C. Cheong, I. Matos, J. Choi, D. Dandamudi, E. Shrestha et al., Microbial Stimulation Fully Differentiates Monocytes to DC-SIGN/CD209+ Dendritic Cells for Immune T Cell Areas, Cell, vol.143, issue.3, pp.416-445, 2010.
DOI : 10.1016/j.cell.2010.09.039

M. Plantinga, M. Guilliams, M. Vanheerswynghels, K. Deswarte, F. Branco-madeira et al., Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen, Immunity, vol.38, issue.2, pp.322-357, 2013.
DOI : 10.1016/j.immuni.2012.10.016

C. Langlet, S. Tamoutounour, S. Henri, H. Luche, L. Ardouin et al., CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization, The Journal of Immunology, vol.188, issue.4, pp.1751-60, 2012.
DOI : 10.4049/jimmunol.1102744

URL : https://hal.archives-ouvertes.fr/hal-00685822

E. Klechevsky, R. Morita, M. Liu, Y. Cao, S. Coquery et al., Functional Specializations of Human Epidermal Langerhans Cells and CD14+ Dermal Dendritic Cells, Immunity, vol.29, issue.3, pp.497-510, 2008.
DOI : 10.1016/j.immuni.2008.07.013

N. Mcgovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin et al., Human Dermal CD14+ Cells Are a Transient Population of Monocyte-Derived Macrophages, Immunity, vol.41, issue.3, pp.465-77, 2014.
DOI : 10.1016/j.immuni.2014.08.006

S. Tamoutounour, M. Guilliams, M. Sanchis, F. Liu, H. Terhorst et al., Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin, Immunity, vol.39, issue.5, pp.925-963, 2013.
DOI : 10.1016/j.immuni.2013.10.004

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac???derived macrophages, The Journal of Experimental Medicine, vol.104, issue.6, pp.1167-81, 2012.
DOI : 10.1038/345442a0

E. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nature Immunology, vol.18, issue.11, pp.1118-1146, 2012.
DOI : 10.1103/PhysRevLett.76.3251

J. Miller, B. Brown, T. Shay, E. Gautier, V. Jojic et al., Deciphering the transcriptional network of the dendritic cell lineage, Nature Immunology, vol.167, issue.9, pp.888-99, 2012.
DOI : 10.1103/PhysRevLett.76.3251

M. Greter, I. Lelios, P. Pelczar, G. Hoeffel, J. Price et al., Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia, Immunity, vol.37, issue.6, pp.1050-60, 2012.
DOI : 10.1016/j.immuni.2012.11.001

E. Perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni et al., Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors, Experimental Hematology, vol.43, issue.9, pp.547-5110, 1038.
DOI : 10.1016/j.exphem.2015.06.130

C. Schulz, G. Perdiguero, E. Chorro, L. Szabo-rogers, H. Cagnard et al., A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells, Science, vol.336, issue.6077, pp.86-90, 2012.
DOI : 10.1126/science.1219179

Y. Wang, K. Szretter, W. Vermi, S. Gilfillan, C. Rossini et al., IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia, Nature Immunology, vol.165, issue.8, pp.753-60, 2012.
DOI : 10.1016/j.immuni.2011.06.005

G. Dadaglio, C. Fayolle, X. Zhang, B. Ryffel, M. Oberkampf et al., T Cell Responses, The Journal of Immunology, vol.193, issue.4, pp.1787-98, 2014.
DOI : 10.4049/jimmunol.1302974

URL : https://hal.archives-ouvertes.fr/pasteur-00327333

A. Desch, S. Gibbings, E. Clambey, W. Janssen, J. Slansky et al., Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction, Nature Communications, vol.595, 2014.
DOI : 10.1038/ni1008-1091

J. Mouries, G. Moron, G. Schlecht, N. Escriou, G. Dadaglio et al., Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation, Blood, vol.112, issue.9, pp.3713-3735, 2008.
DOI : 10.1182/blood-2008-03-146290

A. Ballesteros-tato, L. B. Lund, F. Randall, and T. , Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza, Nature Immunology, vol.175, issue.3, pp.216-240, 2010.
DOI : 10.1002/eji.200636544

K. Crozat, R. Guiton, V. Contreras, V. Feuillet, C. Dutertre et al., dendritic cells, The Journal of Experimental Medicine, vol.80, issue.6, pp.1283-92, 2010.
DOI : 10.1093/intimm/dxm119

URL : https://hal.archives-ouvertes.fr/hal-01438136

E. Segura, M. Durand, and S. Amigorena, Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ???resident dendritic cells, The Journal of Experimental Medicine, vol.151, issue.5, pp.1035-1082, 2013.
DOI : 10.1182/blood-2010-02-258558

G. Hoeffel, A. Ripoche, D. Matheoud, M. Nascimbeni, N. Escriou et al., Antigen Crosspresentation by Human Plasmacytoid Dendritic Cells, Immunity, vol.27, issue.3, pp.481-92, 2007.
DOI : 10.1016/j.immuni.2007.07.021

URL : https://hal.archives-ouvertes.fr/pasteur-00360697

L. Cohn, B. Chatterjee, F. Esselborn, A. Smed-sorensen, N. Nakamura et al., dendritic cells at cross presentation, The Journal of Experimental Medicine, vol.262, issue.5, pp.1049-63, 2013.
DOI : 10.1002/eji.201242477

D. Mittag, A. Proietto, T. Loudovaris, S. Mannering, D. Vremec et al., Human Dendritic Cell Subsets from Spleen and Blood Are Similar in Phenotype and Function but Modified by Donor Health Status, The Journal of Immunology, vol.186, issue.11, pp.6207-6224, 2011.
DOI : 10.4049/jimmunol.1002632

E. Hartung, M. Becker, A. Bachem, N. Reeg, A. Jakel et al., Induction of Potent CD8 T Cell Cytotoxicity by Specific Targeting of Antigen to Cross-Presenting Dendritic Cells In Vivo via Murine or Human XCR1, The Journal of Immunology, vol.194, issue.3, pp.1069-79, 2015.
DOI : 10.4049/jimmunol.1401903

E. Fossum, G. Grodeland, D. Terhorst, A. Tveita, E. Vikse et al., T-cell responses against influenza virus, European Journal of Immunology, vol.145, issue.2, pp.624-659, 2015.
DOI : 10.1002/eji.201445080

I. Caminschi, A. Proietto, F. Ahmet, S. Kitsoulis, S. Teh et al., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement, Blood, vol.112, issue.8, pp.3264-73, 2008.
DOI : 10.1182/blood-2008-05-155176

I. Caminschi, D. Vremec, F. Ahmet, M. Lahoud, J. Villadangos et al., Antibody responses initiated by Clec9A-bearing dendritic cells in normal and Batf3???/??? mice, Molecular Immunology, vol.50, issue.1-2, pp.9-17, 2012.
DOI : 10.1016/j.molimm.2011.11.008

J. Idoyaga, A. Lubkin, C. Fiorese, M. Lahoud, I. Caminschi et al., Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A, Proceedings of the National Academy of Sciences, vol.108, issue.6, pp.2384-2393, 2011.
DOI : 10.1073/pnas.1019547108

M. Lahoud, F. Ahmet, S. Kitsoulis, S. Wan, D. Vremec et al., Targeting Antigen to Mouse Dendritic Cells via Clec9A Induces Potent CD4 T Cell Responses Biased toward a Follicular Helper Phenotype, The Journal of Immunology, vol.187, issue.2, pp.842-50, 2011.
DOI : 10.4049/jimmunol.1101176

J. Li, A. F. Sullivan, L. Brooks, A. Kent, S. et al., Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates, European Journal of Immunology, vol.164, issue.3, pp.854-64, 2014.
DOI : 10.1002/eji.201445127

H. Park, A. Light, M. Lahoud, I. Caminschi, D. Tarlinton et al., Evolution of B Cell Responses to Clec9A-Targeted Antigen, The Journal of Immunology, vol.191, issue.10, pp.4919-4944, 2013.
DOI : 10.4049/jimmunol.1301947

O. Joffre, D. Sancho, S. Zelenay, A. Keller, R. Sousa et al., Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A, European Journal of Immunology, vol.9, issue.5, pp.1255-65, 2010.
DOI : 10.1002/eji.201040419

D. Sancho, D. Mourao-sa, O. Joffre, O. Schulz, N. Rogers et al., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin, Journal of Clinical Investigation, vol.118, issue.6, pp.2098-11010, 1172.
DOI : 10.1172/JCI34584DS1

L. Bonifaz, D. Bonnyay, A. Charalambous, D. Darguste, S. Fujii et al., In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination, The Journal of Experimental Medicine, vol.100, issue.6, pp.815-839, 2004.
DOI : 10.1084/jem.20021215

G. Nchinda, J. Kuroiwa, M. Oks, C. Trumpfheller, C. Park et al., The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells, Journal of Clinical Investigation, vol.118, issue.4, pp.1427-3610, 1172.
DOI : 10.1172/JCI34224

Y. Do, A. Didierlaurent, S. Ryu, H. Koh, C. Park et al., Induction of pulmonary mucosal immune responses with a protein vaccine targeted to the DEC-205/CD205 receptor, Vaccine, vol.30, issue.45, pp.6359-67, 2012.
DOI : 10.1016/j.vaccine.2012.08.051

B. Dorner, M. Dorner, X. Zhou, C. Opitz, A. Mora et al., Selective Expression of the Chemokine Receptor XCR1 on Cross-presenting Dendritic Cells Determines Cooperation with CD8+ T Cells, Immunity, vol.31, issue.5, pp.823-856, 2009.
DOI : 10.1016/j.immuni.2009.08.027

A. Bachem, S. Guttler, E. Hartung, F. Ebstein, M. Schaefer et al., dendritic cells, The Journal of Experimental Medicine, vol.72, issue.6, pp.1273-81, 2010.
DOI : 10.1016/j.it.2006.12.008

S. Gurka, E. Hartung, M. Becker, and R. Kroczek, Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRP?, Front Immunol, 2015.
DOI : 10.1101/012567

S. Robbins, T. Walzer, D. Dembele, C. Thibault, A. Defays et al., Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling, Genome Biology, vol.9, issue.1, 2008.
DOI : 10.1186/gb-2008-9-1-r17

URL : https://hal.archives-ouvertes.fr/hal-00282558

K. Crozat, S. Tamoutounour, V. Manh, T. Fossum, E. Luche et al., Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8??+ Type, The Journal of Immunology, vol.187, issue.9, pp.4411-4416, 2011.
DOI : 10.4049/jimmunol.1101717

URL : https://hal.archives-ouvertes.fr/hal-00672203

S. Balan, V. Ollion, N. Colletti, R. Chelbi, F. Montanana-sanchis et al., Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells, The Journal of Immunology, vol.193, issue.4, pp.1622-1657, 2014.
DOI : 10.4049/jimmunol.1401243

C. Yamazaki, R. Miyamoto, K. Hoshino, Y. Fukuda, I. Sasaki et al., Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice, Biochemical and Biophysical Research Communications, vol.397, issue.4, pp.756-61, 2010.
DOI : 10.1016/j.bbrc.2010.06.029

A. Dzionek, Y. Sohma, J. Nagafune, M. Cella, M. Colonna et al., BDCA-2, a Novel Plasmacytoid Dendritic Cell???specific Type II C-type Lectin, Mediates Antigen Capture and Is a Potent Inhibitor of Interferon ??/?? Induction, The Journal of Experimental Medicine, vol.147, issue.12, pp.1823-1857, 2001.
DOI : 10.1016/S0167-5699(00)01745-X

M. Rissoan, T. Duhen, J. Bridon, N. Bendriss-vermare, C. Peronne et al., Subtractive hybridization reveals the expression of immunoglobulinlike transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells, Blood, vol.100, issue.9, pp.3295-303, 2002.
DOI : 10.1182/blood-2002-02-0638

W. Cao, D. Rosen, T. Ito, L. Bover, M. Bao et al., Plasmacytoid dendritic cell???specific receptor ILT7???Fc??RI?? inhibits Toll-like receptor???induced interferon production, The Journal of Experimental Medicine, vol.203, issue.6, pp.1399-405, 2006.
DOI : 10.1038/nbt836

A. Dzionek, A. Fuchs, P. Schmidt, S. Cremer, M. Zysk et al., BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood, The Journal of Immunology, vol.165, issue.11, pp.6037-6083, 2000.
DOI : 10.4049/jimmunol.165.11.6037

M. Dalod, T. Salazar-mather, L. Malmgaard, C. Lewis, C. Asselin-paturel et al., Interferon ??/?? and Interleukin 12 Responses to Viral Infections, The Journal of Experimental Medicine, vol.162, issue.4, pp.517-545, 2002.
DOI : 10.1093/intimm/13.4.465

L. Bar-on, T. Birnberg, K. Lewis, B. Edelson, D. Bruder et al., CX3CR1+ CD8??+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells, Proceedings of the National Academy of Sciences, vol.107, issue.33, pp.14745-50, 2010.
DOI : 10.1073/pnas.1001562107

T. Vu-manh and M. Dalod, Characterization of Dendritic Cell Subsets Through Gene Expression Analysis, Methods Mol Biol, 2015.
DOI : 10.1007/978-1-4939-3606-9_16

M. Haniffa, A. Shin, V. Bigley, N. Mcgovern, P. Teo et al., Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells, Immunity, vol.37, issue.1, pp.60-73, 2012.
DOI : 10.1016/j.immuni.2012.04.012

C. Chu, N. Ali, P. Karagiannis, D. Meglio, P. Skowera et al., dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation, The Journal of Experimental Medicine, vol.118, issue.5, pp.935-980, 2012.
DOI : 10.1172/JCI32282

C. Dutertre, J. Jourdain, M. Rancez, S. Amraoui, E. Fossum et al., TLR3-Responsive, XCR1+, CD141(BDCA-3)+/CD8??+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus-Infected Rhesus Macaques, The Journal of Immunology, vol.192, issue.10, pp.4697-708, 2014.
DOI : 10.4049/jimmunol.1302448

C. Dutertre, L. Wang, and F. Ginhoux, Aligning bona fide dendritic cell populations across species, Cellular Immunology, vol.291, issue.1-2, pp.3-10, 2014.
DOI : 10.1016/j.cellimm.2014.08.006

A. Mildner and S. Jung, Development and Function of Dendritic Cell Subsets, Immunity, vol.40, issue.5, pp.642-56, 2014.
DOI : 10.1016/j.immuni.2014.04.016

M. Guilliams, S. Henri, S. Tamoutounour, L. Ardouin, I. Schwartz-cornil et al., From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets, European Journal of Immunology, vol.125, issue.8, pp.2089-94, 2010.
DOI : 10.1002/eji.201040498

URL : https://hal.archives-ouvertes.fr/hal-00583366

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
DOI : 10.1182/blood-2010-02-258558

URL : https://hal.archives-ouvertes.fr/hal-00611173

M. Guilliams, F. Ginhoux, C. Jakubzick, S. Naik, N. Onai et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny, Nature Reviews Immunology, vol.114, issue.8, pp.571-579, 2013.
DOI : 10.1038/nri3712

A. Bachem, E. Hartung, S. Guttler, A. Mora, X. Zhou et al., Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00214

M. Becker, S. Guttler, A. Bachem, E. Hartung, A. Mora et al., Ontogenic, phenotypic, and functional characterization of XCR1(+) dendritic cells leads to a consistent classification of intestinal dendritic cells based on the expression of XCR1 and SIRPalpha, Front Immunol, 2014.

S. Tamoutounour, S. Henri, H. Lelouard, B. De-bovis, C. De-haar et al., CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis, European Journal of Immunology, vol.158, issue.12, pp.3150-66, 2012.
DOI : 10.1002/eji.201242847

A. Schlitzer, N. Mcgovern, P. Teo, T. Zelante, K. Atarashi et al., IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses, Immunity, vol.38, issue.5, pp.970-83, 2013.
DOI : 10.1016/j.immuni.2013.04.011

E. Persson, H. Uronen-hansson, M. Semmrich, A. Rivollier, K. Hagerbrand et al., IRF4 Transcription-Factor-Dependent CD103+CD11b+ Dendritic Cells Drive Mucosal T Helper 17 Cell Differentiation, Immunity, vol.38, issue.5, pp.958-69, 2013.
DOI : 10.1016/j.immuni.2013.03.009

B. Schraml, J. Van-blijswijk, S. Zelenay, P. Whitney, A. Filby et al., Genetic Tracing via DNGR-1 Expression History Defines Dendritic Cells as a Hematopoietic Lineage, Cell, vol.154, issue.4, pp.843-58, 2013.
DOI : 10.1016/j.cell.2013.07.014

L. Poulin, M. Salio, E. Griessinger, F. Anjos-afonso, L. Craciun et al., dendritic cells, The Journal of Experimental Medicine, vol.44, issue.6, pp.1261-71, 2010.
DOI : 10.4049/jimmunol.181.10.6923

URL : https://hal.archives-ouvertes.fr/hal-00294202

J. Lee, G. Breton, T. Oliveira, Y. Zhou, A. Aljoufi et al., Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow, The Journal of Experimental Medicine, vol.104, issue.3, pp.385-99, 2015.
DOI : 10.1182/blood-2010-02-258558

R. Schotte, M. Nagasawa, K. Weijer, H. Spits, and B. Blom, The ETS Transcription Factor Spi-B Is Required for Human Plasmacytoid Dendritic Cell Development, The Journal of Experimental Medicine, vol.94, issue.11
DOI : 10.1016/j.immuni.2004.06.011

L. Poulin, Y. Reyal, H. Uronen-hansson, B. Schraml, D. Sancho et al., DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues, Blood, vol.119, issue.25, pp.6052-62, 2012.
DOI : 10.1182/blood-2012-01-406967

G. Breton, J. Lee, Y. Zhou, J. Schreiber, T. Keler et al., dendritic cells, The Journal of Experimental Medicine, vol.82, issue.3, pp.401-414, 2015.
DOI : 10.1016/j.immuni.2013.03.004

S. Hambleton, S. Salem, J. Bustamante, V. Bigley, S. Boisson-dupuis et al., Mutations and Human Dendritic-Cell Immunodeficiency, New England Journal of Medicine, vol.365, issue.2, pp.127-165, 2011.
DOI : 10.1056/NEJMoa1100066

L. Jardine, D. Barge, A. Ames-draycott, S. Pagan, S. Cookson et al., Rapid Detection of Dendritic Cell and Monocyte Disorders Using CD4 as a Lineage Marker of the Human Peripheral Blood Antigen-Presenting Cell Compartment, Frontiers in Immunology, vol.4, 2013.
DOI : 10.3389/fimmu.2013.00495

M. Broz, M. Binnewies, B. Boldajipour, A. Nelson, J. Pollack et al., Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity, Cancer Cell, vol.26, issue.5, pp.638-52, 2014.
DOI : 10.1016/j.ccell.2014.09.007

S. Woo, L. Corrales, and T. Gajewski, Innate Immune Recognition of Cancer, Annual Review of Immunology, vol.33, issue.1, pp.445-7410, 2015.
DOI : 10.1146/annurev-immunol-032414-112043

A. Summerfield, G. Auray, and M. Ricklin, Comparative Dendritic Cell Biology of Veterinary Mammals, Annual Review of Animal Biosciences, vol.3, issue.1, pp.533-5710, 2015.
DOI : 10.1146/annurev-animal-022114-111009

D. Vremec, J. Hansen, A. Strasser, H. Acha-orbea, Y. Zhan et al., Maintaining dendritic cell viability in culture, Molecular Immunology, vol.63, issue.2, pp.264-271, 2015.
DOI : 10.1016/j.molimm.2014.07.011

V. Contreras, C. Urien, R. Guiton, Y. Alexandre, V. Manh et al., Existence of CD8??-Like Dendritic Cells with a Conserved Functional Specialization and a Common Molecular Signature in Distant Mammalian Species, The Journal of Immunology, vol.185, issue.6, pp.3313-3338, 2010.
DOI : 10.4049/jimmunol.1000824

URL : https://hal.archives-ouvertes.fr/hal-00611156

S. Fanning, T. George, D. Feng, S. Feldman, N. Megjugorac et al., Receptor Cross-Linking on Human Plasmacytoid Dendritic Cells Leads to the Regulation of IFN-?? Production, The Journal of Immunology, vol.177, issue.9, pp.5829-5868, 2006.
DOI : 10.4049/jimmunol.177.9.5829

P. Jahn, K. Zanker, J. Schmitz, and A. Dzionek, BDCA-2 signaling inhibits TLR-9-agonist-induced plasmacytoid dendritic cell activation and antigen presentation, Cellular Immunology, vol.265, issue.1, pp.15-22, 2010.
DOI : 10.1016/j.cellimm.2010.06.005

B. Tavano and A. Boasso, Effect of Immunoglobin-Like Transcript 7 Cross-Linking on Plasmacytoid Dendritic Cells Differentiation into Antigen-Presenting Cells, PLoS ONE, vol.23, issue.2, 2014.
DOI : 10.1371/journal.pone.0089414.g005

D. Duffy, V. Rouilly, V. Libri, M. Hasan, B. Beitz et al., Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli, Immunity, vol.40, issue.3, pp.436-50, 2014.
DOI : 10.1016/j.immuni.2014.03.002

URL : https://hal.archives-ouvertes.fr/pasteur-01384537

K. Achim and D. Arendt, Structural evolution of cell types by step-wise assembly of cellular modules, Current Opinion in Genetics & Development, vol.27, 2014.
DOI : 10.1016/j.gde.2014.05.001

D. Arendt, The evolution of cell types in animals: emerging principles from molecular studies, Nature Reviews Genetics, vol.50, issue.11, pp.868-82, 2008.
DOI : 10.1038/nrg2416

T. Vu-manh, H. Marty, P. Sibille, L. Vern, Y. Kaspers et al., Existence of Conventional Dendritic Cells in Gallus gallus Revealed by Comparative Gene Expression Profiling, The Journal of Immunology, vol.192, issue.10, pp.4510-4517, 2014.
DOI : 10.4049/jimmunol.1303405

F. Marquet, V. Manh, T. Maisonnasse, P. Elhmouzi-younes, J. Urien et al., Pig Skin Includes Dendritic Cell Subsets Transcriptomically Related to Human CD1a and CD14 Dendritic Cells Presenting Different Migrating Behaviors and T Cell Activation Capacities, The Journal of Immunology, vol.193, issue.12, pp.5883-93, 2014.
DOI : 10.4049/jimmunol.1303150

URL : https://hal.archives-ouvertes.fr/hal-01194094

K. Crozat, R. Guiton, M. Guilliams, S. Henri, T. Baranek et al., Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets, Immunological Reviews, vol.10, issue.1, pp.177-98, 2010.
DOI : 10.1111/j.0105-2896.2009.00868.x

URL : https://hal.archives-ouvertes.fr/hal-00502980

S. Jongbloed, A. Kassianos, K. Mcdonald, G. Clark, X. Ju et al., dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens, The Journal of Experimental Medicine, vol.70, issue.6, pp.1247-60, 2010.
DOI : 10.1016/S0065-230X(07)99006-5

D. Dudziak, A. Kamphorst, G. Heidkamp, V. Buchholz, C. Trumpfheller et al., Differential Antigen Processing by Dendritic Cell Subsets in Vivo, Science, vol.315, issue.5808, pp.315107-315118, 2007.
DOI : 10.1126/science.1136080

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors, Immunity, vol.33, issue.3, pp.375-86, 2010.
DOI : 10.1016/j.immuni.2010.08.012

M. Ingersoll, R. Spanbroek, C. Lottaz, E. Gautier, M. Frankenberger et al., Comparison of gene expression profiles between human and mouse monocyte subsets, Blood, vol.115, issue.3, pp.10-19, 2010.
DOI : 10.1182/blood-2009-07-235028

E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia et al., Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation, Immunity, vol.38, issue.2, pp.336-384, 2013.
DOI : 10.1016/j.immuni.2012.10.018

D. Jaitin, E. Kenigsberg, H. Keren-shaul, N. Elefant, F. Paul et al., Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types, Science, vol.343, issue.6172, pp.776-785, 2014.
DOI : 10.1126/science.1247651

D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lonnerberg et al., Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing, Nature Neuroscience, vol.14, issue.1, pp.145-53, 2015.
DOI : 10.1038/emboj.2013.85

A. Zeisel, A. Manchado, S. Codeluppi, P. Lönnerberg, L. Manno et al., Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, vol.347, issue.6226, pp.1138-1180, 2015.
DOI : 10.1126/science.aaa1934

K. Schakel, R. Kannagi, B. Kniep, Y. Goto, C. Mitsuoka et al., 6- Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells, Immunity J Immunol, vol.17, issue.38, pp.289-301, 2002.

T. Dobel, A. Kunze, J. Babatz, K. Trankner, A. Ludwig et al., Fc??RIII (CD16) equips immature 6-sulfo LacNAc-expressing dendritic cells (slanDCs) with a unique capacity to handle IgG-complexed antigens, Blood, vol.121, issue.18, pp.3609-3627, 2013.
DOI : 10.1182/blood-2012-08-447045

T. Vu-manh, Y. Alexandre, T. Baranek, K. Crozat, and M. Dalod, Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation, European Journal of Immunology, vol.13, issue.7, pp.1706-1721, 2013.
DOI : 10.1002/eji.201243106

B. Reizis, A. Bunin, H. Ghosh, K. Lewis, and V. Sisirak, Plasmacytoid Dendritic Cells: Recent Progress and Open Questions, Annual Review of Immunology, vol.29, issue.1, pp.163-83, 2011.
DOI : 10.1146/annurev-immunol-031210-101345

P. Watchmaker, K. Lahl, M. Lee, D. Baumjohann, J. Morton et al., Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice, Nature Immunology, vol.176, issue.1, pp.98-108, 2014.
DOI : 10.1093/bioinformatics/btl117

H. Lauterbach, B. Bathke, S. Gilles, C. Traidl-hoffmann, C. Luber et al., DCs are major producers of IFN-?? in response to poly IC, The Journal of Experimental Medicine, vol.95, issue.12, pp.2703-2720, 2010.
DOI : 10.1126/science.1109893

K. Lundberg, A. Albrekt, I. Nelissen, S. Santegoets, T. De-gruijl et al., Transcriptional Profiling of Human Dendritic Cell Populations and Models - Unique Profiles of In Vitro Dendritic Cells and Implications on Functionality and Applicability, PLoS ONE, vol.164, issue.Spec No, 2013.
DOI : 10.1371/journal.pone.0052875.s003

B. Reizis, Regulation of plasmacytoid dendritic cell development, Current Opinion in Immunology, vol.22, issue.2, pp.206-217, 2010.
DOI : 10.1016/j.coi.2010.01.005

J. Villadangos and K. Shortman, dendritic cells: Table I., The Journal of Experimental Medicine, vol.8, issue.6, pp.1131-1135, 2010.
DOI : 10.4049/jimmunol.179.11.7577

S. Naik, Demystifying the development of dendritic cell subtypes, a little, Immunology and Cell Biology, vol.172, issue.5, pp.439-5228, 2008.
DOI : 10.1182/blood.V99.4.1282

V. Soumelis, L. Pattarini, P. Michea, and A. Cappuccio, Systems approaches to unravel innate immune cell diversity, environmental plasticity and functional specialization, Current Opinion in Immunology, vol.32, pp.42-49, 2015.
DOI : 10.1016/j.coi.2014.12.007

F. Deauvieau, V. Ollion, A. Doffin, C. Achard, J. Fonteneau et al., Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells, International Journal of Cancer, vol.172, issue.5, pp.1085-94, 2015.
DOI : 10.1002/ijc.29087

T. Flinsenberg, E. Compeer, D. Koning, M. Klein, F. Amelung et al., Fc?? receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells, Blood, vol.120, issue.26, pp.5163-72, 2012.
DOI : 10.1182/blood-2012-06-434498

G. Nizzoli, J. Krietsch, A. Weick, S. Steinfelder, F. Facciotti et al., Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses, Blood, vol.122, issue.6, pp.932-974, 2013.
DOI : 10.1182/blood-2013-04-495424

N. Onai, A. Obata-onai, M. Schmid, T. Ohteki, D. Jarrossay et al., Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow, Nature Immunology, vol.17, issue.11, pp.1207-1610, 1038.
DOI : 10.1038/ni1518

S. Naik, P. Sathe, H. Park, D. Metcalf, A. Proietto et al., Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo, Nature Immunology, vol.36, issue.11, pp.1217-2610, 1038.
DOI : 10.1038/ni1522

S. Thordardottir, B. Hangalapura, T. Hutten, M. Cossu, J. Spanholtz et al., Hematopoietic Progenitor Cells, Stem Cells and Development, vol.23, issue.9, pp.955-67, 2014.
DOI : 10.1089/scd.2013.0521

A. Proietto, D. Mittag, A. Roberts, N. Sprigg, and L. Wu, The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34+ stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin, Cellular and Molecular Immunology, vol.95, issue.6, pp.446-54, 2012.
DOI : 10.1182/blood-2011-08-373944

B. Cisse, M. Caton, M. Lehner, T. Maeda, S. Scheu et al., Transcription Factor E2-2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development, Cell, vol.135, issue.1, pp.37-48, 2008.
DOI : 10.1016/j.cell.2008.09.016

C. Sawai, V. Sisirak, H. Ghosh, E. Hou, M. Ceribelli et al., Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells, The Journal of Experimental Medicine, vol.210, issue.11, pp.2151-2160, 2013.
DOI : 10.1016/j.immuni.2012.12.001

E. Esashi, M. Bao, Y. Wang, W. Cao, and Y. Liu, PACSIN1 regulates the TLR7/9-mediated type I interferon response in plasmacytoid dendritic cells, European Journal of Immunology, vol.28, issue.3, pp.573-582, 2012.
DOI : 10.1002/eji.201142045

G. Ippolito, J. Dekker, Y. Wang, B. Lee, A. Shaffer et al., Dendritic cell fate is determined by BCL11A, Proceedings of the National Academy of Sciences, vol.111, issue.11, pp.998-1006, 2014.
DOI : 10.1073/pnas.1319228111

X. Wu, A. Satpathy, W. Kc, P. Liu, T. Murphy et al., Bcl11a Controls Flt3 Expression in Early Hematopoietic Progenitors and Is Required for pDC Development In Vivo, PLoS ONE, vol.32, issue.5, 2013.
DOI : 10.1371/journal.pone.0064800.g007

M. Meredith, K. Liu, G. Darrasse-jeze, A. Kamphorst, H. Schreiber et al., Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage, The Journal of Experimental Medicine, vol.19, issue.6, pp.1153-65, 2012.
DOI : 10.1016/j.immuni.2005.03.005

A. Satpathy, W. Kc, J. Albring, B. Edelson, N. Kretzer et al., expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages, The Journal of Experimental Medicine, vol.161, issue.6, pp.1135-52, 2012.
DOI : 10.1016/j.immuni.2009.01.010

K. Hildner, B. Edelson, W. Purtha, M. Diamond, H. Matsushita et al., Batf3 Deficiency Reveals a Critical Role for CD8??+ Dendritic Cells in Cytotoxic T Cell Immunity, Science, vol.322, issue.5904, pp.1097-100, 2008.
DOI : 10.1126/science.1164206

P. Nair-gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow Cross-Presentation, Cell, vol.158, issue.3, pp.506-527, 2014.
DOI : 10.1016/j.cell.2014.04.054

D. Avram and D. Califano, The Multifaceted Roles of Bcl11b in Thymic and Peripheral T Cells: Impact on Immune Diseases, The Journal of Immunology, vol.193, issue.5, pp.2059-65, 2014.
DOI : 10.4049/jimmunol.1400930

G. Fu, S. Vallee, V. Rybakin, M. Mcguire, J. Ampudia et al., Themis controls thymocyte selection through regulation of T cell antigen receptor???mediated signaling, Nature Immunology, vol.15, issue.8, pp.848-56, 2009.
DOI : 10.1038/ni.1766

A. Johnson, L. Aravind, N. Shulzhenko, A. Morgun, S. Choi et al., Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection, Nature Immunology, vol.34, issue.8, pp.831-840, 2009.
DOI : 10.1038/ni.1769

K. Kakugawa, T. Yasuda, I. Miura, A. Kobayashi, H. Fukiage et al., A Novel Gene Essential for the Development of Single Positive Thymocytes, Molecular and Cellular Biology, vol.29, issue.18, pp.5128-5163, 2009.
DOI : 10.1128/MCB.00793-09

R. Lesourne, S. Uehara, J. Lee, K. Song, L. Li et al., Themis, a T cell???specific protein important for late thymocyte development, Nature Immunology, vol.5, issue.8, pp.840-847, 2009.
DOI : 10.1038/ni.1768

M. Meredith, K. Liu, A. Kamphorst, J. Idoyaga, A. Yamane et al., Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state, The Journal of Experimental Medicine, vol.209, issue.9, pp.1583-93, 2012.
DOI : 10.1016/j.immuni.2009.07.002

S. Yoshio, T. Kanto, S. Kuroda, T. Matsubara, K. Higashitani et al., dendritic cells are a potent producer of interferon-?? in response to hepatitis C virus, Hepatology, vol.86, issue.5, pp.1705-1720, 2013.
DOI : 10.1002/hep.26182

S. Zhang, K. Kodys, K. Li, and G. Szabo, Human Type 2 Myeloid Dendritic Cells Produce Interferon-?? and Amplify Interferon-?? in Response to Hepatitis C Virus Infection, Gastroenterology, vol.144, issue.2, pp.414-439, 2013.
DOI : 10.1053/j.gastro.2012.10.034

W. Cao, L. Bover, M. Cho, X. Wen, S. Hanabuchi et al., Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction, The Journal of Experimental Medicine, vol.63, issue.7, pp.1603-1617, 2009.
DOI : 10.1038/nm1201-1339

A. Kolodkin, D. Levengood, E. Rowe, Y. Tai, R. Giger et al., Neuropilin Is a Semaphorin III Receptor, Cell, vol.90, issue.4, pp.753-62, 1997.
DOI : 10.1016/S0092-8674(00)80535-8

S. Soker, S. Takashima, H. Miao, G. Neufeld, and M. Klagsbrun, Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor, Cell, vol.92, issue.6, pp.735-780, 1998.
DOI : 10.1016/S0092-8674(00)81402-6

M. Nascimbeni, L. Perie, L. Chorro, S. Diocou, L. Kreitmann et al., Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-?? expression, Blood, vol.113, issue.24, pp.6112-6121, 2009.
DOI : 10.1182/blood-2008-07-170803

URL : https://hal.archives-ouvertes.fr/hal-00437706

T. Baranek, T. Manh, Y. Alexandre, M. Maqbool, J. Cabeza et al., Differential Responses of Immune Cells to Type I Interferon Contribute to Host Resistance to Viral Infection, Cell Host & Microbe, vol.12, issue.4, pp.571-84, 2012.
DOI : 10.1016/j.chom.2012.09.002

S. Ruscanu, L. Jouneau, C. Urien, M. Bourge, J. Lecardonnel et al., Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection, Journal of Virology, vol.87, issue.16, pp.9333-4300631, 2013.
DOI : 10.1128/JVI.00631-13

URL : https://hal.archives-ouvertes.fr/hal-01001027

R. Banchereau, N. Baldwin, A. Cepika, S. Athale, Y. Xue et al., Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines, Nature Communications, vol.294, 2014.
DOI : 10.1038/ncomms6283

A. Shalek, R. Satija, X. Adiconis, R. Gertner, J. Gaublomme et al., Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells, Nature, vol.455, issue.7453, pp.236-4010, 1038.
DOI : 10.1038/nature12172

B. Venkatesh, A. Lee, V. Ravi, A. Maurya, M. Lian et al., Elephant shark genome provides unique insights into gnathostome evolution BDCA3CLEC9A human dendritic cell function and development, Nature Semin Cell Dev Biol, vol.505, issue.7482, pp.174-183, 2014.

A. Gallois and N. Bhardwaj, A needle in the 'cancer vaccine' haystack, Nature Medicine, vol.68, issue.8, pp.854-860, 2010.
DOI : 10.1038/nm0810-854

K. Tullett, M. Lahoud, and K. Radford, Harnessing Human Cross-Presenting CLEC9A+XCR1+ Dendritic Cells for Immunotherapy, Frontiers in Immunology, vol.208, issue.12, 2014.
DOI : 10.1084/jem.20111171

S. Meixlsperger, C. Leung, P. Ramer, M. Pack, L. Vanoaica et al., CD141+ dendritic cells produce prominent amounts of IFN-?? after dsRNA recognition and can be targeted via DEC-205 in humanized mice, Blood, vol.121, issue.25, pp.5034-5078, 2013.
DOI : 10.1182/blood-2012-12-473413

D. Sancho, O. Joffre, A. Keller, N. Rogers, D. Martinez et al., Identification of a dendritic cell receptor that couples sensing of necrosis to immunity, Nature, vol.9, issue.7240, pp.899-90310, 1038.
DOI : 10.1038/nature07750

S. Zelenay, A. Keller, P. Whitney, B. Schraml, S. Deddouche et al., The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice, Journal of Clinical Investigation, vol.122, issue.5
DOI : 10.1172/JCI60644DS1

C. Huysamen, J. Willment, K. Dennehy, and G. Brown, CLEC9A Is a Novel Activation C-type Lectin-like Receptor Expressed on BDCA3+ Dendritic Cells and a Subset of Monocytes, Journal of Biological Chemistry, vol.283, issue.24, pp.16693-701, 2008.
DOI : 10.1074/jbc.M709923200

J. Tel, E. Aarntzen, T. Baba, G. Schreibelt, B. Schulte et al., Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients, Cancer Research, vol.73, issue.3, pp.1063-75, 2013.
DOI : 10.1158/0008-5472.CAN-12-2583

J. Tel, S. Sittig, R. Blom, L. Cruz, G. Schreibelt et al., Targeting Uptake Receptors on Human Plasmacytoid Dendritic Cells Triggers Antigen Cross-Presentation and Robust Type I IFN Secretion, The Journal of Immunology, vol.191, issue.10, pp.5005-5017, 2013.
DOI : 10.4049/jimmunol.1300787

L. Guery and S. Hugues, Tolerogenic and Activatory Plasmacytoid Dendritic Cells in Autoimmunity, Frontiers in Immunology, vol.4, 2013.
DOI : 10.3389/fimmu.2013.00059

A. Goubier, B. Dubois, H. Gheit, G. Joubert, F. Villard-truc et al., Plasmacytoid Dendritic Cells Mediate Oral Tolerance, Immunity, vol.29, issue.3, pp.464-75, 2008.
DOI : 10.1016/j.immuni.2008.06.017

C. Yu, C. Becker, Y. Wang, F. Marches, J. Helft et al., Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal Frontiers in Immunology | www.frontiersin, 2015.