R. Bassel-duby and E. N. Olson, Signaling Pathways in Skeletal Muscle Remodeling, Annual Review of Biochemistry, vol.75, issue.1, pp.19-37, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142622

M. Fluck, Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli, Journal of Experimental Biology, vol.209, issue.12, pp.2239-2248, 2006.
DOI : 10.1242/jeb.02149

D. A. Hood, Coordination of metabolic plasticity in skeletal muscle, Journal of Experimental Biology, vol.209, issue.12, pp.2265-2275, 2006.
DOI : 10.1242/jeb.02182

D. G. Hardie, AMPK???Sensing Energy while Talking to Other Signaling Pathways, Cell Metabolism, vol.20, issue.6, pp.939-952, 2014.
DOI : 10.1016/j.cmet.2014.09.013

T. E. Jensen, AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?, Acta Physiologica, vol.99, issue.Suppl. 1, pp.155-174, 2009.
DOI : 10.1111/j.1748-1716.2009.01979.x

T. E. Jensen and E. A. Richter, Regulation of glucose and glycogen metabolism during and after exercise, The Journal of Physiology, vol.6, issue.5, pp.1069-1076, 2012.
DOI : 10.1113/jphysiol.2011.224972

H. M. Neill, AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity, Mol Cell Endocrinol, vol.366, pp.135-151, 2013.

S. L. Mcgee and M. Hargreaves, Histone modifications and exercise adaptations, Journal of Applied Physiology, vol.110, issue.1, pp.258-263, 1985.
DOI : 10.1152/japplphysiol.00979.2010

A. Mcbride, The Glycogen-Binding Domain on the AMPK ?? Subunit Allows the Kinase to Act as a Glycogen Sensor, Cell Metabolism, vol.9, issue.1, pp.23-34, 2009.
DOI : 10.1016/j.cmet.2008.11.008

J. F. Wojtaszewski, Regulation of 5???AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle, American Journal of Physiology - Endocrinology And Metabolism, vol.284, issue.4, pp.813-822, 2003.
DOI : 10.1152/ajpendo.00436.2002

K. Sakamoto, Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO Journal, vol.108, issue.10, pp.1810-1820, 2005.
DOI : 10.1038/sj.emboj.7600667

D. M. Thomson, Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice, AJP: Endocrinology and Metabolism, vol.292, issue.1, pp.196-202, 2007.
DOI : 10.1152/ajpendo.00366.2006

J. S. Oakhill, AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase, Science, vol.332, issue.6036, pp.1433-1435, 2011.
DOI : 10.1126/science.1200094

B. Xiao, Structure of mammalian AMPK and its regulation by ADP, Nature, vol.50, issue.7342, pp.230-233, 2011.
DOI : 10.1038/nature09932

P. C. Cheung, Characterization of AMP-activated protein kinase gammasubunit isoforms and their role in AMP binding, Biochem J 346 Pt, vol.3, pp.659-669, 2000.

M. Suter, Dissecting the Role of 5'-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.281, issue.43, pp.32207-32216, 2006.
DOI : 10.1074/jbc.M606357200

URL : https://hal.archives-ouvertes.fr/inserm-00390888

S. A. Hawley, Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

A. Woods, Ca2+/calmodulin-dependent protein kinase kinase-?? acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, vol.2, issue.1, pp.21-33, 2005.
DOI : 10.1016/j.cmet.2005.06.005

T. E. Jensen, Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction, AJP: Endocrinology and Metabolism, vol.292, issue.5, 2007.
DOI : 10.1152/ajpendo.00456.2006

S. L. Mcgee, Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase ??1 following overload in LKB1 knockout mice, The Journal of Physiology, vol.99, issue.6, pp.1731-1741, 2008.
DOI : 10.1113/jphysiol.2007.143685

J. B. Birk and J. F. Wojtaszewski, Predominant ??2/??2/??3 AMPK activation during exercise in human skeletal muscle, The Journal of Physiology, vol.108, issue.3, pp.1021-1032, 2006.
DOI : 10.1113/jphysiol.2006.120972

J. T. Treebak, A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, 2009.

B. R. Barnes, The 5'-AMP-activated Protein Kinase ??3 Isoform Has a Key Role in Carbohydrate and Lipid Metabolism in Glycolytic Skeletal Muscle, Journal of Biological Chemistry, vol.279, issue.37, pp.38441-38447, 2004.
DOI : 10.1074/jbc.M405533200

URL : https://hal.archives-ouvertes.fr/hal-01211883

D. Milan, A Mutation in PRKAG3 Associated with Excess Glycogen Content in Pig Skeletal Muscle, Science, vol.288, issue.5469, pp.1248-1251, 2000.
DOI : 10.1126/science.288.5469.1248

S. R. Costford, Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle AS160 phosphorylation is associated with activation of alpha2beta2gamma1-but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans, PLoS One Am J Physiol Endocrinol Metab, vol.2, issue.292, pp.715-722, 2007.

S. L. Mcgee, Exercise Increases Nuclear AMPK ??2 in Human Skeletal Muscle, Diabetes, vol.52, issue.4, pp.926-928, 2003.
DOI : 10.2337/diabetes.52.4.926

J. T. Treebak, Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, The Journal of Physiology, vol.298, issue.2, pp.351-375, 2014.
DOI : 10.1113/jphysiol.2013.266338

S. M. Warden, Post-translational modifications of the beta-1 subunit of AMPactivated protein kinase affect enzyme activity and cellular localization, Biochem J, vol.354, 2001.

K. Pinter, Localisation of AMPK ?? subunits in cardiac and skeletal muscles, Journal of Muscle Research and Cell Motility, vol.102, issue.2, pp.369-378, 2013.
DOI : 10.1007/s10974-013-9359-4

K. S. Rockl, Skeletal Muscle Adaptation to Exercise Training, Diabetes, vol.56, issue.8, pp.2062-2069, 2007.
DOI : 10.2337/db07-0255

M. Suwa, Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles, Journal of Applied Physiology, vol.95, issue.3, pp.960-968, 1985.
DOI : 10.1152/japplphysiol.00349.2003

N. L. Reyes, Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle, Proc Natl Acad Sci The Journal of biological chemistry, vol.283, pp.35724-35734, 2008.

H. M. Neill, AMP-activated protein kinase (AMPK) ??1??2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, Proceedings of the National Academy of Sciences, vol.108, issue.38, pp.16092-16097, 2011.
DOI : 10.1073/pnas.1105062108

L. Lantier, AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity, The FASEB Journal, vol.28, issue.7, pp.3211-3224, 2014.
DOI : 10.1096/fj.14-250449

URL : https://hal.archives-ouvertes.fr/inserm-00979373

G. F. Merrill, AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle, Am J Physiol, vol.273, pp.1107-1112, 1997.

W. W. Winder and D. G. Hardie, Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise, Am J Physiol, vol.270, pp.299-304, 1996.

C. A. Hutber, Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase, Am J Physiol, vol.272, pp.262-266, 1997.

D. Vavvas, Contraction-induced Changes in Acetyl-CoA Carboxylase and 5'-AMP-activated Kinase in Skeletal Muscle, Journal of Biological Chemistry, vol.272, issue.20, pp.13255-13261, 1997.
DOI : 10.1074/jbc.272.20.13255

H. M. Neill, AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice, Diabetologia, vol.57, pp.1693-1702, 2014.

C. Roepstorff, Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise, AJP: Endocrinology and Metabolism, vol.288, issue.1, pp.133-142, 2005.
DOI : 10.1152/ajpendo.00379.2004

S. Miura, ??2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise, AJP: Endocrinology and Metabolism, vol.296, issue.1, pp.47-55, 2009.
DOI : 10.1152/ajpendo.90690.2008

N. Dzamko, AMPK-independent pathways regulate skeletal muscle fatty acid oxidation, The Journal of Physiology, vol.528, issue.23, pp.5819-5831, 2008.
DOI : 10.1113/jphysiol.2008.159814

J. Jeppesen, LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK, Diabetes, vol.62, issue.5, pp.1490-1499, 2013.
DOI : 10.2337/db12-1160

J. Jeppesen, Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent, The Journal of Lipid Research, vol.52, issue.4, pp.699-711, 2011.
DOI : 10.1194/jlr.M007138

J. Fentz, AMPKalpha is critical for enhancing skeletal muscle fatty acid utilization during in vivo exercise in mice, FASEB J, 2015.

E. A. Richter and M. Hargreaves, Exercise, GLUT4, and Skeletal Muscle Glucose Uptake, Physiological Reviews, vol.93, issue.3, pp.993-1017, 2013.
DOI : 10.1152/physrev.00038.2012

F. Szekeres, The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism, American Journal of Physiology - Endocrinology And Metabolism, vol.303, issue.4, pp.524-533, 2012.
DOI : 10.1152/ajpendo.00605.2011

A. Chadt, Deletion of Both Rab-GTPase-Activating Proteins TBC1D1 and TBC1D4 in Mice Eliminates Insulin-and AICAR-Stimulated Glucose Transport The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle, Diabetes, vol.51, pp.13-1489, 2014.

N. Musi, AMP-Activated Protein Kinase (AMPK) Is Activated in Muscle of Subjects With Type 2 Diabetes During Exercise, Diabetes, vol.50, issue.5, pp.921-927, 2001.
DOI : 10.2337/diabetes.50.5.921

N. Musi, Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes, Diabetes, vol.51, issue.7, pp.2074-2081, 2002.
DOI : 10.2337/diabetes.51.7.2074

T. Hayashi, Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport, Diabetes, vol.47, pp.1369-1373, 1998.

S. B. Jorgensen, Knockout of the ??2 but Not ??1 5'-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-??-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle, Journal of Biological Chemistry, vol.279, issue.2, pp.1070-1079, 2004.
DOI : 10.1074/jbc.M306205200

Y. C. Lai, A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, Biochemical Journal, vol.272, issue.3, pp.363-375, 2014.
DOI : 10.1113/jphysiol.2008.167528

C. Pehmoller, Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle, AJP: Endocrinology and Metabolism, vol.297, issue.3, pp.665-675, 2009.
DOI : 10.1152/ajpendo.00115.2009

J. T. Treebak, AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits, Diabetes, vol.55, issue.7, pp.2051-2058, 2006.
DOI : 10.2337/db06-0175

D. C. Wright, Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle, AJP: Endocrinology and Metabolism, vol.288, issue.6, pp.1062-1066, 2005.
DOI : 10.1152/ajpendo.00561.2004

T. E. Jensen, Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release, Molecular Metabolism, vol.3, issue.7, pp.742-753, 2014.
DOI : 10.1016/j.molmet.2014.07.005

S. L. Mcgee and M. Hargreaves, AMPK-mediated regulation of transcription in skeletal muscle, Clinical Science, vol.281, issue.8, pp.507-518, 2010.
DOI : 10.1016/S0092-8674(01)00524-4

S. Jager, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12022, 2007.
DOI : 10.1073/pnas.0705070104

C. Canto, Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle, Cell Metabolism, vol.11, issue.3, pp.213-219, 2010.
DOI : 10.1016/j.cmet.2010.02.006

T. A. Mckinsey, Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation, Nature, vol.408, pp.106-111, 2000.

S. L. Mcgee, Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress, The FASEB Journal, vol.28, issue.8, pp.3384-3395, 2014.
DOI : 10.1096/fj.14-249359

L. Leick, PGC-1?? is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle, AJP: Endocrinology and Metabolism, vol.294, issue.2, pp.463-474, 2008.
DOI : 10.1152/ajpendo.00666.2007

H. Zong, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15983-15987, 2002.
DOI : 10.1073/pnas.252625599

R. M. Reznick, Aging-Associated Reductions in AMP-Activated Protein Kinase Activity and Mitochondrial Biogenesis, Cell Metabolism, vol.5, issue.2, pp.151-156, 2007.
DOI : 10.1016/j.cmet.2007.01.008

C. B. Tanner, Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1, AJP: Endocrinology and Metabolism, vol.305, issue.8, pp.1018-1029, 2013.
DOI : 10.1152/ajpendo.00227.2013

W. W. Winder, Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, J Appl Physiol, vol.88, pp.2219-2226, 1985.

R. S. Lee-young, Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo, Journal of Biological Chemistry, vol.284, issue.36, pp.23925-23934, 2009.
DOI : 10.1074/jbc.M109.021048

J. Mu, A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle, Molecular Cell, vol.7, issue.5, pp.1085-1094, 2001.
DOI : 10.1016/S1097-2765(01)00251-9

P. Grumati, Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles, Autophagy, vol.116, issue.12, pp.1415-1423, 2011.
DOI : 10.4161/auto.7.4.14392

C. He, Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis, Nature, vol.150, issue.7382, pp.511-515, 2012.
DOI : 10.1038/nature10758

A. M. Sanchez, AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1, Journal of Cellular Biochemistry, vol.12, issue.7, pp.695-710, 2012.
DOI : 10.1002/jcb.23399

L. Verso and F. , Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity, Autophagy, vol.10, issue.11, pp.1883-1894, 2014.
DOI : 10.1152/japplphysiol.00020.2011

M. Saclier, Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration, FEBS Journal, vol.18, issue.17, pp.4118-4130, 2013.
DOI : 10.1111/febs.12166

M. Saclier, Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration, STEM CELLS, vol.195, issue.2, pp.384-396, 2013.
DOI : 10.1002/stem.1288

URL : https://hal.archives-ouvertes.fr/inserm-00787108

L. Arnold, Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, The Journal of Experimental Medicine, vol.148, issue.5, pp.1057-1069, 2007.
DOI : 10.1016/0022-1759(94)90012-4

URL : https://hal.archives-ouvertes.fr/inserm-00136917

H. W. Jeong, Berberine suppresses proinflammatory responses through AMPK activation in macrophages, AJP: Endocrinology and Metabolism, vol.296, issue.4, pp.955-964, 2009.
DOI : 10.1152/ajpendo.90599.2008

D. Sag, Adenosine 5'-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype, The Journal of Immunology, vol.181, issue.12, 2008.
DOI : 10.4049/jimmunol.181.12.8633

X. Zhao, Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury, AJP: Lung Cellular and Molecular Physiology, vol.295, issue.3, pp.497-504, 2008.
DOI : 10.1152/ajplung.90210.2008

J. Xing, Inhibition of AMP-Activated Protein Kinase Accentuates Lipopolysaccharide-Induced Lung Endothelial Barrier Dysfunction and Lung Injury in??Vivo, The American Journal of Pathology, vol.182, issue.3, pp.1021-1030, 2013.
DOI : 10.1016/j.ajpath.2012.11.022

R. Mounier, AMPK??1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration, Cell Metabolism, vol.18, issue.2, pp.251-264, 2013.
DOI : 10.1016/j.cmet.2013.06.017

J. E. Visvader and G. J. Lindeman, Cancer Stem Cells: Current Status and Evolving Complexities, Cell Stem Cell, vol.10, issue.6, pp.717-728, 2012.
DOI : 10.1016/j.stem.2012.05.007

H. Yin, Satellite Cells and the Muscle Stem Cell Niche, Physiological Reviews, vol.93, issue.1, pp.23-67, 2013.
DOI : 10.1152/physrev.00043.2011

T. Shan, Lkb1 Is Indispensable for Skeletal Muscle Development, Regeneration, and Satellite Cell Homeostasis, STEM CELLS, vol.2, issue.11, pp.2893-2907, 2014.
DOI : 10.1002/stem.1788

S. D. Gopinath, FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal, Stem Cell Reports, vol.2, issue.4, pp.414-426, 2014.
DOI : 10.1016/j.stemcr.2014.02.002

C. Christov, Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-1409, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

R. Abou-khalil, Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

A. Ylikorkala, Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice, Science, vol.293, issue.5533, pp.1323-1326, 2001.
DOI : 10.1126/science.1062074

T. Simsek, The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche, Cell Stem Cell, vol.7, issue.3, pp.380-390, 2010.
DOI : 10.1016/j.stem.2010.07.011

V. A. Rafalski, Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate, Journal of Cell Science, vol.125, issue.23, pp.5597-5608, 2012.
DOI : 10.1242/jcs.114827

J. G. Ryall, The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells, Cell Stem Cell, vol.16, issue.2, pp.171-183, 2015.
DOI : 10.1016/j.stem.2014.12.004

C. Meester, Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells, Cardiovascular Research, vol.101, issue.1, pp.20-29, 2014.
DOI : 10.1093/cvr/cvt227

Z. Zhu, Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert), PLoS One Nature, vol.6, issue.510, pp.393-396, 2011.

R. Mounier, Important role for AMPK??1 in limiting skeletal muscle cell hypertrophy, The FASEB Journal, vol.23, issue.7, pp.2264-2273, 2009.
DOI : 10.1096/fj.08-119057

URL : https://hal.archives-ouvertes.fr/inserm-00363209

L. Lantier, Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, The FASEB Journal, vol.24, issue.9, pp.3555-3561, 2010.
DOI : 10.1096/fj.10-155994

URL : https://hal.archives-ouvertes.fr/inserm-00484177

R. Mounier, Antagonistic control of muscle cell size by AMPK and mTORC1, Cell Cycle, vol.10, issue.16, pp.2640-2646, 2011.
DOI : 10.4161/cc.10.16.17102

URL : https://hal.archives-ouvertes.fr/inserm-00625529

B. K. Pedersen and M. A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nature Reviews Endocrinology, vol.301, issue.8, pp.457-465
DOI : 10.1038/nrendo.2012.49

A. L. Carey, Interleukin-6 Increases Insulin-Stimulated Glucose Disposal in Humans and Glucose Uptake and Fatty Acid Oxidation In Vitro via AMP-Activated Protein Kinase, Diabetes, vol.55, issue.10, pp.2688-2697, 2006.
DOI : 10.2337/db05-1404

S. R. Gray and T. Kamolrat, The effect of exercise induced cytokines on insulin stimulated glucose transport in C2C12 cells, Cytokine, vol.55, issue.2, pp.221-228, 2011.
DOI : 10.1016/j.cyto.2011.04.019

J. Y. Huh, Exercise-Induced Irisin Secretion Is Independent of Age or Fitness Level and Increased Irisin May Directly Modulate Muscle Metabolism Through AMPK Activation, The Journal of Clinical Endocrinology & Metabolism, vol.99, issue.11, pp.2154-2161, 2014.
DOI : 10.1210/jc.2014-1437

T. Shan, Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in muscle, Faseb J, vol.27, 1981.

S. Glund, Role of Adenosine 5???-Monophosphate-Activated Protein Kinase in Interleukin-6 Release from Isolated Mouse Skeletal Muscle, Endocrinology, vol.150, issue.2, pp.600-606, 2009.
DOI : 10.1210/en.2008-1204

H. P. Lauritzen, Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo, Diabetes, vol.62, issue.9, pp.3081-3092, 2013.
DOI : 10.2337/db12-1261

V. Ljubicic and B. J. Jasmin, AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy, Trends in Molecular Medicine, vol.19, issue.10, pp.614-624, 2013.
DOI : 10.1016/j.molmed.2013.07.002

V. E. Jahnke, Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model, Skeletal Muscle, vol.2, issue.1, p.16, 2012.
DOI : 10.1210/en.2009-1211

I. Desguerre, A new model of experimental fibrosis in hindlimb skeletal muscle of adult mdx mouse mimicking muscular dystrophy, Muscle & Nerve, vol.7, issue.Suppl 2, pp.803-814, 2012.
DOI : 10.1002/mus.23341

A. J. Wade, Muscle fibre type and aetiology of obesity, The Lancet, vol.335, issue.8693, pp.805-808, 1990.
DOI : 10.1016/0140-6736(90)90933-V

A. D. Kriketos, Muscle fibre type composition in infant and adult populations and relationships with obesity, International Journal of Obesity, vol.21, issue.9, pp.796-801, 1997.
DOI : 10.1038/sj.ijo.0800476

R. Thayer, A decade of aerobic endurance training: histological evidence for fibre type transformation, J Sports Med Phys Fitness, vol.40, pp.284-289, 2000.

L. J. Goodyear and B. B. Kahn, EXERCISE, GLUCOSE TRANSPORT, AND INSULIN SENSITIVITY, Annual Review of Medicine, vol.49, issue.1, pp.235-261, 1998.
DOI : 10.1146/annurev.med.49.1.235

A. Albright, American College of Sports Medicine position stand. Exercise and type 2 diabetes, Med Sci Sports Exerc, vol.32, pp.1345-1360, 2000.

M. Lagouge, Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1??, Cell, vol.127, issue.6, pp.1109-1122, 2006.
DOI : 10.1016/j.cell.2006.11.013

URL : https://hal.archives-ouvertes.fr/hal-00188005

J. H. Um, AMP-Activated Protein Kinase-Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol, Diabetes, vol.59, issue.3, pp.554-563, 2010.
DOI : 10.2337/db09-0482

V. A. Narkar, AMPK and PPAR?? Agonists Are Exercise Mimetics, Cell, vol.134, issue.3, pp.405-415, 2008.
DOI : 10.1016/j.cell.2008.06.051

A. Pokrywka, Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor delta (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), J Physiol Pharmacol, vol.65, pp.469-476, 2014.

S. E. Hardman, The effects of age and muscle contraction on AMPK activity and heterotrimer composition, Experimental Gerontology, vol.55, pp.120-128, 2014.
DOI : 10.1016/j.exger.2014.04.007

A. L. Bujak, Reduced skeletal muscle AMPK and mitochondrial markers do not promote age-induced insulin resistance, Journal of Applied Physiology, vol.117, issue.2, pp.171-179, 1985.
DOI : 10.1152/japplphysiol.01101.2013