, pp.223-228, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00390049

D. T. Eurich, D. L. Weir, S. R. Majumdar, R. T. Tsuyuki, J. A. Johnson et al., Comparative Safety and Effectiveness of Metformin in Patients With Diabetes Mellitus and Heart Failure: Systematic Review of Observational Studies Involving 34 000 Patients, Circulation: Heart Failure, vol.6, issue.3, pp.395-402, 2013.
DOI : 10.1161/CIRCHEARTFAILURE.112.000162

J. M. Evans, L. A. Donnelly, A. M. Emslie-smith, D. R. Alessi, and A. D. Morris, Metformin and reduced risk of cancer in diabetic patients, BMJ, vol.330, issue.7503, pp.1304-1305, 2005.
DOI : 10.1136/bmj.38415.708634.F7

B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska et al., AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In??Vivo, Cell Metabolism, vol.17, issue.1, pp.113-124, 2013.
DOI : 10.1016/j.cmet.2012.12.001

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-2369, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746

M. D. Fullerton, S. Galic, K. Marcinko, S. Sikkema, T. Pulinilkunnil et al., Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin, Nature Medicine, vol.261, issue.12, pp.1649-1654, 2013.
DOI : 10.1111/j.1749-6632.1959.tb44923.x

S. Gandini, M. Puntoni, B. M. Heckman-stoddard, B. K. Dunn, L. Ford et al., Metformin and Cancer Risk and Mortality: A Systematic Review and Meta-analysis Taking into Account Biases and Confounders, Cancer Prevention Research, vol.7, issue.9, 2014.
DOI : 10.1158/1940-6207.CAPR-13-0424

A. Ginion, J. Auquier, C. R. Benton, C. Mouton, J. L. Vanoverschelde et al., Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake, AJP: Heart and Circulatory Physiology, vol.301, issue.2, pp.469-477, 2011.
DOI : 10.1152/ajpheart.00986.2010

L. Gong, S. Goswami, K. M. Giacomini, R. B. Altman, and T. E. Klein, Metformin pathways, Pharmacogenetics and Genomics, vol.22, issue.11, pp.820-827, 2012.
DOI : 10.1097/FPC.0b013e3283559b22

E. Gontier, E. Fourme, M. Wartski, C. Blondet, G. Bonardel et al., High and typical 18F-FDG bowel uptake in patients treated with metformin, European Journal of Nuclear Medicine and Molecular Imaging, vol.2, issue.Suppl 1, pp.95-99, 2008.
DOI : 10.1007/s00259-007-0563-6

A. R. Grassian, S. J. Parker, S. M. Davidson, A. S. Divakaruni, C. R. Green et al., IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism, IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism, pp.3317-3331, 2014.
DOI : 10.1158/0008-5472.CAN-14-0772-T

S. M. Grundy, I. J. Benjamin, G. L. Burke, A. Chait, R. H. Eckel et al., Diabetes and Cardiovascular Disease : A Statement for Healthcare Professionals From the American Heart Association, Circulation, vol.100, issue.10, pp.1134-1146, 1999.
DOI : 10.1161/01.CIR.100.10.1134

B. Guigas, D. Detaille, C. Chauvin, C. Batandier, D. Oliveira et al., study, Biochemical Journal, vol.382, issue.3, pp.877-884, 2004.
DOI : 10.1042/BJ20040885

URL : https://hal.archives-ouvertes.fr/inserm-00387151

S. Gundewar, J. W. Calvert, S. Jha, I. Toedt-pingel, S. Y. Ji et al., Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure, Circulation Research, vol.104, issue.3, pp.403-411, 2009.
DOI : 10.1161/CIRCRESAHA.108.190918

R. Haq, J. Shoag, P. Andreu-perez, S. Yokoyama, H. Edelman et al., Oncogenic BRAF Regulates Oxidative Metabolism via PGC1?? and MITF, Cancer Cell, vol.23, issue.3, pp.302-315, 2013.
DOI : 10.1016/j.ccr.2013.02.003

URL : http://doi.org/10.1016/j.ccr.2013.02.003

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, A. Evans et al., Use of Cells Expressing ?? Subunit Variants to Identify Diverse Mechanisms of AMPK Activation, Cell Metabolism, vol.11, issue.6, pp.554-565, 2010.
DOI : 10.1016/j.cmet.2010.04.001

C. He, H. Zhu, H. Li, M. H. Zou, and Z. Xie, Dissociation of Bcl-2-Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes, Diabetes, vol.62, issue.4, pp.1270-1281, 2013.
DOI : 10.2337/db12-0533

L. He, A. Sabet, S. Djedjos, R. Miller, X. Sun et al., Metformin and Insulin Suppress Hepatic Gluconeogenesis through Phosphorylation of CREB Binding Protein, Cell, vol.137, issue.4, pp.635-646, 2009.
DOI : 10.1016/j.cell.2009.03.016

S. A. Hinke, G. A. Martens, Y. Cai, J. Finsi, H. Heimberg et al., Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer, 2007.

A. Hirsch, D. Hahn, P. Kempna, G. Hofer, J. M. Nuoffer et al., Metformin Inhibits Human Androgen Production by Regulating Steroidogenic Enzymes HSD3B2 and CYP17A1 and Complex I Activity of the Respiratory Chain, Endocrinology, vol.153, issue.9, pp.4354-4366, 2012.
DOI : 10.1210/en.2012-1145

G. Hollunger, GUANIDINES AND OXIDATIVE PHOSPHORYLATIONS, Acta Pharmacologica et Toxicologica, vol.16, issue.Suppl. 1, pp.1-84, 1955.
DOI : 10.1111/j.1600-0773.1955.tb02972.x

R. R. Holman, S. K. Paul, M. A. Bethel, D. R. Matthews, N. et al., 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes, New England Journal of Medicine, vol.359, issue.15, pp.1577-1589, 2008.
DOI : 10.1056/NEJMoa0806470

J. Hong, Y. Zhang, S. Lai, A. Lv, Q. Su et al., Effects of Metformin Versus Glipizide on Cardiovascular Outcomes in Patients With Type 2 Diabetes and Coronary Artery Disease, Diabetes Care, vol.36, issue.5, pp.1304-1311, 2013.
DOI : 10.2337/dc12-0719

S. Horman, C. Beauloye, J. L. Vanoverschelde, B. , and L. , AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling, Current Heart Failure Reports, vol.103, issue.3, pp.164-173, 2012.
DOI : 10.1007/s11897-012-0102-z

K. Hosono, H. Endo, H. Takahashi, M. Sugiyama, E. Sakai et al., Metformin Suppresses Colorectal Aberrant Crypt Foci in a Short-term Clinical Trial, Cancer Prevention Research, vol.3, issue.9, pp.1077-1083, 2010.
DOI : 10.1158/1940-6207.CAPR-10-0186

X. Huang, S. Wullschleger, N. Shpiro, V. A. Mcguire, K. Sakamoto et al., Important role of the LKB1???AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice, Biochemical Journal, vol.412, issue.2, pp.211-221, 2008.
DOI : 10.1042/BJ20080557

K. A. Jablonski, J. B. Mcateer, P. I. De-bakker, P. W. Franks, T. I. Pollin et al., Common Variants in 40 Genes Assessed for Diabetes Incidence and Response to Metformin and Lifestyle Intervention in the Diabetes Prevention Program, Diabetes, vol.59, issue.10, pp.2672-2681, 2010.
DOI : 10.2337/db10-0543

A. Janzer, N. J. German, K. N. Gonzalez-herrera, J. M. Asara, M. C. Haigis et al., Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells, Proceedings of the National Academy of Sciences, vol.111, issue.29, pp.10574-10579, 2014.
DOI : 10.1073/pnas.1409844111

S. M. Jeon, N. S. Chandel, and N. Hay, AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress, Nature, vol.281, issue.7400, pp.661-665, 2012.
DOI : 10.1038/nature11066

D. Kukidome, T. Nishikawa, K. Sonoda, K. Imoto, K. Fujisawa et al., Activation of AMP-Activated Protein Kinase Reduces Hyperglycemia-Induced Mitochondrial Reactive Oxygen Species Production and Promotes Mitochondrial Biogenesis in Human Umbilical Vein Endothelial Cells, Diabetes, vol.55, issue.1, pp.120-127, 2006.
DOI : 10.2337/diabetes.55.01.06.db05-0943

C. Lamanna, M. Monami, N. Marchionni, and E. Mannucci, Effect of metformin on cardiovascular events and mortality: a meta-analysis of randomized clinical trials, Diabetes, Obesity and Metabolism, vol.46, issue.3, pp.221-228, 2011.
DOI : 10.1111/j.1463-1326.2010.01349.x

J. M. Lee, W. Y. Seo, K. H. Song, D. Chanda, Y. D. Kim et al., AMPK-dependent Repression of Hepatic Gluconeogenesis via Disruption of CREB{middle dot}CRTC2 Complex by Orphan Nuclear Receptor Small Heterodimer Partner, Journal of Biological Chemistry, vol.285, issue.42, pp.32182-32191, 2010.
DOI : 10.1074/jbc.M110.134890

R. J. Legtenberg, R. J. Houston, B. Oeseburg, and P. Smits, Metformin Improves Cardiac Functional Recovery After Ischemia in Rats, Hormone and Metabolic Research, vol.34, issue.4, pp.182-185, 2002.
DOI : 10.1055/s-2002-26705

C. P. Lexis, I. C. Van-der-horst, E. Lipsic, W. G. Wieringa, R. A. De-boer et al., Effect of Metformin on Left Ventricular Function After Acute Myocardial Infarction in Patients Without Diabetes, JAMA, vol.311, issue.15, pp.1526-1535, 2014.
DOI : 10.1001/jama.2014.3315

H. Z. Lin, S. Q. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet et al., Metformin reverses fatty liver disease in obese, leptin-deficient mice, Nat Med, vol.6, pp.998-1003, 2000.

L. Logie, J. Harthill, K. Patel, S. Bacon, D. L. Hamilton et al., Cellular Responses to the Metal-Binding Properties of Metformin, Diabetes, vol.61, issue.6, pp.1423-1433, 2012.
DOI : 10.2337/db11-0961

A. K. Madiraju, D. M. Erion, Y. Rahimi, X. M. Zhang, D. T. Braddock et al., Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase, Nature, vol.148, issue.7506, pp.542-546, 2014.
DOI : 10.1021/jm001017v

A. Maida, B. J. Lamont, X. Cao, and D. J. Drucker, Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-?? in mice, Diabetologia, vol.59, issue.Suppl 1, pp.339-349, 2011.
DOI : 10.1007/s00125-010-1937-z

G. Marchesini, M. Brizi, G. Bianchi, S. Tomassetti, M. Zoli et al., Metformin in non-alcoholic steatohepatitis, The Lancet, vol.358, issue.9285, pp.893-894, 2001.
DOI : 10.1016/S0140-6736(01)06042-1

D. Margel, D. R. Urbach, L. L. Lipscombe, C. M. Bell, G. Kulkarni et al., Metformin Use and All-Cause and Prostate Cancer???Specific Mortality Among Men With Diabetes, Journal of Clinical Oncology, vol.31, issue.25, pp.3069-3075, 2013.
DOI : 10.1200/JCO.2012.46.7043

F. A. Masoudi, S. E. Inzucchi, Y. Wang, E. P. Havranek, J. M. Foody et al., Thiazolidinediones, Metformin, and Outcomes in Older Patients With Diabetes and Heart Failure: An Observational Study, Circulation, vol.111, issue.5, pp.583-590, 2005.
DOI : 10.1161/01.CIR.0000154542.13412.B1

R. M. Memmott, J. R. Mercado, C. R. Maier, S. Kawabata, S. D. Fox et al., Metformin Prevents Tobacco Carcinogen-Induced Lung Tumorigenesis, Cancer Prevention Research, vol.3, issue.9, pp.1066-1076, 2010.
DOI : 10.1158/1940-6207.CAPR-10-0055

R. A. Miller, Q. Chu, J. Xie, M. Foretz, B. Viollet et al., Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP, Nature, vol.126, issue.7436, pp.256-260, 2013.
DOI : 10.1038/nature11808

O. Moiseeva, X. Deschenes-simard, E. St-germain, S. Igelmann, G. Huot et al., Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-??B activation, Aging Cell, vol.8, issue.3, pp.489-498, 2013.
DOI : 10.1111/acel.12075

A. J. Mulherin, A. H. Oh, H. Kim, A. Grieco, L. M. Lauffer et al., Mechanisms Underlying Metformin-Induced Secretion of Glucagon-Like Peptide-1 from the Intestinal L Cell, Endocrinology, vol.152, issue.12, pp.4610-4619, 2011.
DOI : 10.1210/en.2011-1485

S. Muller, S. Denet, H. Candiloros, R. Barrois, N. Wiernsperger et al., Action of metformin on erythrocyte membrane fluidity in vitro and in vivo, European Journal of Pharmacology, vol.337, issue.1, 1997.
DOI : 10.1016/S0014-2999(97)01287-9

K. Narise, K. Okuda, Y. Enomoto, T. Hirayama, and H. Nagasawa, Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment, Drug Des Devel Ther, vol.8, pp.701-717, 2014.

A. Natali and E. Ferrannini, Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review, Diabetologia, vol.27, issue.3, pp.434-441, 2006.
DOI : 10.1007/s00125-006-0141-7

G. Noppe, C. Dufeys, P. Buchlin, N. Marquet, D. Castanares-zapatero et al., Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPK??1, Journal of Molecular and Cellular Cardiology, vol.74, pp.32-43, 2014.
DOI : 10.1016/j.yjmcc.2014.04.018

N. Ouslimani, M. Mahrouf, J. Peynet, D. Bonnefont-rousselot, C. Cosson et al., Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1, Metabolism, vol.56, issue.3, pp.308-313, 2007.
DOI : 10.1016/j.metabol.2006.10.010

N. Ouslimani, J. Peynet, D. Bonnefont-rousselot, P. Therond, A. Legrand et al., Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells, Metabolism, vol.54, issue.6, pp.829-834, 2005.
DOI : 10.1016/j.metabol.2005.01.029

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, The Biochemical journal 348 Pt, vol.3, pp.607-614, 2000.

E. L. Pearce, M. C. Walsh, P. J. Cejas, G. M. Harms, H. Shen et al., Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature, vol.19, issue.7251, pp.103-107, 2009.
DOI : 10.1038/nature08097

S. Piel, J. K. Ehinger, E. Elmer, and M. J. Hansson, Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition, Acta Physiologica, vol.286, issue.Pt 3, 2014.
DOI : 10.1111/apha.12311

M. Pollak, The insulin and insulin-like growth factor receptor family in neoplasia: an update, Nature Reviews Cancer, vol.20, pp.159-169, 2012.
DOI : 10.1038/nrc3215

M. Pollak, Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning, Cancer Discovery, vol.2, issue.9, pp.778-790, 2012.
DOI : 10.1158/2159-8290.CD-12-0263

M. Pollak, Potential applications for biguanides in oncology, Journal of Clinical Investigation, vol.123, issue.9, pp.3693-3700, 2013.
DOI : 10.1172/JCI67232

M. Pollak, Targeting Oxidative Phosphorylation: Why, When, and How, Cancer Cell, vol.23, issue.3, pp.263-264, 2013.
DOI : 10.1016/j.ccr.2013.02.015

URL : http://doi.org/10.1016/j.ccr.2013.02.015

M. Pollak, Overcoming Drug Development Bottlenecks With Repurposing: Repurposing biguanides to target energy metabolism for cancer treatment, Nature Medicine, vol.12, issue.6, pp.591-593, 2014.
DOI : 10.1007/s00259-007-0563-6

D. Preiss, S. M. Lloyd, I. Ford, J. J. Mcmurray, R. R. Holman et al., Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial, The Lancet Diabetes & Endocrinology, vol.2, issue.2, pp.116-124, 2014.
DOI : 10.1016/S2213-8587(13)70152-9

M. A. Preston, A. H. Riis, V. Ehrenstein, R. H. Breau, J. L. Batista et al., Metformin Use and Prostate Cancer Risk, European Urology, vol.66, issue.6, pp.1012-1032, 2014.
DOI : 10.1016/j.eururo.2014.04.027

V. T. Samuel, S. A. Beddow, T. Iwasaki, X. M. Zhang, X. Chu et al., Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes, Proceedings of the National Academy of Sciences, vol.106, issue.29, pp.12121-12126, 2009.
DOI : 10.1073/pnas.0812547106

H. Sasaki, H. Asanuma, M. Fujita, H. Takahama, M. Wakeno et al., Metformin Prevents Progression of Heart Failure in Dogs: Role of AMP-Activated Protein Kinase, Circulation, vol.119, issue.19, pp.2568-2577, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.798561

S. Scotland, E. Saland, N. Skuli, F. De-toni, H. Boutzen et al., Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells, Leukemia, vol.3, issue.11, pp.2129-2138, 2013.
DOI : 10.1038/leu.2013.107

D. B. Shackelford, E. Abt, L. Gerken, D. S. Vasquez, A. Seki et al., LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin, Cancer Cell, vol.23, issue.2, pp.143-158, 2013.
DOI : 10.1016/j.ccr.2012.12.008

R. J. Shaw, K. A. Lamia, D. Vasquez, S. H. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1646, 2005.
DOI : 10.1126/science.1120781

Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang et al., Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action, Journal of Clinical Investigation, vol.117, issue.5, pp.1422-1431, 2007.
DOI : 10.1172/JCI30558DS1

X. Stephenne, M. Foretz, N. Taleux, G. C. Van-der-zon, E. Sokal et al., Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status, Diabetologia, vol.25, issue.12, pp.3101-3110, 2011.
DOI : 10.1007/s00125-011-2311-5

S. Suissa and L. Azoulay, Metformin and Cancer: Mounting Evidence Against an Association: Figure 1, Diabetes Care, vol.37, issue.7, pp.1786-1788, 2014.
DOI : 10.2337/dc14-0500

A. D. Timmermans, M. Balteau, R. Gelinas, E. Renguet, A. Ginion et al., A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake, AJP: Heart and Circulatory Physiology, vol.306, issue.12, pp.1619-1630, 2014.
DOI : 10.1152/ajpheart.00965.2013

K. K. Tsilidis, D. Capothanassi, N. E. Allen, E. C. Rizos, D. S. Lopez et al., Metformin Does Not Affect Cancer Risk: A Cohort Study in the U.K. Clinical Practice Research Datalink Analyzed Like an Intention-to-Treat Trial, Diabetes Care, vol.37, issue.9, 2014.
DOI : 10.2337/dc14-0584

M. Tsuda, T. Terada, T. Mizuno, T. Katsura, J. Shimakura et al., Targeted Disruption of the Multidrug and Toxin Extrusion 1 (Mate1) Gene in Mice Reduces Renal Secretion of Metformin, Molecular Pharmacology, vol.75, issue.6, pp.1280-1286, 2009.
DOI : 10.1124/mol.109.056242

B. Viollet, B. Guigas, S. Garcia, N. Leclerc, J. Foretz et al., Cellular and molecular mechanisms of metformin: an overview, Clinical Science, vol.30, issue.6, pp.253-270, 2012.
DOI : 10.1002/mc.20637

URL : https://hal.archives-ouvertes.fr/inserm-00658070

H. J. Whittington, A. R. Hall, C. P. Mclaughlin, D. J. Hausenloy, D. M. Yellon et al., Chronic Metformin Associated Cardioprotection Against Infarction: Not Just a Glucose Lowering Phenomenon, Cardiovascular Drugs and Therapy, vol.34, issue.Pt 3, pp.5-16, 2013.
DOI : 10.1007/s10557-012-6425-x

C. Wilcock and C. J. Bailey, Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica; the fate of foreign compounds in biological systems, pp.49-57, 1994.

S. L. Woo, H. Xu, H. Li, Y. Zhao, X. Hu et al., Metformin Ameliorates Hepatic Steatosis and Inflammation without Altering Adipose Phenotype in Diet-Induced Obesity, PLoS ONE, vol.24, issue.3, 2014.
DOI : 10.1371/journal.pone.0091111.s001

H. Xiao, X. Ma, W. Feng, Y. Fu, Z. Lu et al., Metformin attenuates cardiac fibrosis by inhibiting the TGF??1-Smad3 signalling pathway, Cardiovascular Research, vol.87, issue.3, pp.504-513, 2010.
DOI : 10.1093/cvr/cvq066

Z. Xie, K. Lau, B. Eby, P. Lozano, C. He et al., Improvement of Cardiac Functions by Chronic Metformin Treatment Is Associated With Enhanced Cardiac Autophagy in Diabetic OVE26 Mice, Diabetes, vol.60, issue.6, pp.1770-1778, 2011.
DOI : 10.2337/db10-0351

X. Xu, Z. Lu, J. Fassett, P. Zhang, X. Hu et al., Metformin Protects Against Systolic Overload???Induced Heart Failure Independent of AMP-Activated Protein Kinase ??2Novelty and Significance, Hypertension, vol.63, issue.4, pp.723-728, 2014.
DOI : 10.1161/HYPERTENSIONAHA.113.02619

C. H. Yeh, T. P. Chen, Y. C. Wang, Y. M. Lin, and S. W. Fang, AMP-Activated Protein Kinase Activation during Cardioplegia-Induced Hypoxia/Reoxygenation Injury Attenuates Cardiomyocytic Apoptosis via Reduction of Endoplasmic Reticulum Stress, Mediators of Inflammation, vol.270, issue.4, 2010.
DOI : 10.1038/sj.cdd.4401984

M. Yin, I. C. Van-der-horst, J. P. Van-melle, C. Qian, W. H. Van-gilst et al., Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure, AJP: Heart and Circulatory Physiology, vol.301, issue.2, pp.459-468, 2011.
DOI : 10.1152/ajpheart.00054.2011

M. Zakikhani, R. Dowling, I. G. Fantus, N. Sonenberg, and M. Pollak, Metformin Is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells, Cancer Research, vol.66, issue.21, pp.10269-10273, 2006.
DOI : 10.1158/0008-5472.CAN-06-1500

M. Zang, A. Zuccollo, X. Hou, D. Nagata, K. Walsh et al., AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells, Journal of Biological Chemistry, vol.279, issue.46, pp.47898-47905, 2004.
DOI : 10.1074/jbc.M408149200

C. X. Zhang, S. N. Pan, R. S. Meng, C. Q. Peng, Z. J. Xiong et al., Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats, Clinical and Experimental Pharmacology and Physiology, vol.15, issue.1, pp.55-62, 2011.
DOI : 10.1111/j.1440-1681.2010.05461.x

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-1174, 2001.
DOI : 10.1172/JCI13505

K. Zhou, C. Bellenguez, C. C. Spencer, A. J. Bennett, R. L. Coleman et al., Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes, Nature Genetics, vol.352, issue.2, pp.117-120, 2011.
DOI : 10.1016/0014-5793(95)00172-6

K. Zhou, L. A. Donnelly, C. H. Kimber, P. T. Donnan, A. S. Doney et al., Reduced-Function SLC22A1 Polymorphisms Encoding Organic Cation Transporter 1 and Glycemic Response to Metformin: A GoDARTS Study, Diabetes, vol.58, issue.6, pp.1434-1439, 2009.
DOI : 10.2337/db08-0896