S. Russell, K. Peng, and J. Bell, Oncolytic virotherapy, Nature Biotechnology, vol.311, issue.7, pp.658-670, 2012.
DOI : 10.1038/nbt.2287

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888062

W. Moss and D. Griffin, Global measles elimination, Nature Reviews Microbiology, vol.30, issue.12, pp.900-908, 2006.
DOI : 10.1038/nrmicro1550

B. Bankamp, M. Takeda, Y. Zhang, W. Xu, and P. Rota, Genetic Characterization of Measles Vaccine Strains, Journal of Infectious Diseases, vol.204, issue.Supplement 1, pp.533-548, 2011.
DOI : 10.1093/infdis/jir097

E. Hsu, C. Iorio, F. Sarangi, A. Khine, and C. Richardson, CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus, 2001.

C. Achard, N. Boisgerault, T. Delaunay, F. Tangy, and M. Grégoire, Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus, J Clin Cell Immunol, vol.6, pp.291-301, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01148993

H. Tatsuo, N. Ono, K. Tanaka, and Y. Yanagi, SLAM (CDw150) is a cellular receptor for measles virus, Nature, vol.406, pp.893-897, 2000.

A. Bluming and J. Ziegler, REGRESSION OF BURKITT'S LYMPHOMA IN ASSOCIATION WITH MEASLES INFECTION, The Lancet, vol.298, issue.7715, pp.105-106, 1971.
DOI : 10.1016/S0140-6736(71)92086-1

G. Pasquinucci, Possible effect of measles on leukaemia, Lancet, vol.1, p.136, 1971.

Z. Zygiert, HODGKIN'S DISEASE: REMISSIONS AFTER MEASLES, The Lancet, vol.297, issue.7699, p.593, 1971.
DOI : 10.1016/S0140-6736(71)91186-X

J. Ziegler, Spontaneous remission in Burkitt's lymphoma. Natl Cancer Inst Monogr, pp.61-65, 1976.

C. Parrula, S. Fernandez, B. Zimmerman, M. Lairmore, and S. Niewiesk, Measles virotherapy in a mouse model of adult T-cell leukaemia/lymphoma, Journal of General Virology, vol.92, issue.6, pp.1458-1466, 2011.
DOI : 10.1099/vir.0.028910-0

D. Grote, S. Russell, T. Cornu, R. Cattaneo, and R. Vile, Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice, Blood, vol.97, issue.12, pp.3746-3754, 2001.
DOI : 10.1182/blood.V97.12.3746

K. Peng, G. Ahmann, L. Pham, P. Greipp, and R. Cattaneo, Systemic therapy of myeloma xenografts by an attenuated measles virus, Blood, vol.98, issue.7, pp.2002-2007, 2001.
DOI : 10.1182/blood.V98.7.2002

S. Berchtold, J. Lampe, T. Weiland, I. Smirnow, and S. Schleicher, Innate Immune Defense Defines Susceptibility of Sarcoma Cells to Measles Vaccine Virus-Based Oncolysis, Journal of Virology, vol.87, issue.6, pp.3484-3501, 2013.
DOI : 10.1128/JVI.02106-12

A. Penheiter, T. Wegman, K. Classic, D. Dingli, and C. Bender, )-Mediated Radiovirotherapy for Pancreatic Cancer, American Journal of Roentgenology, vol.195, issue.2, pp.341-349, 2010.
DOI : 10.2214/AJR.09.3672

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117397

L. Phuong, C. Allen, K. Peng, C. Giannini, and S. Greiner, Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme, Cancer Res, vol.63, pp.2462-2469, 2003.

C. Allen, M. Opyrchal, I. Aderca, M. Schroeder, and J. Sarkaria, Oncolytic measles virus strains have significant antitumor activity against glioma stem cells, Gene Therapy, vol.480, issue.4, pp.444-449, 2013.
DOI : 10.1038/mt.2009.218

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509233

K. Peng, C. Teneyck, E. Galanis, K. Kalli, and L. Hartmann, Intraperitoneal therapy of ovarian cancer using an engineered measles virus, Cancer Res, vol.62, pp.4656-4662, 2002.

I. Iankov, P. Msaouel, C. Allen, M. Federspiel, P. Bulur et al., Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model, Breast Cancer Research and Treatment, vol.27, issue.4, pp.745-754, 2010.
DOI : 10.1007/s10549-009-0602-z

T. Sugiyama, M. Yoneda, T. Kuraishi, S. Hattori, and Y. Inoue, Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment, Gene Therapy, vol.27, issue.3, pp.338-347, 2013.
DOI : 10.1007/s00259-008-1022-8

C. Mcdonald, C. Erlichman, J. Ingle, G. Rosales, and C. Allen, A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer, Breast Cancer Research and Treatment, vol.7, issue.8, pp.177-184, 2006.
DOI : 10.1007/s10549-006-9200-5

O. Donnelly, F. Errington-mais, L. Steele, E. Hadac, and V. Jennings, Measles virus causes immunogenic cell death in human melanoma, Gene Therapy, vol.14, issue.1, pp.7-15, 2013.
DOI : 10.1038/sj.gt.3302609

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378495

X. Meng, T. Nakamura, T. Okazaki, H. Inoue, and A. Takahashi, Enhanced Antitumor Effects of an Engineered Measles Virus Edmonston Strain Expressing the Wild-type N , P , L Genes on Human Renal Cell Carcinoma, Molecular Therapy, vol.18, issue.3, pp.544-551, 2010.
DOI : 10.1038/mt.2009.296

H. Li, K. Peng, D. Dingli, R. Kratzke, and S. Russell, Oncolytic measles viruses encoding interferon ?? and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy, Cancer Gene Therapy, vol.60, issue.8, pp.550-558, 2010.
DOI : 10.1038/sj.gt.3301787

A. Gauvrit, S. Brandler, C. Sapede-peroz, N. Boisgerault, and F. Tangy, Measles Virus Induces Oncolysis of Mesothelioma Cells and Allows Dendritic Cells to Cross-Prime Tumor-Specific CD8 Response, Cancer Research, vol.68, issue.12, pp.4882-4892, 2008.
DOI : 10.1158/0008-5472.CAN-07-6265

URL : https://hal.archives-ouvertes.fr/pasteur-00330770

B. Hutzen, C. Pierson, S. Russell, E. Galanis, and C. Raffel, Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine, BMC Cancer, vol.325, issue.1, p.508, 2012.
DOI : 10.1016/j.bbrc.2004.09.219

A. Studebaker, C. Kreofsky, C. Pierson, S. Russell, and E. Galanis, Treatment of medulloblastoma with a modified measles virus, Neuro-Oncology, vol.12, issue.10, pp.1034-1042, 2010.
DOI : 10.1093/neuonc/noq057

S. Zhang, W. Wang, W. Cai, K. Jiang, and Z. Yuan, Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma, BMC Cancer, vol.60, issue.6, p.427, 2012.
DOI : 10.1126/science.282.5392.1332

URL : http://doi.org/10.1186/1471-2407-12-427

N. Boisgerault, J. Guillerme, D. Pouliquen, M. Mesel-lemoine, and C. Achard, Natural Oncolytic Activity of Live-Attenuated Measles Virus against Human Lung and Colorectal Adenocarcinomas, BioMed Research International, vol.20, issue.6, p.387362, 2013.
DOI : 10.1158/0008-5472.CAN-04-0884

B. Anderson, T. Nakamura, S. Russell, and K. Peng, High CD46 Receptor Density Determines Preferential Killing of Tumor Cells by Oncolytic Measles Virus, Cancer Research, vol.64, issue.14, pp.4919-4926, 2004.
DOI : 10.1158/0008-5472.CAN-04-0884

R. Dörig, A. Marcil, A. Chopra, and C. Richardson, The human CD46 molecule is a receptor for measles virus (Edmonston strain), Cell, vol.75, issue.2, pp.295-305, 1993.
DOI : 10.1016/0092-8674(93)80071-L

D. Naniche, G. Varior-krishnan, F. Cervoni, T. Wild, and B. Rossi, Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus, J Virol, vol.67, pp.6025-6032, 1993.

Z. Fishelson, N. Donin, S. Zell, S. Schultz, and M. Kirschfink, Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors, Molecular Immunology, vol.40, issue.2-4, pp.109-123, 2003.
DOI : 10.1016/S0161-5890(03)00112-3

N. Ravindranath and C. Shuler, Expression of complement restriction factors (CD46, CD55 & CD59) in head and neck squamous cell carcinomas, Journal of Oral Pathology and Medicine, vol.90, issue.9, pp.560-567, 2006.
DOI : 10.1002/hed.10145

R. Noyce, D. Bondre, M. Ha, L. Lin, and G. Sisson, Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus, PLoS Pathogens, vol.105, issue.Pt 6, p.1002240, 2011.
DOI : 10.1371/journal.ppat.1002240.s002

M. Mühlebach, M. Mateo, P. Sinn, S. Prüfer, and K. Uhlig, Adherens junction protein nectin-4 is the epithelial receptor for measles virus, Nature, vol.199, pp.530-533, 2011.
DOI : 10.1038/nature10639

V. Racaniello, An Exit Strategy for Measles Virus, Science, vol.334, issue.6063, pp.1650-1651, 2011.
DOI : 10.1126/science.1217378

M. Derycke, S. Pambuccian, C. Gilks, S. Kalloger, and A. Ghidouche, Nectin 4 Overexpression in Ovarian Cancer Tissues and Serum, American Journal of Clinical Pathology, vol.134, issue.5, pp.835-845, 2010.
DOI : 10.1309/AJCPGXK0FR4MHIHB

A. Takano, N. Ishikawa, R. Nishino, K. Masuda, and W. Yasui, Identification of Nectin-4 Oncoprotein as a Diagnostic and Therapeutic Target for Lung Cancer, Cancer Research, vol.69, issue.16, pp.6694-6703, 2009.
DOI : 10.1158/0008-5472.CAN-09-0016

S. Fabre-lafay, S. Garrido-urbani, N. Reymond, A. Gonçalves, and P. Dubreuil, Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme, 2005.

M. Patel, B. Jacobson, H. Belgum, A. Raza, and A. Sadiq, Measles Vaccine Strains for Virotherapy of Non???Small-Cell Lung Carcinoma, Journal of Thoracic Oncology, vol.9, issue.8, pp.1101-1110, 2014.
DOI : 10.1097/JTO.0000000000000214

M. Noll, S. Berchtold, J. Lampe, N. Malek, and M. Bitzer, Primary resistance phenomena to oncolytic measles vaccine viruses, Int J Oncol, vol.43, pp.103-112, 2013.

L. Ivashkiv and L. Donlin, Regulation of type I interferon responses, Nature Reviews Immunology, vol.7, issue.1, pp.36-49, 2014.
DOI : 10.1038/nri3581

P. Mitchell, M. Emerman, and H. Malik, An evolutionary perspective on the broad antiviral specificity of MxA, Current Opinion in Microbiology, vol.16, issue.4, pp.493-499, 2013.
DOI : 10.1016/j.mib.2013.04.005

E. Katsoulidis, S. Kaur, and L. Platanias, Deregulation of Interferon Signaling in Malignant Cells, Pharmaceuticals, vol.3, issue.2, pp.406-418, 2010.
DOI : 10.3390/ph3020406

K. Leonova, L. Brodsky, B. Lipchick, M. Pal, and L. Novototskaya, p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs, Proceedings of the National Academy of Sciences, vol.110, issue.1, pp.89-98
DOI : 10.1073/pnas.1216922110

C. Achard, N. Boisgerault, T. Delaunay, F. Tangy, and M. Grégoire, Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus, J Clin Cell Immunol, vol.6, pp.291-301, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01148993

L. Heinzerling, V. Künzi, P. Oberholzer, T. Kündig, and H. Naim, Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells, Blood, vol.106, issue.7, pp.2287-2294, 2005.
DOI : 10.1182/blood-2004-11-4558

E. Galanis, L. Hartmann, W. Cliby, H. Long, and P. Peethambaram, Phase I Trial of Intraperitoneal Administration of an Oncolytic Measles Virus Strain Engineered to Express Carcinoembryonic Antigen for Recurrent Ovarian Cancer, Cancer Research, vol.70, issue.3, pp.875-882, 2010.
DOI : 10.1158/0008-5472.CAN-09-2762

C. Janeway, Immunogenecity signals 1,2,3... and 0, Immunology Today, vol.10, issue.9, pp.283-286, 1989.
DOI : 10.1016/0167-5699(89)90081-9

T. Kawasaki and T. Kawai, Toll-Like Receptor Signaling Pathways, Frontiers in Immunology, vol.462, p.461, 2014.
DOI : 10.1038/nature08460

URL : http://doi.org/10.3389/fimmu.2014.00461

P. Matzinger, Tolerance, Danger, and the Extended Family, Annual Review of Immunology, vol.12, issue.1, pp.991-1045, 1994.
DOI : 10.1146/annurev.iy.12.040194.005015

S. Seong and P. Matzinger, Opinion: Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses, Nature Reviews Immunology, vol.29, issue.6, pp.469-478, 2004.
DOI : 10.1126/science.285.5430.1058

Z. Guo, Z. Liu, and D. Bartlett, Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity, Frontiers in Oncology, vol.22, issue.Pt 12, p.74, 2014.
DOI : 10.1038/mt.2014.34

N. Casares, M. Pequignot, A. Tesniere, F. Ghiringhelli, and S. Roux, Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death, The Journal of Experimental Medicine, vol.157, issue.12, pp.1691-1701, 2005.
DOI : 10.1073/pnas.93.18.9730

E. Golden, I. Pellicciotta, S. Demaria, M. Barcellos-hoff, and S. Formenti, The convergence of radiation and immunogenic cell death signaling pathways, Frontiers in Oncology, vol.2, p.88, 2012.
DOI : 10.3389/fonc.2012.00088

D. Brusa, E. Migliore, S. Garetto, M. Simone, and L. Matera, Immunogenicity of 56??C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells, The Prostate, vol.177, issue.12, pp.1343-1352, 2009.
DOI : 10.1002/pros.20981

J. Fucikova, I. Moserova, I. Truxova, I. Hermanova, and I. Vancurova, High hydrostatic pressure induces immunogenic cell death in human tumor cells, International Journal of Cancer, vol.132, issue.5, pp.1165-1177, 2014.
DOI : 10.1002/ijc.28766

D. Massé, F. Ebstein, G. Bougras, J. Harb, and K. Meflah, Increased expression of inducible HSP70 in apoptotic cells is correlated with their efficacy for antitumor vaccine therapy, International Journal of Cancer, vol.14, issue.4, pp.575-583, 2004.
DOI : 10.1002/ijc.20249

H. Shi, T. Cao, J. Connolly, L. Monnet, and L. Bennett, Hyperthermia Enhances CTL Cross-Priming, The Journal of Immunology, vol.176, issue.4, pp.2134-2141, 2006.
DOI : 10.4049/jimmunol.176.4.2134

P. Scaffidi, T. Misteli, and M. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, vol.157, issue.6894, pp.191-195, 2002.
DOI : 10.1016/S0968-0004(00)01777-1

H. Inoue and T. K. , Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments, Cell Death and Differentiation, vol.17, issue.1, pp.39-49, 2014.
DOI : 10.1038/cdd.2013.84

O. Kepp, L. Menger, E. Vacchelli, C. Locher, and S. Adjemian, Crosstalk between ER stress and immunogenic cell death, Cytokine & Growth Factor Reviews, vol.24, issue.4, pp.311-318, 2013.
DOI : 10.1016/j.cytogfr.2013.05.001

Y. Ma, L. Galluzzi, L. Zitvogel, and G. Kroemer, Autophagy and Cellular Immune Responses, Immunity, vol.39, issue.2, pp.211-227, 2013.
DOI : 10.1016/j.immuni.2013.07.017

URL : http://doi.org/10.1016/j.immuni.2013.07.017

M. Lamkanfi and V. Dixit, Mechanisms and Functions of Inflammasomes, Cell, vol.157, issue.5, pp.1013-1022, 2014.
DOI : 10.1016/j.cell.2014.04.007

J. Zou, T. Kawai, T. Tsuchida, T. Kozaki, and H. Tanaka, Poly IC Triggers a Cathepsin D- and IPS-1-Dependent Pathway to Enhance Cytokine Production and Mediate Dendritic Cell Necroptosis, Immunity, vol.38, issue.4, pp.717-728, 2013.
DOI : 10.1016/j.immuni.2012.12.007

URL : http://doi.org/10.1016/j.immuni.2012.12.007

A. Kaczmarek, P. Vandenabeele, and D. Krysko, Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance, Immunity, vol.38, issue.2, pp.209-223, 2013.
DOI : 10.1016/j.immuni.2013.02.003

S. Ahrens, S. Zelenay, D. Sancho, P. Hanä, and S. Kjã¦r, F-Actin Is an Evolutionarily Conserved Damage-Associated Molecular Pattern Recognized by DNGR-1, a Receptor for Dead Cells, Immunity, vol.36, issue.4, pp.635-645, 2012.
DOI : 10.1016/j.immuni.2012.03.008

O. Kepp, A. Gdoura, I. Martins, T. Panaretakis, and F. Schlemmer, Lysyl tRNA synthetase is required for the translocation of calreticulin to the cell surface in immunogenic death, Cell Cycle, vol.9, issue.15, pp.3072-3077, 2010.
DOI : 10.4161/cc.9.15.12459

M. Obeid, A. Tesniere, F. Ghiringhelli, G. Fimia, and L. Apetoh, Calreticulin exposure dictates the immunogenicity of cancer cell death, Nature Medicine, vol.279, issue.1, pp.54-61, 2007.
DOI : 10.1038/nm1523

URL : https://hal.archives-ouvertes.fr/inserm-00451702

G. Parmiani, A. Testori, M. Maio, C. Castelli, and L. Rivoltini, Heat Shock Proteins and Their Use as Anticancer Vaccines, Clinical Cancer Research, vol.10, issue.24, pp.8142-8146, 2004.
DOI : 10.1158/1078-0432.CCR-04-1194

L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, and C. Ortiz, Toll-like receptor 4???dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nature Medicine, vol.289, issue.9, pp.1050-1059, 2007.
DOI : 10.1038/nm1622

URL : https://hal.archives-ouvertes.fr/hal-00316924

G. Sims, D. Rowe, S. Rietdijk, R. Herbst, and A. Coyle, HMGB1 and RAGE in Inflammation and Cancer, Annual Review of Immunology, vol.28, issue.1, pp.367-388, 2010.
DOI : 10.1146/annurev.immunol.021908.132603

M. Elliott, F. Chekeni, P. Trampont, E. Lazarowski, and A. Kadl, Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, Nature, vol.127, issue.7261, pp.282-286, 2009.
DOI : 10.1038/nature08296

I. Martins, A. Tesniere, O. Kepp, M. Michaud, and F. Schlemmer, Chemotherapy induces ATP release from tumor cells, Cell Cycle, vol.8, issue.22, pp.3723-3728, 2009.
DOI : 10.4161/cc.8.22.10026

M. Michaud, I. Martins, A. Sukkurwala, S. Adjemian, and Y. Ma, Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice, Science, vol.334, issue.6062, pp.1573-1577, 2011.
DOI : 10.1126/science.1208347

N. Boisgerault, F. Tangy, and M. Gregoire, New perspectives in cancer virotherapy: bringing the immune system into play, Immunotherapy, vol.2, issue.2, pp.185-199, 2010.
DOI : 10.2217/imt.10.6

URL : https://hal.archives-ouvertes.fr/pasteur-00507434

E. Vacchelli, A. Eggermont, C. Sautès-fridman, J. Galon, and L. Zitvogel, Trial watch, OncoImmunology, vol.71, issue.6, p.24612, 2013.
DOI : 10.1038/onc.2010.500

N. Senzer, H. Kaufman, T. Amatruda, M. Nemunaitis, and T. Reid, Phase II Clinical Trial of a Granulocyte-Macrophage Colony-Stimulating Factor???Encoding, Second-Generation Oncolytic Herpesvirus in Patients With Unresectable Metastatic Melanoma, Journal of Clinical Oncology, vol.27, issue.34, pp.5763-5771, 2009.
DOI : 10.1200/JCO.2009.24.3675

J. Heo, T. Reid, L. Ruo, C. Breitbach, and S. Rose, Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer, Nature Medicine, vol.53, issue.3, pp.329-336, 2013.
DOI : 10.1038/nm.3089

D. Grote, R. Cattaneo, and A. Fielding, Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression, Cancer Res, vol.63, pp.6463-6468, 2003.

J. Fonteneau, J. Guillerme, F. Tangy, and M. Grégoire, Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells, OncoImmunology, vol.2, issue.5, p.24212, 2013.
DOI : 10.1089/jir.2011.0077

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667908

J. Guillerme, N. Boisgerault, D. Roulois, J. Menager, and C. Combredet, Measles Virus Vaccine-Infected Tumor Cells Induce Tumor Antigen Cross-Presentation by Human Plasmacytoid Dendritic Cells, Clinical Cancer Research, vol.19, issue.5, pp.1147-1158, 2013.
DOI : 10.1158/1078-0432.CCR-12-2733

J. Tel and I. De-vries, Potential applications for plasmacytoid dendritic cells in cancer immunotherapy, Immunotherapy, vol.4, issue.10, pp.979-982, 2012.
DOI : 10.2217/imt.12.115

J. Tel, S. Anguille, C. Waterborg, E. Smits, and C. Figdor, Tumoricidal activity of human dendritic cells, Trends in Immunology, vol.35, issue.1, pp.38-46, 2014.
DOI : 10.1016/j.it.2013.10.007

T. Duhen, F. Herschke, O. Azocar, J. Druelle, and S. Plumet, Cellular receptors, differentiation and endocytosis requirements are key factors for type I IFN response by human epithelial, conventional and plasmacytoid dendritic infected cells by measles virus, Virus Research, vol.152, issue.1-2, pp.115-125, 2010.
DOI : 10.1016/j.virusres.2010.06.013

URL : https://hal.archives-ouvertes.fr/ensl-00815605

J. Schlender, V. Hornung, S. Finke, M. Günthner-biller, and S. Marozin, Inhibition of Toll-Like Receptor 7- and 9-Mediated Alpha/Beta Interferon Production in Human Plasmacytoid Dendritic Cells by Respiratory Syncytial Virus and Measles Virus, Journal of Virology, vol.79, issue.9, pp.5507-5515, 2005.
DOI : 10.1128/JVI.79.9.5507-5515.2005

P. Joubert, G. Meiffren, I. Grégoire, G. Pontini, and C. Richetta, Autophagy Induction by the Pathogen Receptor CD46, Cell Host & Microbe, vol.6, issue.4, pp.354-366, 2009.
DOI : 10.1016/j.chom.2009.09.006

URL : https://hal.archives-ouvertes.fr/pasteur-00456148

C. Achard, N. Boisgerault, T. Delaunay, F. Tangy, and M. Grégoire, Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus, J Clin Cell Immunol, vol.6, pp.291-301, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01148993

C. Richetta, I. Grégoire, P. Verlhac, O. Azocar, and J. Baguet, Sustained Autophagy Contributes to Measles Virus Infectivity, PLoS Pathogens, vol.87, issue.8, p.1003599, 2013.
DOI : 10.1371/journal.ppat.1003599.s012

URL : https://hal.archives-ouvertes.fr/hal-00965032

S. Delpeut, R. Noyce, R. Siu, and C. Richardson, Host factors and measles virus replication, Current Opinion in Virology, vol.2, issue.6, pp.773-783, 2012.
DOI : 10.1016/j.coviro.2012.10.008

S. Naik and S. Russell, Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways, Expert Opinion on Biological Therapy, vol.63, issue.9, pp.1163-1176, 2009.
DOI : 10.1073/pnas.0803988105

G. Caignard, M. Bouraï, Y. Jacob, F. Tangy, and P. Vidalain, Inhibition of IFN-??/?? signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2, Virology, vol.383, issue.1, pp.112-120, 2009.
DOI : 10.1016/j.virol.2008.10.014

URL : https://hal.archives-ouvertes.fr/pasteur-00360178

G. Caignard, M. Guerbois, J. Labernardière, Y. Jacob, and L. Jones, Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-??/?? signaling, Virology, vol.368, issue.2, pp.351-362, 2007.
DOI : 10.1016/j.virol.2007.06.037

URL : https://hal.archives-ouvertes.fr/hal-00167680

J. Andrejeva, K. Childs, D. Young, T. Carlos, and N. Stock, The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-?? promoter, Proceedings of the National Academy of Sciences, vol.101, issue.49, pp.17264-17269, 2004.
DOI : 10.1073/pnas.0407639101

J. Shaffer, W. Bellini, and P. Rota, The C protein of measles virus inhibits the type I interferon response, Virology, vol.315, issue.2, pp.389-397, 2003.
DOI : 10.1016/S0042-6822(03)00537-3

S. Ohno, N. Ono, M. Takeda, K. Takeuchi, and Y. Yanagi, Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction, Journal of General Virology, vol.85, issue.10, pp.2991-2999, 2004.
DOI : 10.1099/vir.0.80308-0

L. Thyrell, S. Erickson, B. Zhivotovsky, K. Pokrovskaja, and O. Sangfelt, Mechanisms of Interferon-alpha induced apoptosis in malignant cells, Oncogene, vol.21, issue.8, pp.1251-1262, 2002.
DOI : 10.1038/sj.onc.1205179

M. Diamond, M. Kinder, H. Matsushita, M. Mashayekhi, and G. Dunn, Type I interferon is selectively required by dendritic cells for immune rejection of tumors, The Journal of Experimental Medicine, vol.134, issue.10, pp.1989-2003, 2011.
DOI : 10.4049/jimmunol.0803214

M. Fuertes, A. Kacha, J. Kline, S. Woo, and D. Kranz, dendritic cells, The Journal of Experimental Medicine, vol.61, issue.10, pp.2005-2016, 2011.
DOI : 10.1158/0008-5472.CAN-07-5324

C. Achard, N. Boisgerault, T. Delaunay, F. Tangy, and M. Grégoire, Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus, J Clin Cell Immunol, vol.6, pp.291-301, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01148993