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Abstract

Antitumor virotherapy is a developing approach to treat cancer with oncolytic viruses, namely replicative viruses
that exclusively or preferentially infect and kill tumor cells. Attenuated strains of Measles Virus (MV) are now being
used as oncolytic viruses in clinical trials to treat several types of cancer. The efficacy of oncolytic viruses is mainly
due to their capacity to infect and kill tumor cells, but it has also been demonstrated that their capacity to induce
immunogenic cell death can activate an antitumor immune response. In this review, we describe the oncolytic
capacity of MV and the concept of Immunogenic Cell Death (ICD). We then review how MV induces immunogenic
cell death, which can be beneficial for cancer treatment.

Keywords: Measles virus; Virotherapy; Oncolytic viruses;
Immunogenic cell death

Introduction
Antitumor virotherapy using replicative oncolytic viruses that

exclusively or preferentially infect and kill tumor cells is a field that is
growing rapidly, along with progress in molecular biological
engineering [1]. These viruses are often derived from attenuated
strains that either exhibit a natural tropism against tumor cells or that
have been engineered to target tumor cells. Numerous RNA viruses
(coxsackievirus, Newcastle Disease Virus (NDV), Vesicular Stomatitis
Virus (VSV), Measles Virus (MV), poliovirus, and reovirus) and DNA
viruses (adenovirus and vaccinia virus) are now being evaluated in
clinical trials against a wide range of malignancies [1]. Adenovirus
H101 is now approved in China for the treatment of head and neck
cancer, and several other oncolytic viruses, such as HSV, adenovirus,
and reovirus have entered phase III clinical trials [1].

Attenuated MV as an Oncolytic Virus

Structure and replication cycle of MV
Among oncolytic viruses, attenuated vaccine strains of MV show an

interesting spontaneous tropism for infection and replication in tumor
cells, and are now being evaluated for the treatment of several cancers.
MV is a Morbillivirus of the Paramyxoviridae family, with an envelope
and a negative, non-segmented, single-strand (ss) RNA genome [2].
The World Health Organization (WHO) indexes twenty-four strains
of MV, classed into eight clades [3]. The MV RNA genome comprises
around 16,000 nucleotides and encodes eight proteins. Two of these
are non-structural proteins (V and C), expressed from an alternative
RNA transcript encoding the phosphoprotein (P protein). V and C
protein are virulence factors, notably implicated in the inhibition of

the innate intracellular immune defense, such as the type I Interferon
(IFN) response. P protein, Large protein (L) and Nucleoprotein (N)
form the nucleocapsid, which contains the viral ssRNA genome. The
matrix (M), fusion (F), and hemagglutinin proteins (H) form the viral
envelope with lipids from the infected host cell membrane [2].

The replication cycle starts with the adsorption of MV onto the host
cell membrane through the interaction between the H protein and the
cell surface molecules, CD150, CD46, and/or Nectin-4 [4]. The F
protein mediates the fusion between the viral particle and the host cell
membrane, allowing the negative, single-stranded RNA and the
associated proteins to penetrate into the cytoplasm. These proteins
form a Ribo-Nucleo-Proteic (RNP) complex with the viral polymerase
L, which allows replication of the negative ssRNA and transcription of
MV genes. The newly assembled viral particles bud from the infected
cell plasma membrane, together with the matrix (M) and the envelope
glycoproteins (H,F). MV infection is known to induce the formation of
syncytia. Indeed, MV-infected cells fuse with neighboring cells, thus
forming multinucleated infected cells that increase the efficiency of
MV replication.

Oncolytic activity of MV
MV uses several receptors to enter cells. The pathogenic wild-type

(wt) strains use the signaling lymphocyte activation molecule (SLAM/
CD150), which confers to this virus a natural tropism for T and B
lymphocytes and activated monocytes/macrophages [5,6]. This
receptor usage explains the reports of spontaneous remission of
leukemia and lymphoma in patients who have contracted a wt-MV
infection [7-10]. These reports constitute the first proof of concept
that MV can be used as a natural oncolytic virus.

Since 2001, the oncolytic activity of attenuated strains of MV has
been reported, both in vitro, and in vivo in immunodeficient mice
bearing human tumor xenografts. This activity has been demonstrated
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against T-cell lymphoma [11,12], myeloma [13], sarcoma [14],
pancreatic cancer [15], glioblastoma [16], glioma [17], ovarian
carcinoma [18], prostate cancer [19], breast cancer [19-21], melanoma
[22], renal cell carcinoma [23], mesothelioma [24,25],
medulloblastoma [26,27], hepatoblastoma [28], and lung/colorectal
adenocarcinoma [29].

Attenuated vaccine strains of MV, such as Schwarz and Edmonston,
which are spontaneously oncolytic, use the CD46 molecule as the
major cell receptor [30-32]. The membrane cofactor protein, CD46, is
an inhibitory complement receptor. Its expression at low density by
healthy cells protects normal tissues from accidental injury by
activated complement. Interestingly, many tumor types overexpress
CD46 to escape complement-dependent cytotoxicity [33,34]. This
selective overexpression by many cancer cell types confers on
attenuated MV a natural tropism for tumor cells. Above a certain
threshold of CD46 expression, the killing and syncytium formation
mediated by MV infection increase dramatically [30], whereas healthy
tissues with a low density of CD46 remain unharmed [18].

Recently, Nectin-4 (PVRL4) has been identified as a novel receptor
for wild-type and attenuated strains [35,36]. This molecule plays a
crucial role in the shedding of MV from the respiratory tract of
infected individuals for transmission of the disease [37]. In humans,
Nectin-4 is mostly expressed in placenta and trachea, and at a lower
level in tonsil epithelial cells, oral mucosa, lung macrophages, and
neuronal cells of the cerebral cortex [35]. It is also frequently
overexpressed in many adenocarcinomas, such as lung, ovarian, colon,
and breast tumors [38-40]. Nectin-4 is used by MV for the infection of
breast tumor cells [20].

Overexpression of MV receptors is probably not the only factor that
determines the ability of MV to replicate and preferentially kill tumor
cells. There is now evidence that host translational control of viral
replication, and the incapability of some tumor cells to develop a type I
interferon innate immune response, affect the oncolytic activity of MV
[14,41,42]. All nucleated cells are equipped with intracytoplasmic
sensors that are considered as Pathogen Recognition Receptors (PRR)
and are able to detect viral infection [43]. In the case of MV, helicases
such as the Retinoic acid-Inducible Gene 1 (RIG-I) and the Melanoma
Differentiation-Associated protein 5 (MDA5) detect viral RNA and
induce the secretion of type I IFN, which protects infected and
neighboring cells from viral replication. Indeed, exposure to type I IFN
induces the expression of numerous Interferon Sensitive Genes (ISG)
that inhibit several stages of viral replication [44]. However, there are
often defects of type I interferon response in tumor cells, to avoid the
triggering of this response by frequent aberrant RNA transcripts
present in these cells [45,46]. It allows the tumor cells to avoid
induction of apoptosis or stimulation of antitumor immune response
by the type I IFN.

Clinical trials with oncolytic MV
MV is now being evaluated, in clinical trials being carried out at the

Mayo Clinic, for the treatment of several malignancies: ovarian cancer,
mesothelioma, multiple myeloma, glioma, and squamous cell
carcinoma of the head and neck [1]. A major asset for the clinical use
of attenuated MV is its excellent safety profile, proven after the
vaccination of millions of children over the past forty years, with no
observed reversion to the wt-MV [47]. To date, the results of three
clinical trials have been published, for the treatment of cutaneous T-
cell lymphoma (CTLC), chemoresistant ovarian cancer, and advanced
multiple myeloma, with encouraging results and limited adverse

effects [48-50]. Heinzerling and colleagues carried out the first phase I
clinical trial of MV antitumor virotherapy using the Edmonston-
Zagreb strain of MV in five patients with CTCL [48]. This clinical
study showed that intratumoral injection of MV after systemic
treatment with IFN-α (to limit infection of healthy cells) induced local
infection and a characteristic cytopathogenic effect of MV on tumor
cells, leading to tumor regression in three patients.

MV was also evaluated by intraperitoneal injection for the
treatment of patients with taxol- and platinum-refractory ovarian
cancers, who were seropositive for measles virus to assure the safety of
the trial. In this phase I clinical study, Evanthia Galanis and colleagues
used MV-CEA, a modified Edmonston strain that produces the
carcinoma embryonic antigen (CEA) as a soluble maker [49]. Indeed,
CEA allows the monitoring of MV replication by serum dosage.
Escalating doses were given to patients, ranging from 103 to 109

TCID50, with no observed dose-limiting toxicity. Clinical responses
were observed in fourteen of twenty-one patients, notably disease
stabilization, with a median duration of 92.5 days. Clinical response
was associated with a diminution of the tumor-specific marker,
CA-125, in five patients. Median survival time (12.15 months) was
increased considerably compared to the expected median survival of
the patient population (6 months).

More recently, a third phase I clinical trial was performed in two
MV-seronegative patients with relapsing, drug-resistant, metastatic
multiple myeloma [50]. These patients were given, by intravenous
injection, a high dose (1011 TCID50 infectious units) of Edmonston
MV recombinant for the sodium/iodide symporter (NIS), which
allows viral replication to be followed in vivo by radioiodine Single-
Photon Emission Computed Tomography (SPECT)-Computed
Tomography (CT) imaging. Both patients responded to the treatment,
with one experiencing a complete response during six months that is
still on-going at the time of this publication.

Immunogenic Cell Death (ICD)

Discovery of ICD
Until the mid-1990s, it was thought that the major factor that

conditions the induction of an immune response was the
discrimination between “self” and “non-self”. The presence of
Pathogen-Associated Molecular Patterns (PAMPs) was necessary for
the induction of an efficient immune response [51]. PAMPs are
conserved molecular motifs specific to pathogens that are notably able
to activate Antigen-Presenting Cells (APC) such as Dendritic Cells
(DC), via PRR such as Toll-Like Receptors (TLR) [52]. When exposed
to PAMPs, DC that capture antigens in peripheral tissues migrate to
secondary lymphoid organs and initiate an adaptive immune response.
PAMPs can also be detected during pathogen infection by
intracytoplasmic PRR, which are expressed by all nucleated cells. This
detection activates a cellular innate immune defense known as the type
I IFN response that leads to secretion of type I IFN. These molecules
act by autocrine and paracrine modes to block pathogen replication
and eventually induce apoptosis.

The self/non-self-model fails, however, to explain why some
microorganisms, such as commensal bacteria, are well tolerated, and
why some self-constituents can trigger an immune response without
the presence of pathogen, such as in the case of autograft. To take into
account these phenomena, Poly Matzinger proposed the “danger
theory”, which postulates that the immune system does not concern so
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much with self and non-self, but rather detects situations that present
danger [53]. Indeed, while apoptosis was considered to be
nonimmunogenic, this theory implies that in certain conditions of
stress, such as injury by pathogen, cell death can be accompanied by
the release of cellular danger signals that are able to activate the
immune system. These danger signals released during ICD activate
APC, notably DC that, after capturing antigens, migrate to secondary
lymphoid organs and initiate an adaptive immune response. Danger
signals were later renamed Damage-Associated Molecular Patterns
(DAMPs), as opposed to PAMPs [54]. The integration of both types of
signals, DAMPs and PAMPs, induces and orients the immune
response.

Inducers and types of ICD
Numerous inducers of ICD have now been described. Pathogens

such as viruses can induce ICD [55]. Some chemotherapeutic drugs
used for the treatment of cancer, such as doxorubicine, have also been
shown to induce ICD [56]. In addition, some physical stimuli can
induce ICD, such as ionizing radiation used in radiotherapy [57],
ultraviolet-C irradiation [58], high hydrostatic pressure [59],
hyperthermia [60,61], and freeze/thaw cycles [62].

Different types of ICD have now been described [63]. Indeed, ICD
can result from apoptosis accompanied by an endoplasmic reticulum
(ER) stress and autophagy [64,65]. This form of apoptosis is
characterized by preservation of cell membrane integrity with the
formation of blebs, and by the release of DAMPs, such as high-
mobility group box 1 (HMGB1) protein and adenosine triphosphate
(ATP), and the exposition of calreticulin on the surface of apoptotic
cells. ICD can also result from pyroptosis, characterized by activation
of the inflammasome that leads to the activation of caspase-1, able,
notably, to transform pro-IL-1β into IL-1β [66]. Furthermore,
pyroptosis is associated with the formation of cell-membrane pores
that results in cell lysis. Pyroptosis is especially used by immune cells,
such as neutrophils and leads to a rapid induction of inflammation in
response to some pathogens. Necroptosis is an active necrosis program
that can be induced notably by the presence of Tumor Necrosis
Factor-alpha (TNF-α) produced in response to a pathogen. TNF-α can
trigger its receptor TNFR1 which lead to activation of receptor-
interacting protein kinase 1 and 3 (RIPK1 and RIPK3). This signaling
pathway will lead to necroptosis. This form of ICD is accompanied by
the passive release of DAMPs such as HMGB1 and long genomic
DNA, due to the loss of cell membrane integrity [67,68]. Finally, ICD
can also result from passive necrosis induced by pathogen infection,
toxin exposure, or physical trauma, and accompanied by the passive
release of DAMPs such as HMGB1 and Heat Shock Proteins (HSP),
and the exposure of F-actin [68,69]. Much work is still needed to
understand the regulation of these different cell-death pathways and,
importantly, their outcomes regarding the initiation and orientation of
the immune response.

DAMPs and ICD
Several DAMPs have now been identified, and they exert various

roles. Firstly, cells that undergo ICD expose, on their membrane, “eat-
me” signals for phagocytosis by APC. During ICD induced by ER
stress and autophagy, calreticulin, which is normally located in the ER
membranes, is rapidly exposed at the plasma membrane of apoptotic
cells and can be recognized by scavenger receptors on APC [70,71].
During necrosis, F-actin is exposed to the extracellular environment
and may also act as an “eat-me” signal for phagocytosis mediated by

DNGR1, also known as Clec9a in humans, a receptor found on DC
that is specialized in cross-presentation [69]. Secondly, cells that
undergo ICD can release some DAMPs that are implicated in the
attraction and activation of immune cells. Among these, the first-
described DAMPs that are released during ICD, and that induce DC
maturation, were from the HSP family, notably HSP70, HSP90, and
gp96 [72]. Later, HMGB1, which is a nuclear protein that binds DNA,
was reported as a major DAMP released during ICD that triggers
activation of APC by several receptors, such as RAGE, TLR2, TLR4,
TLR9, and TIM3 [73,74]. During ICD, ATP is another major DAMP
that is released by dying cells and that attracts immune cells by
triggering P2Y2 receptors [75] or P2X7 receptors [76]. Furthermore,
ATP release during ICD has been shown to play a role in the induction
of the antitumor immune response induced by some
chemotherapeutic agents [77]. IL-1β is often considered as a DAMP
released during pyroptosis following the activation of the
inflammasome and caspase-1 [66]. IL-1β plays an important role in
the inflammatory response.

Oncolytic Measles Viruses and The Induction Of
Tumor ICD

Evidence of ICD induction by MV from clinical trials
The induction of immunogenic cell death by oncolytic viruses is

probably an important parameter for their efficiency in antitumor
virotherapy treatment [1,78,79]. As an example, it has been shown in a
phase II clinical trial testing intratumoral injections of a modified
oncolytic herpes simplex 1 virus in melanoma patients that tumors
distant from the injection sites can regress, notably some visceral
metastases [80]. In another phase II trial, injections of the oncolytic
JX-594 vaccinia virus into treatment-refractory advanced
hepatocellular carcinoma tumors also induced the regression of distant
metastases [81]. The authors further showed that such treatment
causes neutrophil infiltration into the injected tumor, an antibody
response against tumor cells, and evidence of a cytotoxic T-cell
response.

In the first phase I clinical trial using oncolytic MV, a positive effect
on the antitumor response was reported [48]. In this trial, the
Edmonston-Zagreb strain was used to treat five patients with
cutaneous T-cell lymphoma. This study showed that intratumoral
injections of MV after systemic treatment with IFN-α induced tumor
regression in three patients. Interestingly, some regressions of distant
lesions where MV was not injected were observed, suggesting that the
treatment triggered the activation of an antitumor immune response.
Furthermore, in a model of human lymphoma xenografts in
immunodeficient mice, the injection of MV has been shown to induce
tumor infiltration by activated neutrophils [82]. Altogether, these
reports indicate that intratumoral MV injections can stimulate an
antitumor immune response.

Interaction of MV infected tumor cells and dendritic cells
Our laboratory and others have been interested in characterizing, in

vitro, how MV-infected tumor cells stimulate APC such as DC to
induce their capacities to stimulate an adaptive antitumor immune
response [22,25,83,84]. We first showed that MV infection of
mesothelioma tumor cells induced ICD, in contrast with ultraviolet-B
(UV-B) irradiation of tumor cells that undergo a nonimmunogenic
cell death [25]. Indeed, MV-infected tumor cells induce the
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maturation of monocyte-derived DC, notably by the release of DAMPs
such as HSP (HSP70, gp96), whereas apoptotic UV-B-irradiated tumor
cells did not stimulate DC. We further showed that DC internalized
materials from MV-infected tumor cells, notably tumor antigens such
as mesothelin, and induced from naive lymphocytes a T-cell response
directed against this tumor antigen. Altogether, these results not only
show that MV kills tumor cells, but also that MV induces the release of
tumor antigens allowing DC to cross-prime a specific CD8+ T-cell
response.

In 2011, Donnelly et al. confirmed that MV-infected tumor cells
undergo ICD that is able to induce maturation of DC [22].
Furthermore, they identified the immunogenic factors released during
ICD. They also showed that DC co-cultured with MV-infected
melanoma tumor cells induces cytotoxic T-cell responses against
tumor cells. They identified numerous DAMPs and cytokines released
by MV-infected tumor cells that make the cell death immunogenic.
They showed that MV-infected cells release HMGB1 and numerous
inflammatory cytokines, such as type I IFN (IFN-α and IFN-β), IL-6,
IL-8, RANTES, and IL-28.

Plasmacytoid DC (pDC) is another type of DC specialized in
antiviral immune response. Accumulating evidence suggests that it
would be beneficial for cancer patients to stimulate this subset of DC
within tumors, as these cells are able to induce an immune response by
type I IFN production and antigen presentation, and can exert direct
tumoricidal activity [85,86]. Conflicting reports have been published
regarding the capacity of attenuated MV strains to stimulate IFN-α
production by pDC [87,88]. Duhen et al. reported that attenuated
strains of MV induce IFN-α secretion by pDC, whereas Schlender et al.
reported that they do not induce this secretion, but on the contrary
inhibit it. We explained this discrepancy recently by investigating the
activation of pDC in response to MV or MV-infected tumor cells [84].
We showed that pDC exposed to MV without IL-3, a survival factor
that is required for in vitro culture of pDC, do not produce IFN-α as
reported by Schlender et al. [88], whereas pDC exposed to MV in the
presence of IL-3 do produce IFN-α as reported by Duhen et al. [87].
We also observed that pDC exposed to MV-infected tumor cells
produce huge amounts of IFN-α due to the triggering of TLR7 in the
endosome by MV single-stranded RNA. Finally, we showed that, like
monocyte-derived DC, pDC exposed to MV-infected tumor cells are
able to internalize and cross-present tumor antigens such as NYESO-1
to CD8+ T lymphocytes to induce an antitumor immune response. In
contrast, pDC exposed to UV-irradiated tumor cells keep an immature
phenotype and are unable to cross-present the tumor antigen.
Altogether, these studies show that MV infection of tumor cells
induces an ICD that is able to activate tumor antigen cross-
presentation function of both myeloid and plasmacytoid DC.

The type of ICD induced by MV
The type of ICD induced by MV infection of tumor cells is not well

characterized. It is not yet described whether ICD is associated with
ER stress and autophagy, pyroptosis, and/or necroptosis. It is now
clear that HMGB1 is released from tumor cells following MV infection
[22] (and unpublished personal data). These results suggest that it
could be ICD accompanied by ER stress and autophagy or necroptosis.
Infection by attenuated MV strains has recently been shown to induce
autophagy in several waves [89,90]. The interaction of MV with CD46
receptors induces an early wave of autophagy followed by a second
wave dependent on MV replication, and finally a third wave upon
syncytium formation [90]. However, it is not clear from this study if

autophagy participates in the induction of apoptosis, since the author
states that this sustained autophagy flux is exploited by MV to limit
the death of infected cells and to improve viral particle formation.
More work is needed to better define which ICD pathways are induced
by MV after the infection of tumor cells.

MV is known to trigger the antiviral type I IFN response in
nucleated cells [14,91,92]. However, MV has evolved virulence factors,
such as the V protein that inhibits type I IFN signaling at the level of
STAT1 and STAT2 downstream of the type I IFN receptor, IFNAR
[93,94]. The V protein also inhibits MDA5 signaling [95]. Another
viral factor, the C protein of MV, blocks type I IFN signaling [96]. In
attenuated MV such as Edmonston and Schwarz strains, the V protein
carries a mutation that reduces its capacity to inhibit type I IFN
signaling [97]. Thus, attenuated strains of MV do not completely
inhibit the type I IFN response. Type I IFN produced by infected
tumor cells or by pDC exposed to infected cells, can exert a diversity of
beneficial effects on the antitumor immune response. IFN-α not only
induces an antitumor cytotoxic activity of pDC by an autocrine loop,
but can also act directly on tumor cells to induce apoptosis [98]. Type I
IFN also play a role in NK activation and are required in a mouse
model of NK-cell-dependent tumor rejection [99]. Type I IFN is also
known to activate DC and their capacity to induce a cytotoxic T-cell
response [100,101]. Thus, the triggering of type I IFN production by
MV in infected tumor cells probably participates in the
immunogenicity of cell death.

Conclusion
MV is a promising oncolytic virus that is currently being evaluated

in phase I/II clinical trials. Its capacity to induce ICD, which probably
participates in its oncolytic activity, is now proven. However, more
studies are needed to better understand which ICD pathway is induced
in tumor cells after infection. Apoptosis induced by oncolytic viruses is
very specific to the virus type [1] and may be different from one tumor
cell line to another, since these cells accumulate defects in antiviral
innate response and apoptosis pathways. Finally, all the studies on
MV-induced ICD suggest that it would be of interest to monitor the
antitumor immune response after treatment of cancer patients by
oncolytic MV to determine its importance in the efficacy of treatment.
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