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Abstract: 

Purpose:This retrospective study aimed at determining if some features of baseline 

18FDG-PET images, including volume and heterogeneity, reflect clinical, histological 

or immunohistochemical characteristics in stage II and III breast cancer (BC) 

patients. 

Methods: 171 stage II-III BC patients treated consecutively in Saint-Louis hospital 

and prospectively recruited were included in the present retrospective analysis. 

Primary tumor volumes were semi-automatically delineated on pre-treatment 18FDG-

PET images. Extracted parameters included SUVmax, SUVmean, Metabolically Active 

Tumor Volume (MATV), Total Lesion Glycolysis (TLG) and heterogeneity 

quantification using the area under the curve of the cumulative histogram and 

textural features. Association between clinical/histopathological characteristics and 

18FDG-PET features was assessed using one-way analysis of variance. Area Under 

the ROC Curves (AUC) was used to quantify the discriminative power of features 

significantly associated with clinical/histopathological characteristics. 

Results: T3 tumors (>5cm) exhibited higher textural heterogeneity in 18FDG uptake 

than T2 tumors (AUC<0.75), whereas SUVmax or SUVmeanwere not significantly 

different. Invasive ductal carcinoma showed higher SUVmax values than invasive 

lobular carcinoma (p=0.008) but MATV, TLG and textural feature analysis were not 

discriminative. Grade-3 tumors had higher FDG uptake (AUC=0.779 for SUVmax and 

0.694 for TLG), and exhibited slightly higher regional heterogeneity (AUC=0.624). 

Hormone receptor-negative tumors had higher SUV values than Estrogen Receptor 

(ER) and progesterone receptor positive tumors, while heterogeneity patterns 

showed only low-level variation according to hormone receptor expression. HER-2 

status was not associated with any of the image features. Finally, SUVmax, 
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SUVmeanand TLG significantly differed between 3 phenotypic subgroups (HER2-

positive, triple-negative and ER-positive/HER2-negative BCs) but MATV and 

heterogeneity metrics were not discriminative. 

Conclusion: SUV parameters, MATV and textural features present limited 

correlation with clinical and histopathological features. The 3 main BC subgroups 

differ in term of SUVs and TLG but not in terms of MATV and heterogeneity. None of 

the PET-derived metrics offered high discriminative power. 

 

Keywords: 18FDG-PET/CT, heterogeneity, textural features, breast cancer. 
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Introduction 

18F-FluoroDeoxyGlucose(18FDG) Positron Emission Tomography/ Computed 

Tomography (PET/CT) becomes increasingly important for staging Breast Cancer 

(BC) patients with large or locally-advanced disease [1,2]. These patients usually 

receive neoadjuvant treatment (chemotherapy ± targeted therapy or endocrine-

therapy), surgery, radiation therapy and sometimes adjuvant systemic treatment. 

However, BC comprises different phenotypes with different response rates to 

chemotherapy, different treatment options, and different prognoses [3]. In clinical 

practice, 3 main entities based on immunohistochemical analysis of the primary 

tumor biopsy are currently considered: the Estrogen Receptor (ER)-positive/HER2-

negative, the HER2-positive and the Triple-Negative BC (TNBC) subgroups[4]. 

Specific systemic treatments are used in each subgroup. For example, large or 

locally-advanced HER2-positive BC are treated with neoadjuvant chemotherapy plus 

trastuzumab. Recent works have shown that dual inhibition of HER2 

(trastuzumab+lapatinib or trastuzumab+pertuzumab) improves the pathological 

complete response rate in this subtype of BC[5]. However, it also involvesstronger 

side-effects, hence the importance of patient selection to reserve these novel 

treatments for patients with poor prognosis. 

Clinical and pathological BC characteristics are currently used to guide treatment. 

For examples, patients with lymph nodes involvement have poorer prognosis than 

patients with no lymph node involvement(N0) and higher grade tumors are more 

aggressive than lower grade tumors. More recently genetic prognostic tests (e.g. 

oncotype DX in ER-positive tumors) emerged as promising tools to individualize 

treatment. However there is still room for other prognostic factors and 18FDG-

imaging could provide some. It has been shown that high baseline 18FDG uptake 



 5 

(SUVmax) is associated with poor prognostic factors such as the high SBR-grade[6,7] 

and worse survival [8]. 

Recently heterogeneity PET derived quantitative measurements emerged also as 

potential prognostic factors in several cancer types. In BC, results from one recent 

study suggested that texture analysis might be used, in addition to SUVmax, as a new 

tool to assess invasive BC aggressiveness [9]. Another team reported that 

heterogeneity was associated with survival in BC patients with Invasive Ductal 

Carcinoma (IDC)[10]. 

Our present study included a larger number (171) of consecutive patients with stage 

II and III BC.It was designed to investigate in detail the relationship between some 

clinical, histological and immunohistochemical BC prognostics factors and volumetric 

and heterogeneity PET measurements. 

 

MATERIALS AND METHODS 

Study Design 

We performed a retrospective analysis of data acquired prospectively in the ASAINT 

study, which examines the role of 18FDG-PET/CT in patients with stage II-III BC 

undergoing neoadjuvant chemotherapy in Saint-Louis hospital[1]. The present 

analysis included 171 consecutive stage II-III BC patients. The first and last included 

patient underwent imaging on 07/2007 and 04/2013respectively. Patients with distant 

metastases were not included. Stage I patients received primary surgery with 

sentinel lymph node biopsy and PET/CT was not performed for these patients. The 

primary aim was to evaluate the correlations between a large panel of baseline 

18FDG-PET imaging-derived features (encompassing volumetric and heterogeneity 

metrics) and clinical data (e.g., patient age, cTNM classification), histological and 
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immunohistochemical parameters (e.g., tumor grade, hormone receptor expression) 

and BC subgroups phenotype (ER-positive/HER2-negative BC, HER2-positive BC 

and TNBC). A secondary aim was to quantify the discriminative power of features 

found to be significant. 

 

Tumor Histology and Immunohistochemistry 

Core-needle biopsy performed before treatment was used for diagnosis. Tumors 

were graded using the modified Scarff-Bloom-Richardson system. Tumors were 

determined to be ER-positive in the presence of moderate or high positivity (2 or 3+) 

of at least 10% of cells. Progesterone receptor (PR)-positive status was determined 

according to the same criteria.  

Tumors were considered to overexpress c-erbB-2 oncoprotein (HER2-positive) if 

more than 30% of invasive tumor cells showed definite membrane staining resulting 

in a so-called fishnet appearance[11]. Control by fluorescence in situ hybridization or 

silver in situ hybridization was done for ambiguous cases. 

TNBC was defined as ER-negative, PR-negative and HER2-negative. Tumors were 

subsequently classified into three phenotypes: TNBC, HER2-positive BC and ER-

positive/HER2-negative BC. 

 

18FDG-PET/CT Imaging 

Blood glucose level had to be <7mmol/L and patients fasted for 6 hours before 

intravenous injection of 5MBq/Kg of 18FDG, administered in the arm opposite to the 

breast tumor. Imaging on a Gemini XL PET/CT scanner (germanium 

oxyorthosilicate-based PET, 16 slice Brilliance CT, Philips Medical systems) started 

60min after injection. It was carried out from mid-thigh level to the base of the skull, 
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with the arms raised. CT data were acquired first (120kV; 100mAs; no contrast-

enhancement). PET emission data were acquired in a 3-dimensional mode (2 

min/bed position). PET images were reconstructed with the default manufacturer-

provided method: 3D row-action maximum likelihood algorithm (4×4×4mm3 voxels) 

and CT based attenuation correction, normalized for injected activity and body 

weight, and subsequently converted into Standardized Uptake Values (SUV), using: 

[tracer concentration (kBq/mL)] / [injected activity (kBq)/patient body weight (g)]. 

 

PET-derived features  

For each patient, the primary tumor was identified by a nuclear medicine specialist.  

Metabolically Active Tumor Volumes (MATVs) of the primary tumors (not the 

involved lymph nodes) were automatically segmented using the Fuzzy Locally 

Adaptive Bayesian (FLAB) algorithm previously validated for both homogeneous and 

heterogeneous uptakes [12,13]including in BC [14]. Total Lesion Glycolysis (TLG) 

was defined as the product of MATV and SUVmeanboth obtained through the FLAB 

delineation. Heterogeneity of the PET uptake within the delineated MATV was 

quantified through two different methods. Firstly, the Area Under the Curve of the 

Cumulative Histogram (CHAUC), a method quantifying global tumor heterogeneity 

[15]. Secondly, five Textural Features (TF) chosen based on previous investigations 

[16–19], corresponding to the most robust with respect to partial volume effects, 

segmentation [18], reconstruction settings [20], as well as test-retest physiological 

reproducibility [17]. All TFs were calculated with a quantization in 64 grey-levels [17–

19]. These using a co-occurrence matrix taking into account all 13 directions 

simultaneously without an averaging step [19] were Entropy (E), Dissimilarity (D),as 

well asHomogeneity (H) that was included for comparison with a recent study [9]. 



 8 

They quantify local heterogeneity at the scale of a voxel and its neighborhood. TFs 

calculated using size-zone matrices included High Intensity Large Area Emphasis 

(HILAE) and Zone Percentage (ZP). They quantify regional heterogeneity based on 

the respective sizes and intensities of groups of voxels. Figure 1 provides an 

example of two tumors with different levels of heterogeneity. 

Because heterogeneity quantification in PET images using TFs can be confounded 

by tumor volume effects for small tumor volumes, especially <10cm3[19,21], we also 

performed a sub-analysis for MATVs>10cm3.  

 

Statistical analysis 

Statistical analyses were performed using MedcalcTM (MedCalc Software, Belgium).  

The feature values were expressed with median ± Standard Deviation (SD) and 

range (min-max). Correlations between PET features were assessed using 

Spearman rank coefficients (rho). 

The association with each PET feature of clinical, histopathological factors 

andsubgroups (TNBC, HER2-positive, ER-positive/HER2-negative) was assessed 

using one-way analysis of variance. For distributions not normally distributed, a log 

transformation was first applied. For ER, PR and HER2 status, positive cases were 

compared to negative cases. Tumors of low and intermediate grade (1-2) were 

compared to high-grade tumors (grade-3). T1 and T2 tumors (clinically estimated at 

≤5cm diameter) were compared to T3 tumors (>5cm), excluding T4 from the analysis 

because of the specificity of T4 staging not based on tumor size. N0 cases were 

compared to cases with clinical lymph node involvement (N1, N2 or N3). The three 

main histology types of this series (invasive ductal, lobular, and metaplastic 

carcinoma) were compared. For each PET feature significantly associated with a 
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clinical or a histopathological factor or a BC subgroup, its discriminative power was 

quantified by reporting Areas Under theReceiver Operating Characteristic 

(ROC)Curve (AUC).  

All tests were two-sided and p-values <0.05 were considered statistically significant, 

with correction for multiple testing being performed using the false discovery rate 

Benjamini-Hochberg step-up procedure. It consists in declaring positive discoveries 

at level α (here α=0.05), among the k=1…K tested variables (here K=10) ordered 

(increasing order) according to their p-values, those ranked above the one satisfying 

the condition p(k)≤ k/K × α [22]. 

 

RESULTS 

Patients’ characteristics 

Eighty-six patients had stage II and 85 stage III BC. Most patients had IDC 

(156/171).There were 54 TNBC, 33 HER2-positive and 84 ER-positive/HER2-

negative tumors. Other clinical and histopathological factors are provided in table 1. 

Three patients had a tumor size ≤2cm (T1 tumor), in which 18FDG uptake could be 

identified with SUVmax>2.5. Among the 89 tumors with MATV>10cm3, there were 33 

TNBC, 19 HER2-positive, and 37 ER-positive/HER2-negative tumors. 

 

Correlation between features 

Correlation with MATV ranged from |rho|<0.2 for SUVmax, SUVmean and CHAUC, to 

|rho|>0.67 for TFs (except HILAE with rho=0.06): -0.88 for D, 0.79 for E, 0.85 for H 

and -0.68 for ZP. H was found to be highly correlated with D (rho=0.97) and ZP 

(rho=0.80). HILAE and CHAUC were also highly correlated (rho=0.93) (supplemental 

table 1). 
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Association between clinical factors and PET features 

Patient age was not found to be associated with any PET feature (table 2). The 

median SUVmax was 7.6 in women ≤50 y vs. 6.9 in women >50 y (p=0.09). T3 tumors 

exhibited similar levels of 18FDG uptake (SUVmax and SUVmean) as T2 tumors. They 

were nevertheless associated with significantly larger MATV (12.1±15.9 vs. 6.5±7.2 

cm3; p<0.001) and TLG (42.7±92.3 vs. 22.8±60; p<0.001). They also exhibited 

higher global heterogeneity (CHAUC, 0.32±0.06vs. 0.34±0.05; p=0.018) and higher 

local and regional heterogeneity (e.g. entropy of 7.1±0.35 vs. 6.8±0.6; p<0.001). 

However, the associated AUCs were modest:<0.7 except D and H with 0.733 and 

0.730 respectively. 

None of the PET-image derived features of the primary breast tumor was associated 

with absence (N0) or presence (N1-3) of involved lymph nodes. 

 

Association between histological, immunohistochemical factors and PET 

features 

Invasive Lobular Carcinoma (ILC) had significantly lower uptake than IDC (SUVmax 

3.7±1.2 vs. 7.4±5.2; p=0.008) (table 2). SUVs were not significantly different between 

IDC and metaplastic carcinoma (SUVmax 7.4±5.2 vs. 6.6±5.3; p=0.75). None of the 

heterogeneity metrics were significantly associated with histology. 

Grade-3 tumors exhibited significantly higher uptake compared to grade-1 and 

grade-2 tumors (SUVmax 9.2±5.4 vs. 5.3±3.6; SUVmean 5.1±3.2 vs. 3.1±2.0; and TLG 

64.8±516.8 vs. 25.1±54.7; p<0.001 for each) (figure 2). Grade-3 tumors also 

exhibited slightly higher regional heterogeneity (HILAE of 927±307 for grade-3 vs. 

792±233 for grade-1 and grade-2; p=0.012), whereas differences in terms of volume 

(p=0.034) and local heterogeneity (E, p=0.04) did not reach statistical significance 
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after correction for multiple testing. In fine, the AUCs of associations with grade-3 

tumors were 0.779 for SUVmax and 0.769 for SUVmean, and <0.7 for TLG and HILAE. 

ER-positive and PR-positive tumors were both associated with significantly (p≤0.001) 

lower SUVs (SUVmax 6.4±3.8 for ER-positive vs. 9.0±5.9 for ER-negative and 5.8±3.9 

for PR-positive vs. 7.7±5.4 for PR-negative). MATVs were significantly smaller 

(p<0.03) in ER-positive (9.2±39.9cm3vs. 12.4±54.8cm3 for ER-negative) and in PR-

positive tumors (8.2±14.2cm3vs. 11.9±57.2cm3 for PR-negative). Lower local 

heterogeneity (D and H) was seen in the case of hormone-positive BC (table 2). PR-

positive tumors also exhibited lower E (6.9±0.6 vs. 7.1±0.5, p=0.025). Overlaps 

between ER/PR-positive and negative tumors were very important, with AUCs ≤0.67 

(obtained with SUVmax). 

Only SUVmax, SUVmean and TLG were found to be significantly associated (p≤0.001) 

with the three BC subgroups: ER-positive/HER2-negative BC, HER2-positive BC and 

TNBC (figure 3A). TNBC exhibited the highest SUVmax (9.8±6.2) compared to HER2-

positive (7.0±4.5) and ER-positive/HER2-negative BCs (6.2±3.6). Neither MATV 

(figure 3B) nor any of the derived heterogeneity quantification metrics (global, 

regional or local scales) were found to be significantly different among the three BC 

subgroups, after correction for multiple testing (table 2). Results were similar when 

restricting the analysis to the 89 patients with MATV>10cm3, although the statistical 

significance of SUVmax (p=0.045) and SUVmean (p=0.033) was lost after correction for 

multiple testing. 

Among the three PET features (SUVmax, SUVmean and TLG) found to be significantly 

associated with the 3 BC subgroups, SUVmax offered the highest (yet still limited) 

discriminative power to identify patients with TNBC (0.713) and ER-positive/HER2-

negative BC (0.675) (figure 4B, 4C). SUVmean had slightly lower discriminative power, 



 12 

whereas TLG was least discriminative. Regarding the identification of HER2-positive 

tumors, none of the PET features had discriminative power (all AUCs ≤0.547) (figure 

4A).  

 

DISCUSSION 

Recently a growing interest in PET image derived features beyond the usual SUV 

measurements has emerged in oncology, including volumetric, shape and 

heterogeneity metrics [16,23], with special reference to the comprehensive 

quantification of tumor phenotypes or popularly denoted “radiomics” [24,25]. It has 

been recently shown that cancer subgroups could be non-invasively identified using 

image-based radiomics features extracted from dosimetry planning CT images in 

large cohorts of patients with non-small cell lung cancer and head and neck cancer 

[24]. Some of these new heterogeneity and shape metrics in18FDG-PETimages have 

shown some value in predicting response to therapy or as prognostic factors in 

several solid tumors such as head and neck [26], esophageal [16] and lung cancer 

[27,28].  

BC is a heterogeneous class of tumors. The various BC subgroups differ in biology 

profiles, treatment possibilities, and outcomes. We have previously reported that 

high 18FDG uptake is correlated to histological and biological poor prognostic factors 

in BC. Notably we found that18FDG uptake was higher in the case of TNBC than in 

ER-positive tumors [6] and TNBC have poorer prognosis[29]. 

FDG uptake distribution has been associated with underlying physiopathological 

characteristics such as vascularization, perfusion, tumor aggressiveness, necrosis, 

hypoxia and gene expression[30–34]. We therefore hypothesized that significantly 

different values of PET image derived heterogeneity quantification featuresmay be 
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observed between the different BC molecular subgroups, assuming these subgroups 

have different underlying physiopathological properties. 

Only few studies investigated 18FDG-PET imaging heterogeneity features in BC 

[9,10]. A recent study investigated the relationship between 18FDG heterogeneity 

quantification with TFs and histopathological factors, suggesting thatthe tumor 

heterogeneity measured on 18FDG-PET/CT was higher in invasive BC with poor 

prognosis pathological factors, and that texture analysis might be used, in addition to 

SUVmax, as a new tool to assess invasive BC aggressiveness[9]. The combination of 

SUVmax with heterogeneity TFs indeed allowed the identification of the 13 TNBC 

cases among the 54 BC patients with an AUC of 0.83 instead of 0.77 when using 

SUVmax only, although this improvement was not significant[9]. The patient 

population was somewhat different from our study since it included 14 patients (26%) 

with distant metastases whilst we did not include patients with distant metastasis. 

Nonetheless, our results regarding SUVmax are congruent with data from this study 

and others [6,9]. On the other hand, our data suggest that none of the heterogeneity 

quantification metrics provided any added discriminative power in comparison with 

SUVmax regarding the differentiation of BC subgroups. We used the same 64 grey-

level quantization and the same or similar TFs. 

Another recent study investigated the heterogeneity of 18FDG uptake in 123 BC 

patients, reporting on the prognostic value of MATV and heterogeneity, and found 

these two PET features to be associated with clinical outcome [10]. However in that 

study the “heterogeneity factor” (HF) used was defined as “a derivative of a volume 

threshold function from 40% to 80% of the SUVmax” and was reported to be highly 

correlated with MATV (r=0.96)[10]. On the one hand, HF was only a surrogate 

measurement of volume which led to the exact same survival curves. It cannot be 
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considered as a measurement of intra-tumor heterogeneity. On the other hand, we 

also included an alternative heterogeneity quantification metric (CHAUC) [15], which 

similarly failed to exhibit any correlation with BC subgroups. The fact that textural 

analysis and the alternative CHAUC both failed to capture any correlation 

strengthens our overall conclusions. 

In the present study, the correlation between MATV and its derived heterogeneity 

quantification ranged from 0.06 (for HILAE) to 0.88 (for D) depending on the metric, 

as previously shown [18,19]. Heterogeneity quantification may be more relevant and 

less correlated with the volume when it is calculated for large tumor volumes [19,21].  

This is why we also performed a separate analysis on the 89 patients with volumes 

>10cm3, a threshold value we have previously identified with respect to the 

correlation of MATV and TFs [19]. However, the results of this separate analysis 

were not different. 

We evaluated the relationship betweenseveralPET-derived parameters and BC 

cancer subgroups based on immunohistochemical tests. The phenotype distribution 

in our series of 171 stage II-III BC patients (TNBC: 32%; HER2-positive: 19%; ER-

positive/HER2-negative: 49%) was similar to other reports[35,36]. Our 

resultssuggest that the heterogeneity and variability, in terms of BC phenotype 

subgroups determined by immunohistochemistry, do not necessarily translate into 

measurable and significant differences in terms of heterogeneity features on 18FDG-

PET images. Conversely usual SUV metrics exhibit significant differences, with 

higher SUVmax uptake in TNBC than in ER-positive/HER2-negative and HER2-

positive BC. However their discriminative power was limited, with substantial 

overlaps between the three subgroups (figure 3).Our results show that 18FDG-
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PET/CT does not provide quantitative measurements with enough discriminative 

power to replace biopsies and molecular analyses for BC subgroups classification. 

The present results corroborate our previous findings that biological factors of poor 

prognosis such as hormone receptor negativity, TNBC, and high grade tumors have 

higher levels of 18FDG uptake (SUV values) [6]. The relationship of these prognostic 

factors with image heterogeneity features is less clear-cut, although some correlation 

was observed, especially with hormone receptor expression (table 2).  

Our study has some limitations. It is a retrospective analysis of prospectively 

collected patient data from a single institution.The involved lymph nodes were not 

included in the analysis, as only primary tumors were quantified, although the 

correlation between the various metrics quantifying heterogeneity in the primary 

tumors and the lymph node involvement was assessed. We used the FLAB 

algorithm to determine primary tumors’ MATVs automatically. This algorithm 

optimized for PET imaging has demonstrated high accuracy, robustness and 

reproducibility in clinical practice. Although FLAB was used here as to include the 

entire heterogeneous uptake of the primary tumor, voxels with low SUV similar to the 

background level of uptake (such as necrosis areas) can be excluded from the 

volume of analysis used for heterogeneity quantification if this necrotic area is not in 

the center of the tumor volume, which is rare. 

It should be emphasized that breast tumors could be affected by respiratory motion.  

TFs blurred out by respiratory motion in the reconstructed 3D static image, can be 

better resolved by 4D-PET imaging [37]. Combined with the limited spatial resolution 

of PET, this is a major limitation on the level of heterogeneity details that can be 

captured by any image analysis method. Although Time-Of-Flight (TOF) imaging 

may not significantly enhance the heterogeneity details in PET images since it 
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mostly enhances signal-to-noise ratio, not spatial resolution using a dedicated breast 

PET (Positron Emission Mammography) scanner could improve the evaluation of 

heterogeneity compared to standard PET/CT [38,39]. 

We chose to categorize patients into 3 subgroups (TNBC, HER2-positive and ER-

positive/HER2-negative), which are based on immunohistochemistry tests and allow 

to define groups of patients with homogeneous treatments. Others categorizations 

could be considered: hormone positive breast tumors can be dichotomized into 

luminal A (ER-positive/HER2-negative, with low grade and low proliferation) and 

luminal B (which regroups high proliferative ER-positive/HER2-negative breast 

carcinoma and some ER-positive/HER2-positive tumors). This further 

dichotomization may alter our results, as recent studies suggested that luminal A 

tumorsare less 18FDG-avid than luminal B [40]. Similarly to the extended analysis of 

lymph nodes heterogeneity quantification, this could be the subject of future 

investigations, although it is unlikely that the addition of another BC subgroup would 

allow to improve the PET features discriminative power. 

Finally, the impact of heterogeneity metrics in other PET tracers might be of interest 

in BC [41] and should be further evaluated. 

 

Conclusion 

This study confirms the association between high values of SUVmax in BC primary 

tumor and some biological and immunohistochemical poor prognostic factors. In 

particular high-grade tumor exhibited higher 18FDG uptake than low and intermediate 

grade. SUVmax was higher in the case of triple negative tumor than in the case of 

hormonal positive BC. In this series of stage II-IIIBC, tumor size had no significant 
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impact on 18FDG uptake with similar SUVmax values in T3 tumors (>5cm) as in T2 

tumors. 

T3 tumors exhibited more heterogeneous 18FDG uptake than T2 tumors, although 

overlaps were substantial (AUCs<0.75). Tumor grade was not found to be 

associated with volumetric metrics and limitedassociation was seen with regional 

heterogeneity. Estrogen and progesterone receptor expression were associated with 

several heterogeneity patterns, but the discriminative power was limited. Finally, the 

three different BC subgroups (ER-positive/HER2-negative, HER2-positive and 

TNBC) did not translate into any significant and measurable differences in the levels 

of heterogeneity. 
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Number of 
patients 
(%) 
N=171 

Tumor classification†  

T1 3(2) 

T2 72(42) 

T3 61(36) 

T4 35(20) 

Lymph node classification†  

N0 63(27) 

N1 76(44) 

N2 26(15) 

N3 6(4) 

Grade  

Grade-1 5(3) 

Grade-2 75(44) 

Grade-3 90(53) 

Unspecified 1(<1) 

Histological Type  

Invasive ductal, no special type 156(91) 

Lobular  7(4) 

Metaplastic 6(4) 

Other 2(1) 

ER  

Positive 95(56) 

Negative 76(44) 

PR  

Positive 57(33) 

Negative 112(66) 

Unspecified 2(1) 

HER2  

Positive 33(19) 

Negative 138(81) 

BC Subgroup  

ER+/HER2- 84(49) 

HER2+ 33(19) 

Triple Negative 54(32) 

 
Table1.Patients and tumors characteristics 

† Clinical classification before 18FDG-PET/CT according to the 7th edition of the 
AJCC Staging Manual. 
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PET feature 

ANOVA p-value [AUC of ROC curve] 

Age Age T-score N-score 

Histology 

Tumor 
grade 

>40 y vs. 
≤40 y 

>50 y vs. 
≤50 y 

1+2 vs. 3 N0 vs. N1-3 1+2 vs. 3 

N=171 N=171 N=136 N=171 N=166 N=170 

SUVmax 0.588 0.096 0.809 0.411 0.034* 
<0.001 
[0.779] 

SUVmean 0.444 0.090 0.740 0.440 0.047* 
<0.001 
[0.769] 

MATV 0.252 0.567 
<0.001 
[0.740] 

0.137 0.531 0.034* 

TLG 0.306 0.786 
<0.001 
[0.670] 

0.405 0.406 
<0.001 
[0.694] 

CHAUC 0.480 0.673 
0.018 

[0.617] 
0.162 0.943 0.052 

D 0.746 0.707 
<0.001 
[0.736] 

0.119 0.876 0.199 

E 0.782 0.639 
<0.001 
[0.652] 

0.851 0.989 0.040* 

H 0.737 0.732 
<0.001 
[0.730] 

0.052 0.691 0.227 

HILAE 0.516 0.917 0.050* 0.365 0.686 
0.012 

[0.624] 

ZP 0.964 0.482 
<0.001 
[0.685] 

0.189 0.495 0.064 

 

PET feature 

ANOVA p-value [AUC of ROC curve] 

ER PR HER2 
BC subgroups  

All patients 

MATV>10cm3 
(N=89) N=171 N=169 N=171 

(N=171) 

TNBC 
N=54 

ER+/HER2- 
N=84 

HER2+ 
N=33 

SUVmax 
<0.001 
[0.672] 

<0.001 
[0.670] 

0.633 
<0.001 

0.045* 
[0.713] [0.675] [0.514] 

SUVmean 
<0.001 
[0.658] 

0.001 
[0.653] 

0.422 
<0.001 

0.033* 
[0.709] [0.651] [0.547] 

MATV 
0.015 

[0.600] 
0.024 

[0.599] 
0.598 0.089 0.475 

TLG 
<0.001 
[0.658] 

0.001 
[0.650] 

0.489 
0.001 

0.339 
[0.669] [0.637] [0.516] 

CHAUC 0.934 0.699 0.133 0.143 0.206 

D 
0.009 

[0.615] 
0.019 

[0.604] 
0.679 0.045* 0.475 

E 0.099 
0.025 

[0.600] 
0.403 0.070 0.063 
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H 
0.014 

[0.607] 
0.033 

[0.599] 
0.286 0.090 0.478 

HILAE 0.700 0.384 0.298 0.194 0.176 

ZP 0.086 0.049 0.181 0.177 0.403 

 
Table 2. Association between PET features and clinical, histological and 
immunohistochemical factors, with associated discriminative power [AUC of 
ROC curves] when significant 
 
Significant results in bold. 
* not significant after correction for multiple testing. 
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FIGURES 

Fig. 1. FLAB delineation (green) in two tumors. Entropy values are expressed 

between 0 and 1. (Left) MATV = 25.5 cm3, SUVmax = 10.4, Entropy = 0.89 (Right) 

MATV = 23.9 cm3, SUVmax = 3.9, Entropy= 0.54. 
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Fig.2. Distributions of SUVmax in grade 1-2 vs. grade 3 tumors. 
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Fig.3. Distributions of (A) SUVmax, (B) MATV in the three subgroups. 
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Fig.4. ROC curves for the differentiation of each subgroup using SUVmax: (A) HER2-

positive, (B) ER-positive/HER2-negative and (C) TNBC. 

 

 

 


