C. K. Holland and R. E. , Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment, The Journal of the Acoustical Society of America, vol.88, issue.5, p.2059, 1990.
DOI : 10.1121/1.400102

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, Correlation between inertial cavitation dose and endothelial cell damage in vivo, Ultrasound in Medicine & Biology, vol.32, issue.10, pp.1611-1619, 2006.
DOI : 10.1016/j.ultrasmedbio.2006.07.016

W. W. Roberts, T. L. Hall, K. Ives, J. S. Wolf-jr, J. B. Fowlkes et al., Pulsed Cavitational Ultrasound: A Noninvasive Technology for Controlled Tissue Ablation (Histotripsy) in the Rabbit Kidney, The Journal of Urology, vol.175, issue.2, pp.734-738, 2006.
DOI : 10.1016/S0022-5347(05)00141-2

F. Gamarra, F. Spelsberg, G. E. Kuhnle, and A. E. Goetz, High-energy shock waves induce blood flow reduction in tumors, Cancer Res, vol.53, issue.7, pp.1590-1595, 1993.

G. O. Oosterhof, E. B. Cornel, G. Smits, F. M. Debruyne, and J. A. Schalken, The influence of high-energy shock waves on the development of metastases, Ultrasound in Medicine & Biology, vol.22, issue.3, pp.339-344, 1996.
DOI : 10.1016/0301-5629(95)02051-9

D. L. Miller and C. Dou, The potential for enhancement of mouse melanoma metastasis by diagnostic and high-amplitude ultrasound, Ultrasound in Medicine & Biology, vol.32, issue.7, pp.1097-1101, 2006.
DOI : 10.1016/j.ultrasmedbio.2006.03.013