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Abstract9

The purpose of this paper is to address the question of the existence of auto regressive moving average (ARMA)

models with reduced order for neurodegenerative disorder signals by using Huberian approach. Since gait rhythm

dynamics between Parkinson’s disease (PD) or Huntington’s disease (HD) and healthy control (CO) differ, and

since the stride interval presents great variability, we propose a different ARMA modeling approach based on

a Huberian function to assess parameters. Huberian function as a mixture of L 2 and L1 norms, tuned with a

threshold γ from a new curve, is chosen to deal with stride signal disorders. The choice of γ is crucial to ensure

a good treatment of NO and allows to reduce the model order. The disorders induce disturbances in the classical

estimation methods and increase of the number of parameters of the ARMA model. Here, the use of the Huberian

function reduces the number of parameters of the estimated models leading to a disease transfer functionwith low

order for PD and HD. Mathematical approach is discussed and experimental results based on a database containing

16 CO, 15 PD, and 19 HD are presented.

Keywords: Reduced order ARMA model, Gait signal, Huberian function, Tuning function, L 1 contribution,10

Neurodegenerative disease11

1. Introduction12

This paper introduces a new parametric approach for the estimation problem of the reduced order auto re-13

gressive moving average (ROARMA) model of human gait rhythm signal [13]. ARMA system identification is14

a well-defined problem in several science and engineering areas such as speech signal processing, adaptive filter-15

ing, radar Doppler processing or biomechanics. There exists different methods to deal with the ARMA estimation16

problem. Based on the fractional signal processing approach, Chaudhary et al [11] proposes a fractional least mean17

square (LMS) algorithm for parameter estimation of Hammerstein nonlinear ARMA system with exogenous noise.18
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This algorithm has still been used in other studies [2] [41] [10]. Another approach uses a two-stage fractional LMS19

identification algorithm for parameter estimation of controlled ARMA (CARMA) systems [33]. The main idea is20

to use fractional LMS identification (FLMSI) and two-stage FLMSI (TS-FLMSI) algorithms for CARMA models21

which are decomposed into a system and noise models. Based on robust estimation, Chakhchoukh [9] introduces a22

new robust method to estimate the parameters of a Gaussian ARMA model contaminated with outliers [18]. This23

method makes use of a median and is termed ratio-of-medians estimator (RME). Among the problems of ARMA24

identification, the model order estimation is crucial. Al-Qawasmi et al [4] propose a new technique for model25

to estimate order in a general ARMA process based on a rounding approach. Most of the time, these estimation26

procedures are performed by the implicit assumption that the processes are Gaussian [34]. However, most real27

world signals are non-Gaussian and different methods such as higher order statistics are used [3] [40]. Moreover,28

these methods are based on the assumption that the signal does not contain outliers or a low density of outliers29

less than 1%. A reference paper in a robust estimation framework uses Huberian function for ARMA models [30].30

This work shows that the Huberian-estimates are closely related to those based on a robust filter, but they have two31

important advantages: they are consistent and the asymptotic theory is tractable. However, in this analysis, the32

residuals are computed so the effect of one outlier is limited to the period where it occurs. Moreover, experimental33

results only focus on the Monte Carlo simulations, not real measurements. A recent paper [45] developed a sys-34

tematic procedure of statistical inference for the ARMA model with unspecified and heavy-tailed heteroscedastic35

noises. The authors compare some estimators such that LSE, Huberian function and generalized Huberian func-36

tion with outliers in a simulated ARMA process. In our framework, the measurements are real and contain natural37

outliers (NO) due to the neurodegenerative disorders of each disease.38

Neurodegenerative disorders have a direct consequence on the human behavior by introducing NO in biomechanic39

time-signals. These points are crucial in the study of neurodegenerative diseases and provide information of the40

degree of disorder. Here, the Parkinson’s disease (PD) and Huntington disease (HD) are studied through the stride41

time-signal (STS) of human gait rhythm, corresponding to the time from initial contact of when one foot to the42

subsequent contact of the same foot [21]. Walking is one of the most fundamental and important activities of43

human that is strongly related to human health [39]. This is a complex process which we have only recently begun44

to understand through the study of the interval data in a complete gait cycle [35] [36]. Gait rhythm can also be45

described in terms of swing and stance intervals corresponding to the time of one foot is in the air and the time46

of bilateral foot contact, respectively (Fig.A.1). Human locomotion is regulated by the central nervous system47

(CNS). In the CNS of the human body, motor neurons are the nerve cells that process sensory information and48

control voluntary muscle movement [37]. Serving as a pivotal part of the human motor system, the basal ganglia49

process motor impulses originating from the cerebral cortex and the brain stem, and also sends sensory informa-50

tion through the projecting loops in the CNS [42]. Basal ganglia dysfunction affects motor function and may lead51
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to balance impairment or altered gait rhythm. PD is a chronic and progressive hypokinetic disorder of the CNS52

induced by basal ganglia dysfunction. HD is a progressive neurodegenerative disorder with autosomal dominant53

inheritance. Analysis of gait parameters is very useful for a better understanding of the mechanisms of movement54

disorders, in particular for neurodegenerative diseases.55

Different approaches exist to analyze gait rhythm time-signals, such as the kinematic aspect [29] [24], Gaussian56

approach [43] [23], Huberian framework [13], and cyclostationary analysis [28] [44]. Wu and Krishnan [43] de-57

veloped a framework through Gaussian statistical analysis applied to PD, amyotrophic lateral sclerosis, and gait58

maturation in children. The main drawback of studies based on the Gaussian framework is the not well treatment59

of the NO in the time-signal. Indeed, during the 5-min walking period, every time the subjects reached the end of60

the hallway, they had to turn around, and finally they continued walking. The time-signal stride recorded during61

these walking turns should be treated as NO. The authors replaced these points by the median value of the stride62

interval time series, using the three-sigma rule, in order to avoid disturbance of the statistical moments. Unfortu-63

nately, these authors neglected relevant information about the time-signal dynamics, since these NO give capital64

information during the short phase of the walking turn. These subjects present difficulties to turn and it seems65

fundamental to consider these points. Therefore, Gaussian-based estimation cannot be applied.66

Here we propose a reduced order ARMA modeling approach based on a Huberian function to assess parameters67

and experimental results are performed with STS real measurements of CO, PD and HD. Huberian function is a68

mixture of L2 and L1 norms with a threshold γ. The choice of γ is crucial to ensure a good treatment of NO and69

allows to reduce the model order. A large section in this paper discusses on the choice of γ using a new curve.70

A relevant choice of γ in a new interval range ensures both convergence and consistency of the robust estimator.71

Convergence is shown and a new method to assess the variance/covariance matrix of the estimator is proposed.72

This paper is organized as follows: Section 2 gives the Huberianmathematical context of the ARMA estimator. Ex-73

perimental results based on a database containing 16 CO, 15 PD, and 19 HD are shown in Section 3. Conclusions74

and perspectives are drawn in Section 4.75

2. Huberian mathematical framework76

This section presents the Huberian framework mathematical basis. The choice of the threshold in Huber’s77

function is presented and discussed. Asymptotic convergence in law of the robust estimator is shown, consid-78

ering the stochastic differentiability approach [31] and the m-dependence context. A new method to assess the79

variance/covariancematrix of the estimator is proposed.80
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2.1. Huberian function and estimation criterion81

Let (S , S, P) be a probability space and {Xk}Nk=1 a sequence of i.i.d.r.v’s with values in S . Let Θ be a Borel82

subset in Rd and Γ a compact subset of R. Let ρHγ : S ×Θ × Γ→ R be a symmetric function such that ρHγ (• (θ, γ))83

is measurable for each θ ∈ Θ and γ ∈ Γ. The estimator θ̂H
N
is defined by a minimum of the form84

N−1
N∑

k=1

ρHγ

(

Xk(θ̂
H
N , γ̂)

)

= inf
θ∈Θ,γ∈Γ

N−1
N∑

k=1

ρHγ (Xk(θ, γ)) (1)

with85

ρHγ (X) =






X2

2
for |X| ≤ γ

γ |X| − γ2

2
for |X| > γ

(2)

where γ is a threshold to be determined to improve efficiency, convergence, and stability of θ̂H
N
[22] [12]. Let us86

introduce two index sets in θ ∈ R
d defined by ν2(θ, γ) = {k : |εk(θ, γ)| ≤ γ} and ν1(θ, γ) = {k : |εk(θ, γ)| > γ} such87

that card
[

ν2(θ, γ)
]

+ card
[

ν1(θ, γ)
]

= N ∀θ ∈ DM , γ ∈ Dγ, where DM and Dγ are compact subsets and M a88

model structure. Let M (θ) be a particular model corresponding to the parameter vector value θ. Let us define89

θ̃ =
[

θ γ
]

. Let WN(θ, γ) be the estimation criterion of the parameter vector θ for a threshold γ > 0. We denote90

sk (θ, γ) , k = 1, ...,N the sign function such that sk (θ, γ) = 1 for εk (θ, γ) > γ, sk (θ, γ) = −1 for εk (θ, γ) < −γ and91

sk (θ, γ) = 0 for |εk (θ, γ)| < γ. Let εk (θ, γ) = yk − ŷk|k−1 (θ, γ) = yk − ϕTk (θ, γ) θ be the prediction error where yk is92

the process output, ŷk|k−1 (θ, γ) the prediction model and ϕk (θ, γ) ∈ R
d the regressor vector. This criterion contains93

a L2 part to treat small prediction errors and a L1 part to deal with NO. Consider a batch of data from the system94

Z̃N =
[

y1...yN
]

. Roughly speaking, we have to determine a mapping from the data Z̃N to the setDM ×Dγ95

Z̃N −→ ˆ̃θHN =
[

θ̂HN γ̂
]

∈ DM ×Dγ (3)

The robust estimation criterion can be written as96

WN(θ, γ) =
1

N

∑

k∈ν2(θ,γ)

ε2
k
(θ, γ)

2
+
γ

N

∑

k∈ν1(θ,γ)



|εk(θ, γ)| −
γs2
k
(θ, γ)

2



 (4)

Let us denote ‖X‖2 = ∑

i
x2i and |X| =

∑

i
|xi| where X = [x1...xN]

T . We define the following rule: xνi ,k = xk for all97

k ∈ νi(θ, γ) and xνi ,k = 0 otherwise. We define the sparse matrix in RN×d over νi(θ, γ) (i = 1, 2) respectively given98

by99

Φνi (θ, γ) =





ϕT
νi,1

(θ, γ)

...

ϕTνi ,N (θ, γ)





, ϕνi,k (θ, γ) =






ϕk (θ, γ) for k ∈ νi(θ, γ)

0 otherwise
(5)
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On the other hand, we define Yνi =
[

yνi,1...yνi,N
]T
the process output vector and S ν1 =

[

sν1,1...sν1,N
]T
the sign vector.100

The estimation criterion to be minimized is then given by101

WN(θ, γ) =
1

2N

∥
∥
∥Yν2 − Φν2 (θ, γ) θ

∥
∥
∥
2
+
1

N

[

γ
∣
∣
∣Yν1 −Φν1 (θ, γ) θ

∣
∣
∣ − γ2

2

∥
∥
∥S ν1

∥
∥
∥
2
]

(6)

This minimization algorithm is applied to yield a minimum corresponding to a given robust estimator for an102

appropriated choice of the threshold γ. In the sequel, we show this choice from two joint approaches. The first103

one comes from the maximum of the bias by defining a new function with properties to reduce the effect of NO104

in prediction errors. A new curve is presented and locates a new investigation interval of γ. From this, the second105

approach is to seek a local or global minimum of the robust estimation criterion with respect to θ and γ.106

2.2. ARMA model in Huber’s framework107

The process output data are denoted as δtk, k = 1...N corresponding to the STS of human gait rhythm. Figure108

A.1 shows an example of the left gait signal from heel toe force sensors underneath the left foot where appear the109

different phases. Now assuming that δtk is generated according to110

δtk = H0 (q) ek (7)

where H0 (q) is the noise filter and ek, k = 1...N a random variables sequence with zero mean and variances λ. The111

ARMA model set is parametrized by a d-dimensional real-valued parameter vector θ, i.e.,112

δtk = H (q, θ) ek =
C (q, θ)
A (q, θ)

ek (8)

with A (q, θ) = 1 +
nA∑

i=1

aiq
−i, C (q, θ) = 1 +

nC∑

i=1

ciq
−i and θ =

[

a1...anAc1...cnC
]T
. Moreover, q−1 is the lag operator113

such that q−lδtk = δtk−l, l ∈ N.114

In Huber’s framework, the prediction errors depends on θ and γ. We write ε k (θ, γ) = δtk − δ̂tk (θ, γ) where115

δ̂tk (θ, γ) = ϕT
k
(θ, γ) θ is the predictionmodel. The regressor is ϕk (θ, γ) =

[−δtk−1... − δtk−nA εk−1 (θ, γ) ...εk−nC (θ, γ)
]T

116

and ψk (θ, γ) is the gradient with respect to θ of δ̂tk (θ, γ) given by ψk (θ, γ) =
1

C(q,θ)ϕk (θ, γ), meaning that ψk (θ, γ)117

is obtained by filtering the vector ϕk (θ, γ) through a stable linear filter.118

2.3. Choice of γ119

2.3.1. Location of γ120

In the prediction error procedure, there appears an inner feedback loop to compute the pseudolinear prediction121

model ŷk|k−1 (θ, γ). The estimated residuals are treated by a parametric adaptive algorithm which includesW N(θ, γ)122
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to be minimized. The presence of NO in the process output y k induces large values in εk (θ, γ). A convenient choice123

of γ improves the robustness by reducing the effects of these large deviations. In the literature, γ is chosen in the124

interval range [1, 2] for linear models. However, this choice does not ensure convergence, consistency nor stability125

of θ̂H
N
. Accordingly, the probability density function (pdf) of ε k (θ, γ) is strongly disturbed and presents heavy tails.126

It is shown that Huber’s estimators are not always robust and efficient when γ ∈ [1, 2]. In a recent paper [14]127

on piezoelectric-systems, the use of small values of γ in [0.01, 0.5] led to derive relevant output error models. In128

this work, even though the prediction errors were disturbed by numerous NO, the choice of the small values of γ129

around 0.05 allowed to obtain interesting results in the frequency interval range for the vibration drilling control.130

In the sequel, we introduce a new curve ensuring a reduction of the bias and we show the choice of γ in low values.131

In [12] (chapter 6, p.130), we studied the quality of the robustness through influence function [19] of the robust132

estimator. We showed that the upper bound of the bias is proportional to the high NO, denoted L p and a new133

function named tuning function, denoted f ω (γ). Figure A.2 shows this curve. It appears the classical interval,134

denotedCγ where γ ∈ [1, 1.5] and a new interval, named extended interval, denoted E γ where γ ∈ [0.001, 0.2]. We135

showed that136

sup
FN∈PΦN

(ω)

∣
∣
∣θ̂HN − θ∗

∣
∣
∣ = bωN (k) ≤ κ̂N fω (γ) |Lp| (9)

where κN is independent of γ, θ∗ is the true parameter, PΦN (ω) is the corrupted distribution model and FN the137

contaminated Gaussian. An approximation can be written as f ω (γ) ≈ 0.034γ5 − 0.316γ4 + 1.113γ3 − 1.773γ2 +138

1.088γ − 0.002. From a linearization of f ω (γ) in Cγ and Eγ, in absolute value, the slope in Eγ is six times as139

important as that of the slope in Cγ. Accordingly, the sensitivity to reduce the influence of high NO in E γ is six140

times as important. Therefore, this new curve allows to locate a new investigation interval of γ in low values in141

order to get low values of f ω (γ) to decrease the effects of NO.142

2.3.2. Convergence domain of γ143

Consider the differential ofWN(θ, γ) with respect to θ and γ given by144

dWN(θ, γ) = ∂θWN(θ, γ)dθ + ∂γWN(θ, γ)dγ (10)

where ∂X is the derivative with respect to X. In detail145

∂θWN(θ, γ) =
−1
N

∑

k∈ν2(θ,γ)
ψk(θ, γ)εk(θ, γ) −

γ

N

∑

k∈ν1(θ,γ)
ψk(θ, γ)sk(θ, γ) (11)
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with ψk(θ, γ) = −∂θεk(θ, γ) and146

∂γWN(θ, γ) =
1

N

∑

k∈ν2(θ,γ)
φk(θ, γ)εk(θ, γ) +

1

N

∑

k∈ν1(θ,γ)

(

|εk(θ, γ)| − γs2k(θ, γ) + γφk(θ, γ)sk(θ, γ) −
γ2

2
φ∗k(θ, γ)sk(θ, γ)

)

(12)

with φk(θ, γ) = ∂γεk(θ, γ) and φ
∗
k
(θ, γ) = ∂γsk(θ, γ). Let us define Ψ̃ (θ, γ) =

dWN (θ,γ)

dθ̃
=

[

Ψ (θ, γ) ∂γWN(θ, γ)
]T
,147

where Ψ̃ (θ, γ) ∈ R
d+1 and Ψ (θ, γ) = ∂θWN(θ, γ) named Ψ-function.148

We seek an optimal value of γ such that WN(θ, γ) presents a global minimum with probability one (w.p.1) as N149

tends to infinity, denoted W(θ, γ) = lim
N→∞

EWN(θ, γ). This involves that the solution of Ψ̃
(

θ̂H
N
, γ̂

)

= 0 is unique.150

However, it may happen thatW(θ, γ) does not have a unique global minimum, then we define two compact subsets151

Dθ
c andD

γ
c such that θ̂

H
N → Dθ

c w.p.1 as N → ∞ and γ̂ → Dγ
c . We then have152

ˆ̃θHN =
[

θ̂HN γ̂
]

→ Dθ
c ×D

γ
c w.p.1 as N → ∞ (13)

If we denoteDθγ
c = Dθ

c × D
γ
c then153

Dθγ
c = argmin

θ∈DM γ∈Dγ

W(θ, γ) =

{

θ ∈ DM , γ ∈ Dγ W(θ, γ) = min
θ′∈DM γ′∈Dγ

W(θ′, γ′)

}

(14)

theorem 1. Consider a uniformly stable, linear model structure M. Assume that the data set Z̃∞ = lim
N→∞

Z̃N , then154

sup
θ∈DM γ∈Dγ

∣
∣
∣WN(θ, γ) −W(θ, γ)

∣
∣
∣ → 0⇒ inf

θ̃∗∈Dθγ
c

∣
∣
∣
∣
ˆ̃θHN − θ̃∗

∣
∣
∣
∣ → 0 w.p.1 as N → ∞, θ̃∗ = [

θ∗ γ∗
]

(15)

See proof in ([12], chap.4 p.69). In the case where the condition Ψ̃
(

θ̂H
N
, γ̂

)

= 0 does not present a unique solution,155

there exists a convergence domain of γ̂ involving a local minimum of θ̂H
N
such that γ̂ → γ∗ and θ̂H

N
→ θ∗ w.p.1 as156

N → ∞. Using theorem 1 and inf
θ̃∗∈Dθγ

c

∣
∣
∣
∣
ˆ̃θHN − θ̃∗

∣
∣
∣
∣ → 0 w.p.1 as N → ∞, the consistency of the robust estimator is157

proved.158

Main properties of the robust estimator related to the covariance matrix and asymptotic normality of
√
N

(

θ̂HN − θ∗
)

159

are given. In the sequel we assume that γ̂ converges to γ ∗ satisfying the conditions of theorem 1. Hence we suppose160

that the set Dθγ
c consists only one point θ̃∗ =

[

θ∗ γ∗
]

. We shall work with the expression WN(θ, γ
∗), θ ∈ DM and161

the derivatives will be carried out with respect to θ and will be denoted ∂ θWN(θ, γ
∗) and ∂2θθWN(θ, γ

∗) for the first162

and second derivatives respectively.163
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2.4. ML robust estimator164

The robust estimator θ̂H
N
is a maximum likelihood estimator (MLE) satisfying ρHγ (X, γ) ∼ −log fH (X, γ) where165

fH (X, γ) is the pdf defined by166

fH (X, γ) =






fL2 (X, γ) = C (γ) e
−X2
2φ2 for |X| ≤ γ

fL1 (X, γ) = C (γ) e
−γ|X|
φ2

+
γ2

2φ2 for |X| > γ
(16)

C (γ) = 1
2(K1(γ)+K2(γ))

with167






K1 (γ) = e
γ2

2φ2
φ2

γ
Γ

(

1,
γ2

φ2

)

for |X| > γ

K2 (γ) =
φ√
2

[

Γ
(
1
2

)

− Γ

(

1
2
,
γ2

2φ2

)]

for |X| ≤ γ
(17)

Γ (a) and Γ (a, X) are respectively the complete and incomplete Euler’s gamma functions. The parameter φ is the168

standard deviation of fH and we can verify that ∀X ∈ R, fH (X, γ) ≥ 0 and
∫

R
fH (X, γ) dX = 1, which ensure that169

fH is a pdf.170

2.5. Asymptotic covariance matrix of θ̂HN in ARMA model171

Since θ̂HN minimizes WN(θ, γ
∗) then ∂θWN(θ̂

H
N , γ

∗) = 0. Expanding this expression into Taylor’s series around172

θ∗ gives173

θ̂HN − θ∗ = −
[

∂2
θθ
W(θ∗, γ∗)

]−1
∂θWN(θ

∗, γ∗) (18)

where ∂θWN(θ
∗, γ∗) is given by (11) and ∂2

θθ
W(θ∗, γ∗) = lim

N→∞
E∂2

θθ
WN(θ̂

H
N
, γ∗) is the symmetric non-negativedefinite174

d × d limit Hessian matrix with175

∂2θθWN(θ, γ
∗) =

−1
N

∑

k∈ν2(θ,γ∗)

(

∂θψ
T
k (θ, γ

∗)εk(θ, γ
∗) − ψk(θ, γ∗)ψTk (θ, γ∗)

)

− γ

N

∑

k∈ν1(θ,γ∗)
∂θψ

T
k (θ, γ

∗)sk(θ, γ
∗) (19)

See proof in ([12], chap.4 p.63). From (18) and for N sufficiently large, the asymptotic covariance matrix of the176

robust estimator is given by177

cov
(

θ̂HN

)

∼

[

∂2
θθ
W(θ∗, γ∗)

]−1
Q (θ∗, γ∗)

[

∂2
θθ
W(θ∗, γ∗)

]−1

N
=
P (θ∗, γ∗)

N
(20)

where Q (θ∗, γ∗) = lim
N→∞

NE∂θWN(θ
∗, γ∗)∂θWN(θ

∗, γ∗)T is named Q-matrix.178

Remark179

For the user, having processed N data points and determined θ̂H
N
and γ∗, we may use180

cov
(

θ̂HN

)

=

[

∂2
θθ
WN(θ̂

H
N
, γ∗)

]−1
Q

(

θ̂H
N
, γ∗

) [

∂2
θθ
WN(θ̂

H
N
, γ∗)

]−1

N
(21)
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as an estimate of
P(θ∗,γ∗)
N

.181

ARMA models involve a pseudolinear prediction model in δ̂tk (θ, γ). On the other hand ψk (θ, γ) =
1

C(q,θ)ϕk (θ, γ)182

meaning that the matrix ∂θψ
T
k
(θ, γ∗) in (19) is not equal to zero. The main drawback is the infinite sum of Taylor’s183

expansion of ψk (θ, γ
∗) and ∂θψ

T
k
(θ, γ∗), increasing the computational cost of the estimated covariance matrix (21).184

Here, we show the main results of our method to limit Taylor’s expansion with a large order. For more details see185

([12], chap.5 p.74) . After straightforward calculations, we have186

ψk
(

θ̂HN , γ
∗
)

=

∞∑

m=0

ANmϕk−m(θ̂
H
N , γ

∗), ANm ≤ 1 (22)

with ANm ≈ −2
F (nC/2)∑

k=1

µ̃kρ
m−1
k
cos

(

Ωm
k

)

, where Ωm
k
= θ̃k + (m − 1) ϕ̃k if nC is an even number and Ωm

k
= lπ, l =187

{m,m − 1, 1, 0} if nC is an odd number. F (n) is the nearest integer less than or equal to n. The coefficients188

µ̃k, ρk, θ̃k, ϕ̃k are given by the nC-poles {πk}nCk=1 = ρke
jϕ̃k , where ρk < 1 for k = 1...nC and k − th residue189

Res
(

Φ̃; πk
)

= µ̃ke
jθ̃k of the transfer function190

Φ̃
(

e jω, θ
)

= 1 − 1

C (

e jω, θ
) =

c1e
jω(nC−1) + ... + cnC

e jωnC + c1e jω(nC−1) + ... + cnC
(23)

We show that ANm decrease like ξ2 (m) =
β1
m2 +

β2
m4 for m ≥ 1 where β1, β2 are determined with well chosen values of191

m. We define the large order L to limit the development of (22) by the condition ξ 2 (L) = τ where τ is a threshold192

corresponding to 1% of max
(

ANm

)

. The large order is then given by193

L = F





√√

1

2τ





√

(

βN
1

)2
+ 4βN

2
τ + βN

1








(24)

Moreover we show that sup
k

∥
∥
∥
∥ψk

(

θ̂H
N
, γ∗

)

− ψL
k

(

θ̂H
N
, γ∗

)∥∥
∥
∥ ≤ C

(L)2 meaning that the bias decreases like
1
L2 , ensuring a194

good convergence of ψk. The limited expression of ψk
(

θ̂H
N
, γ∗

)

is then yielded by195

ψL
k

(

θ̂HN , γ
∗
)

=

L∑

m=0

ANmϕk−m(θ̂
H
N , γ

∗) (25)

Analogous approach can be made for ∂ θψ
T
k
(θ̂HN , γ

∗). Indeed, its limited Taylor’s development has the same large196

order L and we show that sup
k

∥
∥
∥∂θψk(θ̂

H
N
, γ∗)T − ∂θψLk (θ̂

H
N
, γ∗)T

∥
∥
∥∞ ≤ C

L2 . We then get197

∂θψ
L
k
(θ̂HN , γ

∗)T = Ck
(

θ̂HN , γ
∗
)

+ CTk
(

θ̂HN , γ
∗
)

(26)
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where the matrix Ck
(

θ̂H
N
, γ∗

)

∈ R
d×d is198

Ck
(

θ̂HN , γ
∗
)

=





OnA×d

− − − − − − − − − − − − −−

−
L∑

m=0

L∑

l=0

ANmA
N
l
ϕT
k−1−m−l(θ̂

H
N , γ

∗)

...

...

−
L∑

m=0

L∑

l=0

ANmA
N
l
ϕT
k−nC−m−l(θ̂

H
N
, γ∗)





(27)

In the following section, proof of the asymptotic convergence in law of
√
N

(

θ̂H
N
− θ∗

)

is considered. This requires199

the stochastic differentiability and m-dependence approaches.200

2.6. Asymptotic convergence in law201

For the asymptotic convergence in law of
√
N

(

θ̂H
N
− θ∗

)

, let us consider the following technical points related202

to the signal models of εk(θ
∗, γ∗) and ψk(θ

∗, γ∗).203

2.6.1. Signal models204

Assume Z̃∞ = lim
N→∞

Z̃N the data set and consider
(

Ω j (θ
∗, γ∗)

)

j∈ν1(θ∗,γ∗)
,
(

φ j (θ
∗, γ∗)

)

j∈ν1(θ∗,γ∗)
the NO in εk(θ

∗, γ∗)205

and ψk(θ
∗, γ∗) respectively. We can write206

εk(θ
∗, γ∗) =

∑

m≥0
βk,m (θ

∗, γ∗) ek−m

︸                   ︷︷                   ︸

k∈ν2(θ∗,γ∗)

+
∑

j

Ω j (θ
∗, γ∗) δk, j

︸                ︷︷                ︸

k∈ν1(θ∗,γ∗)

(28)

207

ψk(θ
∗, γ∗) =

∑

m≥0
αk,m (θ

∗, γ∗) ek−m

︸                    ︷︷                    ︸

k∈ν2(θ∗ ,γ∗)

+
∑

j

φ j (θ
∗, γ∗) δk, j

︸               ︷︷               ︸

k∈ν1(θ∗,γ∗)

(29)

for some filters208

{

αk,m (θ
∗, γ∗) , βk,m (θ

∗, γ∗)
}

= fk,m (θ
∗, γ∗)

Here δt, j is the Kronecker function and209

H1:210

1. {ek} is a sequence of independent rv’s with zero mean values and bounded moments of order 4+ δ, for δ > 0.211

2. The family of filters fk,m (θ
∗, γ∗), k = 1, 2, ... is uniformly stable for all k, θ∗, γ∗ with fk,m (θ

∗, γ∗) < µm and212

∑

m≥0
µm < ∞.213
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3. Natural outliers Ω j (θ
∗, γ∗) and φ j (θ

∗, γ∗) are bounded for all θ∗, γ∗ and j, sup
j,θ∗,γ∗

∣
∣
∣Ω j (θ

∗, γ∗)
∣
∣
∣ = Ω̂ and214

sup
j,θ∗,γ∗

∣
∣
∣φ j (θ

∗, γ∗)
∣
∣
∣ = φ̂.215

2.6.2. Stochastic differentiability216

In the literature, the standard asymptotic normality results for MLE requires that (4) be twice continuously217

differentiable, which is not the case here by the presence of the sign function. There exists, however, asymptotic218

normality results for non-smooth functions and we will hereafter use the one proposed by Newey and McFadden219

[31] and Andrews [6]. The basic insight of their approaches is that the smoothness condition of (4), W N(θ, γ)220

can be replaced by a smoothness of its limit, which in the standard maximum likelihood case corresponds to the221

expectation −Eln fH (εk (θ, γ)) = W(θ, γ), with the requirement that certain remainder terms are small. Hence,222

the standard differentiability assumption is replaced by a stochastic differentiability condition, which can then be223

used to show that the MLE θ̂HN is asymptotically normal. Recall that the derivative w.r.to θ of ρHγ is Ψk (θ, γ). If224

this function is differentiable in θ, one can establish the asymptotic normality of θ̂HN by expanding
√
N

(

θ̂HN − θ∗
)

225

about θ∗ using element by element mean value expansions. This is the standard way of establishing asymptotic226

normality of the estimator. In a variety of applications, however, Ψ k (θ, γ) is not differentiable in θ, or not even227

continuous, due to the appearance of a sign function. In such a case, one can still establish asymptotic normality228

of the estimator provided EΨk (θ, γ) is differentiable in θ. Since the expectation operator is a smoothing operator,229

EΨk (θ, γ) is often differentiable in θ, even though Ψk (θ, γ) is not.230

2.6.3. m-dependence231

Let us considerm a non-negative interger, then a sequence X v of randomvariables ism-dependent if X1, X2, ..., Xs232

is independent of Xk, Xk+1, ... provided k − s > m [32] [38]. Here, this approach is applied since the terms in233

∂θWN(θ, γ) are not independent. The purpose is to split the sum in (11) into one part that satisfies a certain in-234

dependence condition (m-dependence) among its terms and one part that is small. With assumptions H1, the235

dependence between distant terms will decrease. Thus, let us consider two following lemmas236

Lemma 1237

Consider the sum of doubly indexed rv’s
{

xk,N
}

such that S N =
N∑

k=1

xk,N , where Exk,N = 0 and
{

x1,N , ..., xs,N
}

,238

{

xk,N , xk+1,N , ..., xn,N
}

are independent for k − s > m. If239

lim
N→∞

sup

N∑

k=1

Ex2k,N < ∞ (30)

and240

lim
N→∞

N∑

k=1

E
∣
∣
∣xk,N

∣
∣
∣
2+δ

= 0, δ > 0, Lyapunov′s condition (31)
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, then S N is asymptotically normal distributed with zero mean and covariance matrix Q = lim
N→∞

ES NS
T
N
. See [32]241

and [38].242

Lemma 2243

Let S N = Zm,N + Xm,N , m,N = 1, 2, ... such that244

• EX2m,N ≤ Cm, limm→∞
Cm = 0.245

• P (

Zm,N ≤ z
)

= Fm,N(z).246

Then lim
m→∞

lim
N→∞

P
(
Zm,N ≤ z

)
= F(z). See [16] and [5].247

To prove the asymptotic normality of
√
N

(

θ̂HN − θ∗
)

, signal models, stochastic differentiability and m-dependence248

are required. Let us consider the following theorem249

theorem 2. Let ε1 (θ
∗, γ∗) , ..., εN (θ

∗, γ∗) be iid rv’s from the pdf fH with an unknown parameter θ
∗, θ∗ ∈ Dθ

c with250

Dθ
c a compactness and Ďθ

c interior ofDθ
c. Then the MLE θ̂

H
N of θ

∗ is asymptotically normal251

√
N

(

θ̂HN − θ∗
) d→ N (0,P (θ∗, γ∗)) (32)

where P (θ∗, γ∗) is the asymptotic covariance matrix given by (21).252

In order to do so, all the following assumptions hold. Suppose W N(θ̂HN , γ
∗) ≥ sup

θ∈DM ,γ∗∈Dγ
c

WN(θ, γ∗) − op
(

N−1
)

,253

θ̂H
N

prob
→ θ∗, and254

(i)W(θ, γ∗) is maximized on DM at θ∗255

(ii) θ∗ is an interior point of DM256

(iii)W(θ, γ) is twice differentiable at (θ∗, γ∗) with nonsingular second derivative ∂2
θθ
W
N
(θ, γ)257

(iv)
√
N (E∂θWN(θ, γ∗))θ̂H

N

d→ N (0,Q (θ∗, γ∗))258

(v) For any δN → 0, sup
‖θ̂HN−θ∗‖≤δN ,γ∗→Dγ

c

∣
∣
∣
∣
∣

R̂N(θ̂HN ,γ
∗)

1+
√
N‖θ̂HN−θ∗‖

∣
∣
∣
∣
∣

prob
→ 0 with the remainder259

R̂N (θ, γ∗) =
√
N
WN(θ, γ∗) −WN(θ∗, γ∗) − (∂θWN(θ, γ∗))θ∗ (θ − θ∗) −W(θ, γ∗) +W(θ∗, γ∗)

‖θ − θ∗‖ (33)

then
√
N

(

θ̂H
N
− θ∗

) d→ N (0,P (θ∗, γ∗)). The proof is given in Appendix A.260

3. Experimental results261

Experimental results are presented over 16 CO, 15 PD, and 19 HD, left and right feet for different estimation262

norms. The L2 norm corresponds to the LSE (least square estimation), L 1 norm to the least sum absolute deviation263

(LSAD) and L∞ norm to the supremum norm given by ( θ̂∞N = min
θ

max
t
|εt (θ, γ∗)|). In the Huberian context, a264

campaign of estimations is carried out in Cγ with γ∗ = 1.5 ([22]) and Eγ with 0.001 ≤ γ∗ ≤ 0.2. For each265

estimator, comparisons between CO vs PD and HD for left and right feet are given. Table. A.1 shows the means266
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of γ∗, RMSE, FIT (%), L2C(%), L1C(%) and the total number of parameters n = nA + nC . The RMSE is the267

root mean square error between process output and prediction model output. The FIT is given by 100
(

1 − y−ŷ
y−<y>

)

268

where y, ŷ and < y > are the process output, the prediction model output and the mean of the process output,269

respectively. L2C and L1C are the L2 and L1 contributions respectively given by L iC =
card[νi(θ̂HN ,γ

∗)]
N

. These are270

indicators of the density of NO in the prediction errors. If L 2C = 40% this means that 40% of prediction errors271

belong to the interval
[−γ∗, γ∗] and deal with the L2 norm in the Huberian function. Here, the threshold γ in E γ272

was varied among the range [0.001; 0.2] with an incremental step of 0.001 for CO, PD and HD. We focus on the273

main results in Table. A.1. First, the L2, L1 and L∞ norms give bad results with large RMSE, low FIT and large274

number of parameters between 40 and 70. The lacks of robustness and degree of freedom (DOF) in these norms275

lead to an overestimation of the number of parameters n. On the other hand, each FIT presents a low value. In C γ276

for γ∗ = 1.5, the number of parameters is reduced with 25 ≤ n ≤ 32 but not sufficient for a reduced order ARMA277

modeling. We can notice a great L2 contribution, meaning a too large contribution of the L 2 norm, very sensitive278

to the large NO in the prediction errors.279

The Huberian approach in Eγ leads to relevant results. Indeed, this remains in agreement with the formal point of280

view related to the bias and the new curve in section 2.3: low values of γ involve reduced bias and improve the FIT281

of the reduced order model. In Corbier and Carmona [15] we showed that the Huberian model order denoted d H
M

282

is such that dH
M
< d

L1

M
< d

L2

M
since the Huberian function has one DOF and can be tuned from γ, by improving the283

estimation and reducing the number of parameters for pseudolinear models.284

First we notice that < γ∗
control

>≈ 2 < γ∗
disease

>, meaning that there are twice more NO in STS-PD and STS-HD285

than STS-CO. Indeed, for PD and HD, the estimation requires a low value of γ ∗ involving a large value of the L1286

contribution close to 70%. For CO, γ∗ ≈ 0.19 and L1C ≈ 58%. Table. A.2 shows the parameters and variance287

of each parameter for CO and PD left with γ∗ = 0.05 and γ∗ = 0.003 respectively. For the variance/covariance288

matrix of these models, the large order L is equal to 10 ensuring a low computational cost of C k

(

θ̂HN , γ
∗
)

. Table.289

A.3 yields the coefficients ANm for m = 0..10. Figure. A.4 and A.5 show two ARMA models for left CO (γ ∗ = 0.05)290

and left PD (γ∗ = 0.003) respectively with a FIT close to 83%. In Figure. A.5 NO clearly appear in index-times291

k = 52, k = 113, k = 190 and k = 247 with high levels corresponding to the turn around during the walking period.292

In this phase, the classical estimators are highly disturbed and achieve sometimes the leverage point [22]. We can293

notice the good behavior of the Huberian reduced order ARMA model during this phase. Equation (34) shows the294

reduced order ARMA model of left PD for γ ∗ = 0.003.295

δtk = 0, 712δtk−1 + 0, 022δtk−2 + 0, 018δtk−3 + 0, 181δtk−4 + 0, 060δtk−5 + ek − 0, 236ek−1 − 0, 065ek−2 + 0.141ek−3

296

−0, 098ek−4 (34)
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The limited number of ARMA parameters contradicts conclusions in [20] and recently in [1]. These studies showed297

a stride intervals of normal human walking which exhibit long-range temporal correlations. They presented a298

highly simplified walking model by reproducing the long-range correlations observed in stride intervals without299

complex peripheral dynamics. Based on fractal approach they showed an important point of view related to the300

long-range memory effect of human walking. Our new approach shows a short-range memory effect for normal301

and disease human walking. It remains to investigate this memory effect and try to interpret in physiological terms302

the correlations with the CNS.303

4. Conclusion304

The main purpose of this paper has been to present a reduced order ARMA estimation method based on a305

robust approach using Huberian function for the neurodegenerative disorder signal modeling. A new approach306

has been presented to choose the threshold in Huberian function, allowing a best treatment of the natural outliers307

contained in the signals. The reduced number of parameters is due to a relevant choice of this threshold in a308

new interval range. Convergence and consistency properties of the robust estimator have been shown including309

stochastic differentiability andm-dependence approaches. An estimations campaign has been conducted from STS310

real measurements and it has been shown the relevance to use a Huberian function with DOF to tune its threshold in311

order to assess a reduced order ARMA model. However, it remains to characterize more appreciably the diseases312

to differentiate the neurodegenerative disorders. Accordingly, future work will focus on mixed L p estimator [15]313

to reduce the number of parameters providing new indicators and will investigate the memory effect of human314

walking.315
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Appendix A. Proof of the theorem 2316

(i): From Eln fH (εk (θ, γ
∗)), we can deduce that317

θ∗ = argmax
θ∈DM ,γ∗∈Dγ

c





−1

N

N∑

k=1

ρHγ (εk(θ, γ
∗))



 , as N → ∞ (A.1)

which is equivalent to318

argmin
θ∈DM ,γ∗∈Dγ

c





1

N

N∑

k=1

ρHγ (εk(θ, γ
∗))



 , as N → ∞ (A.2)

SinceW (θ, γ∗) = E
(

ρHγ (εk(θ, γ
∗))

)

, thenW (θ, γ∗) is maximized on DM at θ∗.319

(ii): The interior condition is equivalent to the assumption θ ∗ ∈ Dθ
c where Ďθ

c is the interior of DM .320

(iii): Using the stochastic differentiability condition, E∂2
ξξ
ρHγ (εk(θ

∗, γ∗)) = ∂2
ξξ
W (θ∗, γ∗) is invertible as N → ∞.321

(iv): Using the mean value theorem, we get322

(

E∂2
ξξWN(ξ, γ∗)

)

θ̃N

(

θ̂HN − θ∗
)

= (E∂θWN(θ, γ∗))θ̂H
N
− (E∂θWN(θ, γ∗))θ∗ (A.3)

with θ̂H
N
≤ θ̃N ≤ θ∗. For N → ∞, θ̃N → θ∗, (E∂θWN(θ, γ))θ∗ = 0 and lim

N→∞

(

E∂2
ξξ
WN(ξ, γ)

)

θ̃N
→ ∂2

θθ
W (θ∗, γ∗). One323

has324

√
N

(

θ̂HN − θ∗
)

=

(

∂2
θθ
W (θ∗, γ∗)

)−1 √
N (E∂θWN(θ, γ∗))θ̂H

N
(A.4)

The asymptotic normality of
√
N

(

θ̂HN − θ∗
)

only depends on the asymptotic normality of
√
N (E∂θWN(θ, γ∗))θ̂H

N
.325

Let us denote ∂θWN(θ, γ) = −1
N

∑

k∈ν2(θ,γ)

ψk(θ, γ)εk(θ, γ) − γ

N

∑

k∈ν1(θ,γ)

ψk(θ, γ)sk(θ, γ) =
1
N

N∑

k=1

Ψ̌k (θ, γ). Therefore,326

−
√
N (E∂θWN(θ, γ∗))θ̂H

N
=
√
N






1

N

N∑

k=1

[

Ψ̌k

(

θ̂HN , γ
∗
)

− EΨ̌k
(

θ̂HN , γ
∗
)]





−
√
N

1

N

N∑

k=1

Ψ̌k

(

θ̂HN , γ
∗
)

that is327

=
1
√
N

N∑

k=1

(

Ψ̌k

(

θ̂HN , γ
∗
)

− EΨ̌k
(

θ̂HN , γ
∗
))

− 1
√
N

N∑

k=1

Ψ̌k

(

θ̂HN , γ
∗
)

(A.5)

Let us denote S N (θ, γ∗) = 1√
N

N∑

k=1

(

Ψ̌k (θ, γ
∗) − EΨ̌k (θ, γ∗)

)

, then328

−
√
N (E∂θWN(θ, γ∗))θ̂H

N
=

(

S N
(

θ̂HN , γ
∗
)

− S N (θ∗, γ∗)
)

+ S N (θ∗, γ∗) − 1
√
N

N∑

k=1

Ψ̌k

(

θ̂HN , γ
∗
)

(A.6)

Since 1
N

N∑

k=1

Ψ̌k

(

θ̂H
N
, γ∗

)

= 0, the third term on the right hand side of (A.6) is o (1). Its first term is o (1) provided329

{S N (•, γ∗) ,N ≥ 1} is stochastically equicontinuous and θ̂HN
prob
→ θ∗. This follows because given any α > 0 and330
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β > 0, there exists a δ > 0 such that for ∆S
(

θ̂H
N
, θ∗, γ∗

)

= S N(θ̂H
N
, γ∗) − S N(θ∗, γ∗)331

lim
N→∞

P

(∣
∣
∣
∣∆S

(

θ̂HN , θ
∗, γ∗

)∣∣
∣
∣ > α

)

≤

332

lim
N→∞

P

(∣
∣
∣
∣∆S

(

θ̂HN , θ
∗, γ∗

)∣∣
∣
∣ ,

∥
∥
∥ρHγ (εk(θ̂

H
N ), γ∗) − ρHγ (εk(θ

∗), γ∗)
∥
∥
∥ ≤ δ

)

+ lim
N→∞

P
(∥
∥
∥ρHγ (εk(θ̂

H
N ), γ∗) − ρHγ (εk(θ

∗), γ∗)
∥
∥
∥ > δ

)

(A.7)333

≤ lim
N→∞

P



 sup
θ∈DM ,γ∗∈Dγ

c

|S N(θ, , γ∗) − S N(θ∗, γ∗)| > α


 < β (A.8)

where the second inequality uses θ̂H
N

prob
→ θ∗ and the third uses the stochastic equicontinuity. Accordingly, for a334

given threshold γ∗, this shows that for N tends to infinity, we have in law335

L
(√
N

(

θ̂HN − θ∗
))

∼
N→∞

L (S N(θ∗, γ∗)) (A.9)

with336

S N(θ∗, γ∗) =
1
√
N

N∑

k=1

(

d

dθ
ρHγ (εk(θ, γ

∗) − E d
dθ
ρHγ (εk(θ, γ

∗)

)

θ∗
(A.10)

The purpose is to prove that S N(θ∗, γ∗) is a normal asymptotic distribution. For this, we show that the terms of337

S N(θ∗, γ∗) are independent. As described above, we use them-dependence approach to show the asymptotic normal338

behavior of S N(θ∗, γ∗). Let us consider the following short expressions: ε νi,k (θ
∗, γ∗) = ε∗

i,k
, ft,k (θ

∗, γ∗) = f ∗
t,k

. We339

split ε∗
2,t

and ψ∗
2,t

into one part that satisfies m-dependence conditions among its terms and one part that is small.340

We then have341

ε∗2,t = ε
∗,m
2,t

+ ε̃
∗,m
2,t

+ ε∗1,t =
m∑

k=0

β∗t,ket−k +
∞∑

k=m+1

β∗t,ket−k +
∑

j

Ω∗
jδ
K
t, j (A.11)

where m is an integer with Ω∗
j = Ω j(θ

∗, γ∗) and δKt, j is the Kronecker’s function. Analogously, we have342

ψ∗2,t = ψ∗,m
2,t

+ ψ̃∗,m
2,t

+ ψ∗1,t =
m∑

k=0

α∗t,ket−k +
∞∑

k=m+1

α∗t,ket−k +
∑

j

φ∗jδ
K
t, j (A.12)

S N(θ∗, γ∗) can be written as S N(θ∗, γ∗) = Zm,N(θ∗, γ∗) + Xm,N(θ∗, γ∗) with343

Zm,N(θ∗, γ∗) =
1
√
N

N∑

t=1

(

d

dθ
ρHγ (εmt (θ, γ

∗)) − E d
dθ
ρHγ (εmt (θ, γ∗))

)

θ∗
(A.13)

344

Xm,N(θ∗, γ∗) =
1
√
N

N∑

t=1

d

dθ

[

ρHγ (εt(θ, γ
∗)) − ρHγ (εmt (θ, γ∗))

]

θ∗
− E d

dθ

[

ρHγ (εt(θ, γ
∗)) − ρHγ (εmt (θ, γ∗))

]

θ∗
(A.14)
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Part1:345

From (A.13) in Zm,N(θ∗, γ∗) and using the Lyapunov’s condition, we obtain346

E

∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ∗)) − E d

dθ
ρHγ (εmt (θ, γ

∗))

∣
∣
∣
∣
∣

δ+2

≤ 2δ+1E

(∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ∗))

∣
∣
∣
∣
∣

δ+2

+ E

∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ

∗))

∣
∣
∣
∣
∣

δ+2
)

(A.15)
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≤ 2δ+2E

∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ∗))

∣
∣
∣
∣
∣

δ+2

(A.16)

with348

∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ

∗))

∣
∣
∣
∣
∣

δ+2

≤ (
∣
∣
∣ψ
∗,m
2,t

∣
∣
∣

∣
∣
∣ε
∗,m
2,t

∣
∣
∣ + γ∗

∣
∣
∣ψ
∗,m
1,t

∣
∣
∣)δ+2 ≤ 2δ+1(

∣
∣
∣ψ
∗,m
2,t

∣
∣
∣
δ+2 ∣

∣
∣ε
∗,m
2,t

∣
∣
∣
δ+2

+ (γ∗)δ+2
∣
∣
∣ψ
∗,m
1,t

∣
∣
∣
δ+2

) (A.17)

We deduce349

2δ+2E
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∣
∣
∣
∣

d

dθ
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∣
∣
∣
∣
∣

δ+2

≤ 22δ+3E
∣
∣
∣ψ∗,m

2,t

∣
∣
∣
δ+2 ∣

∣
∣ε∗,m

2,t

∣
∣
∣
δ+2

+ 22δ+3(γ∗)δ+2E
∣
∣
∣ψ∗,m

1,t

∣
∣
∣
δ+2

(A.18)

Using Schwarz’s inequality350

2δ+2E

∣
∣
∣
∣
∣

d

dθ
ρHγ (εmt (θ, γ∗))

∣
∣
∣
∣
∣

δ+2

≤ 22δ+3
(

E
∣
∣
∣ψ∗,m

2,t

∣
∣
∣
2δ+4

E
∣
∣
∣ε∗,m

2,t

∣
∣
∣
(2δ+4)

) 1
2

+ 22δ+3(γ∗)δ+2
(

E
∣
∣
∣ψ∗,m

1,t

∣
∣
∣
2δ+4

) 1
2

(A.19)

The first and second terms on the right hand side of (A.19) are respectively denoted A ∗ and B∗.351

• For A∗: in ν2, for all t and θ∗,
∣
∣
∣ε
∗,m
2,t

∣
∣
∣ ≤ γ∗. Therefore352

E
∣
∣
∣ψ∗,m

2,t

∣
∣
∣
2δ+4 ≤ 22δ+3E |et−k |2δ+4





m∑

k=0

µk





2δ+4

(A.20)

From H1, we have E
∣
∣
∣ψ∗,m

2,t

∣
∣
∣
2δ+4 ≤ C∗ and A∗ ≤ C∗.353

• For B∗: fromH1 we get sup
t,θ∗,γ∗

∣
∣
∣ε
∗,m
1,t

∣
∣
∣ = Ω̂ and E

∣
∣
∣ψ
∗,m
1,t

∣
∣
∣
2δ+4

are bounded. Accordingly, B∗ ≤ C∗.354

355

Inserting

(

1√
N

)δ+2

, we finally obtain for all γ∗356

E

∣
∣
∣
∣
∣
∣

1
√
N

[

d

dθ
ρHγ (εmt (θ, γ

∗)) − E d
dθ
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]∣
∣
∣
∣
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≤ C

N1+ δ
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(A.21)

Then357

lim
N→∞

N∑
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E

∣
∣
∣
∣
∣
∣

1
√
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dθ
ρHγ (εmt (θ, γ
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∣
∣
∣
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≤ lim
N→∞

C

N
δ
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→ 0 (A.22)
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Expression (A.22) proves (30) and (31) in lemma 1 (section 2.6.3) with Q m (θ∗, γ) = lim
N→∞

EZm,N(θ∗, γ∗)ZT
m,N

(θ∗, γ∗).358

Part2:359

In Xm,N(θ∗, γ∗), we can write360

dρHγ (εt(θ, γ
∗))

dθ
−
dρHγ (εmt (θ, γ∗))

dθ
=
∂ρHγ (εt(θ, γ

∗))

∂εt(θ, γ∗)

∂εt(θ, γ
∗)

∂θ
−
∂ρHγ (εt(θ, γ

∗))

∂εt(θ, γ∗)

∂εmt (θ, γ
∗)

∂θ

361

+
∂ρHγ (εt(θ, γ

∗))

∂εt(θ, γ∗)

∂εmt (θ, γ∗)

∂θ
−
∂ρHγ (εmt (θ, γ∗))

∂εmt (θ, γ∗)

∂εmt (θ, γ∗)

∂θ
(A.23)

Therefore362

dρHγ (εt(θ, γ
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dθ
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dρHγ (εmt (θ, γ
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dθ
=
∂ρHγ (εt(θ, γ
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∂εt(θ, γ∗)
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∂εt(θ, γ
∗)

∂θ
−
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)
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+





∂ρHγ (εt(θ, γ
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∂εt(θ, γ∗)
−
∂ρHγ (εmt (θ, γ∗))

∂εmt (θ, γ∗)





∂εmt (θ, γ
∗)

∂θ
(A.24)

Using mean value theorem, we get364

∂ρHγ (εt(θ, γ
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∂εt(θ, γ∗)
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∗) − εmt (θ, γ∗)) (A.25)

Hence365 ∣
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∣
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∣
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From regularity conditions C1 in (see [25]) given by367

•
∥
∥
∥
∥
∂ρ(ε)

∂ε

∥
∥
∥
∥ ≤ C |ε|, θ ∈ DM, all t.368

•
∥
∥
∥
∥
∂ρ(ε)

∂θ

∥
∥
∥
∥ ≤ C |ε|2, θ ∈ DM, all t.369

•
∥
∥
∥
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∂2ρ(ε)
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∥
∥
∥
∥ ≤ C.370
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We then have372 ∣
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(A.27)

In detail374

∣
∣
∣
∣
∣

∂εt(θ, γ
∗)

∂θ
−
∂εmt (θ, γ

∗)

∂θ

∣
∣
∣
∣
∣
=

∣
∣
∣ψ̃mt (θ, γ∗)

∣
∣
∣ ≤

∞∑

k=m+1

∣
∣
∣α∗t,k

∣
∣
∣ |et−k | ≤

∞∑

k=m+1

µk |et−k| (A.28)
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and375
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Expression (A.27) becomes376

∣
∣
∣
∣
∣
∣
∣

dρHγ (εt(θ, γ
∗))

dθ
−
dρHγ (εmt (θ, γ∗))

dθ

∣
∣
∣
∣
∣
∣
∣

≤ C




∞∑

k=m+1

µk |et−k |




(

|εt(θ, γ∗)| +
∣
∣
∣ψmt (θ, γ∗)

∣
∣
∣

)

(A.30)

Moreover377
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Therefore378 ∣
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with379

αt = 2C
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 (A.33)

and380

βt = C





∞∑

k=m+1

µk |et−k |




2

(A.34)

Therefore381

Xm,N(θ∗, γ∗) ≤ 1
√
N
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Xα
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+
1
√
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︸                  ︷︷                  ︸

X
β

m,N
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(A.35)

Each term on the right hand side of (A.35) verifies the corollary of the lemma 2B.1 in [27](p.57). Hence, asm→ ∞382

E
(

Xαm,N(θ∗, γ∗)
)2
≤ K
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µk
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k=m+1

µk



 → 0 (A.36)

383

E
(

X
β

m,N
(θ∗, γ∗)

)2
≤ K
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k=m+1

µk





2

→ 0 (A.37)

Hence, Zm,N (θ∗, γ∗) ∈ AsN (0,Qm (θ∗, γ∗)) and S N (θ∗, γ∗) ∈ AsN (0,Q (θ∗, γ∗)) withQ (θ∗, γ∗) = lim
m→∞

Qm (θ∗, γ∗).384

Which proves the point (iv) of the Theorem 2.385

(v): ExpandingW(θ, γ∗) into Taylor series around θ∗, we get386

W(θ̂HN , γ
∗) = W(θ∗, γ∗) +

1

2

(

θ̂HN − θ∗
)T
∂2
θθ
W(θ∗, γ∗)

(

θ̂HN − θ∗
)

+ o

(∥
∥
∥θ̂HN − θ∗

∥
∥
∥
2
)

(A.38)
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Since ∂2
θθ
W(θ∗, γ∗) is positive definite and nonsingular, there exists C > 0 and a neighborhood of θ ∗ such that387

1

2

(
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∂2
θθ
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(

θ̂HN − θ∗
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∥
∥
∥
2
)

≤ C
∥
∥
∥θ̂HN − θ∗

∥
∥
∥
2

(A.39)

we obtainW(θ̂HN , γ
∗) ≤ W(θ∗, γ∗) +C

∥
∥
∥θ̂HN − θ∗

∥
∥
∥
2
. Moreover388
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(A.40)

Therefore389
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+
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(A.41)

Since
∥
∥
∥∂ξWN(ξ, γ∗)

∥
∥
∥
θ∗
→ 0 as N → ∞, then391
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(A.42)

The remainder R̂N
(

θ̂H
N
, γ∗

)

can be written as392
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∥
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then393
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Since
√
N

∥
∥
∥θ̂H
N
− θ∗

∥
∥
∥
prob
→ 0 then394
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which prove the point (v) and finally the theorem 2.395

[1] J. Ahn, N. Hogan, Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics, PLOS ONE, 8(9), 2013,396

pp. 2-10.397

[2] M.S. Aslam, M.A.Z. Raja, A new adaptive strategy to improve online secondary path modeling in active noise control system using398

fractional signal processing approach, Signal Processing 107, 2015, pp. 433-443.399

[3] A. Al-Smadi, A least-squares based algorithm for identification of non-gaussian ARMA models, Circuits Systems Signal Processing400

26(5), 2007, pp. 715-731.401

[4] K.E. Al-Qawasmi, A.M. Al-Smadi, A. Al-Hamami, A robust ARX and ARMA model order estimation via pivot-neighbors comparisons,402

20



Recent Patents on Computing Science. 3, 2010, pp. 33-38.403

[5] T.W. Anderson, On asymptotic distributions of estimated parameters of stochastic difference equation, Ann. Math. Stat., 30, 1959, pp.404

676-687.405

[6] D.W.K. Andrews, Large sample estimation and hypothesis testing, Handbook of Econometric, Elsevier Science 4, 1994, pp. 2248-2292.406

[7] V. Barnett, T. Lewis, Outliers in statistical data, 3rd ed. Wiley, 1998, New York.407

[8] P.M. Broersen, The quality of models for ARMA processes, IEEE Trans. Signal Process. 46(6), 1998, pp. 1749-1752.408

[9] Y. Chakhchoukh, A new robust estimation method for ARMA Models, IEEE Tran on Sig Pro. 58(7), 2010, pp. 3512-3522.409

[10] N.I. Chaudhary, M.A.Z. Raja, J.A. Khan, M.S. Aslam, Identification of input nonlinear control autoregressive systems using fractional410

signal processing approach, Hindawi Publishing Corporation, 2013. Article ID 467276. DOI:10.1155/2013/467276.411

[11] N.I. Chaudhary, M.A.Z. Raja, Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms, Nonlinear412

Dynamics, 2014. DOI:10.1007/s11071-014-1748-8.413

[12] C. Corbier, Contribution a l’estimation robuste de modeles dynamiques: application a la commande de systemes dynamiques complexes,414

Arts et Metiers ParisTech, Thesis, Nov, 29, 2012.415

[13] C. Corbier, M. El Badaoui, ARMA Modeling and Nonparametric Probability Density Function of Gait Signal Using L2 − L1 estimator in416

Patients with Neuro-Degenerative Disease, Computer Methods in Biomechanics and Biomedical Engineering, Taylor and Francis.... 39th417

Congress of the Societe de Biomecanique, Valenciennes, France, 27-29 August, 2014, 17(1), pp. 178-179.418

[14] C. Corbier, J-C. Carmona, Extension of the Tuning Constant in the Hubers Function for Robust Modeling of Piezoelectric Systems,419

International Journal of Adaptive Control and Signal Processing, August 2014. DOI:10.1002/acs.2517.420

[15] C. Corbier, J-C. Carmona Mixed Lp-estimators Variety for Model Order Reduction in Control Oriented System Identification, Hindawi421

Publishing Corporation Mathematical Problems in Engineering, July 2014. ID 349070.422

[16] P.H. Diananda, Some probability limit theorems with statistical applications, Proc. Cambridge Philos. Soc., 49, 1953, pp. 239-245.423

[17] A.J. Fox, Outliers in time series, Journal of the Royal Society, 34(3), 1972, 350-363.424

[18] A.S. Hadi, A.H.M. Rahmatullah Imon, M. Werner, Detection of outliers, John Wiley and Sons, Inc. Wires Comp Stat , 1, 2009, 57-70.425

[19] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, W.A. Stahel, Robust statistics: the approach based on influence function, John Wiley and426

Sons. New York, 1985.427

[20] J.M. Hausdorff, C.K. Peng, Z. Ladin, J.Y. Wei, A.L. Goldberger, Is walking a random walk? Evidence for long-range correlations in428

stride interval of human gait, Journal of Applied Physiology, 78(1), 1995, pp. 349-358.429

[21] J.M. Hausdorff, M.E. Cudkowicz, R. Firtion, J.Y. Wei, A.L. Goldberger, Gait variability and basal ganglia disorders:stride-to-stride430

variations of gait cycle timing in Parkinson’s disease and Huntington’s disease, Movement disorders, 13(3), 1998, 428-437.431

[22] P.J. Huber, E.M. Ronchetti, Robust statistics. 2th (Eds), New York, NY: John Wiley and Sons, 2009.432

[23] T. Iluz, E. Gazit, T. Herman, E. Sprecher, M. Brozgol, N. Giladi, A. Mirelman, J.M. Hausdorff, Automated detection of missteps during433

community ambulation in patients with Parkinson’s disease: a new approach for quantifying fall risk in the community setting, Journal of434

NeuroEngineering and Rehabilitation, 2014, 11-48.435

[24] Y-C. Lin, M. Gfoehler, M.G. Pandy, Quantitative evaluation of the major determinants of human gait. J. Biomech, 47, 2014, 1324-1331.436

[25] L. Ljung, Convergence analysis of parametric identification methods, IEEE Trans on Automatic Control, vol. AC-23, no.5, 1978, pp.437

770-783.438

[26] L. Ljung, P.E. Caines, Asymptotic Normality of prediction error estimators for approximate systems models, Stochastics, 3, 1979, 29-46.439

[27] L. Ljung, System identification: theory for the user, Prentice Hall PTR. New York, 1999.440

[28] S. Maiz, M. El Badaoui, F. Bonnardot, C.Serviere, New order cyclostationary analysis and application to the detection and characterization441

of a runner’s fatigue. Signal Processing 102, 2014, 188-200.442

[29] A.E. Martin, J.P. Schmiedeler, Predicting human walking gaits with a simple planar model, J. Biomech, 47, 2014, 1416-1421.443

21



[30] N. Muler, D. Pena, V.J. Yohai, Robust estimation for ARMA models, The Annals of Statistics, 37(2), 2009, pp. 816840.444

[31] W.K. Newey and D.L. McFadden, Large sample estimation and hypothesis testing, Handbook of Econometric, Elsevier Science 4, 1994,445

pp. 2113-2247.446

[32] S. Orey, A central limit theorem for m-dependent random variables, Duke Math.J., 25, 1958, pp. 543-546.447

[33] M.A.Z. Raja, N.I. Chaudhary, Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA448

systems, Signal Processing, 107, 2015, pp. 327-339. DOI:10.1016/j.sigpro.2014.06.015.449

[34] C. Ran, Z. Deng, Self-tuning distributed measurement fusion Kalman estimator for multi-channel ARMA signal, Signal Processing, 91,450

2011, pp. 2028-2041.451

[35] L. Ren, R.K. Jones, D. Howard, Predictive modeling of human walking over a complete gait cycle, J.Neurol., Neurosurgery, Psychiatry,452

79, 2007, 874-880.453

[36] R.T. Roemmich, P.R., Zeilman, M.S.O., Vaillancourt, C.J., Hass, Gait variability magnitude but not structure is altered in essential tremor,454

J. Biomech, 46(15), 2013, 2682-2687.455

[37] A.H. Ropper, R.H., Brown, Adams and Victor’s principles of neurology. 8th (Eds), McGraw-Hill, New York, NY, 2005.456

[38] B. Rosen, On a central limit theorem for sums of dependent random variables, Z., Wahrsch verw. Geb., 7, 1967, pp. 48-82.457

[39] N. Scafetta, D., Marchi, B.J., West, Understanding the complexity of human gait dynamics, Chaos, 19(2), 2009, 026108.458

[40] S. Sen Roy, S., Guria, Estimation of regression parameters in the presence of outliers in the response, Statistics, 25(5), 2009, 1000-1009.459

[41] S.M. Shah, R. Samar, M.A.Z. Raja, J.A. Chambers, Fractional normalized filtered-error least mean squares algorithm for application in460

active noise control systems, Electronics Letters 50 (14), 973-975, 2014. DOI: 10.1049/el.2014.1275.461

[42] J. Sian, M. Gerlach, M.B.H. Youdim, P., Riederer, Parkinson’s disease:a major hypokinetic basal ganglia disorder, J.Neural Transmission,462

106(5-6), 1999, 443-476.463

[43] Y. Wu, S., Krishnan, Statistical analysis of gait maturation in children using nonparametric probability density function. Entropy, 15,464

2013, 753-766.465

[44] F. Zacharia, M. El Badaoui, S. Maiz, F. Guillet, M. Khalil, K. Khalil, M. Halimi, Walking analysis: Empirical relation between kutosis466

and degree of cyclostationary, 2nd International Conference on Advances in Biomedical Engineering IEEE, 11-13 Sept, 2013, pp. 93-96.467

[45] K. Zhu and S. Ling , LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises, Chinese468

Academy of Science, Hong Kong University of Science and Technology, MPRA Paper No. 59099, 2014, pp. 2-33.469

22



300 350 400 450 500 550 600 650 700

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Index time

L
e
ft

 g
a
it
 s

ig
n
a
l 
(V

o
lt
)

Heel and Toe left gait signal

threshold

Stride

Swing

Stance

Heel

Toe

Figure A.1: Example of gait signals from heel and toe force sensors underneath the left foot. The threshold allows to compute the time-signals

δtk such as the stride, swing and stance.
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Figure A.2: Tuning function with two main intervals. The classical interval γ ∈ [1, 1.5] and the extended interval γ ∈ [0.001, 0.2].
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Table A.1: Means of γ∗, RMS E, FIT (%), L2C(%), L1C(%) and the total number of parameters n = nA + nC over 16 CO 15 PD and 19 HD

(left and right feet) for different estimation norms. L2 is the LSE, L1 is the LSAD, L∞ is the supremum norm. Cγ is the classical interval in the

Huber’s context with < γ∗ >= 1.5. Eγ is the extended interval in the Huber’s context with low values of γ∗.
CO left PD left

Estimator γ∗ RMS E FIT L2C L1C n γ∗ RMS E FIT L2C L1C n

L2 − 11.2 10 100 0 70 − 13 9 100 0 70

L1 − 4.3 42 0 100 41 − 5.2 38 0 100 46

L∞ − 4.2 25 − − 45 − 5.3 26 − − 56

Huber in Cγ 1.5 2.4 42 95 5 25 1.5 3.1 31 96 4 28

Huber in Eγ 0.17 0.09 92 41 59 9 0.09 0.34 78 30 70 9

CO right PD right

L2 − 10.2 9 100 0 70 − 13 9 100 0 70

L1 − 5.3 44 0 100 39 − 6.2 35 0 100 46

L∞ − 3.2 26 − − 46 − 5.5 28 − − 54

Huber in Cγ 1.5 2.3 44 96 4 27 1.5 3.3 31 96 4 30

Huber in Eγ 0.18 0.08 92 43 57 9 0.09 0.29 78 32 68 9

CO left HD left

L2 − 11.2 10 100 0 70 − 8 17 100 0 70

L1 − 4.3 42 0 100 41 − 4.1 36 0 100 44

L∞ − 4.2 25 − − 45 − 6.3 24 − − 54

Huber in Cγ 1.5 2.4 42 95 5 25 1.5 3.2 32 96 4 31

Huber in Eγ 0.17 0.09 92 41 59 9 0.08 0.28 78 29 71 9

CO right HD right

L2 − 10.2 9 100 0 70 − 13 9 100 0 70

L1 − 5.3 44 0 100 39 − 6.2 35 0 100 46

L∞ − 3.2 26 − − 46 − 5.1 32 − − 56

Huber in Cγ 1.5 2.3 44 96 4 27 1.5 3.5 29 95 5 32

Huber in Eγ 0.18 0.08 92 43 57 9 0.07 0.16 87 27 73 9
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Table A.2: Parameters of the CO (γ∗ = 0.05) and PD (γ∗ = 0.003) ARMA models and Huberian variance of each parameter λH .

CO left

i 1 2 3 4 5

ai −0, 877 −0, 152 0, 173 −0, 215 0, 073

ci −0, 236 −0, 065 0, 141 −0, 098 -

λHai 0.0021 0.0032 0.0015 0.0035 0.0026

λHci 0.0012 0.0075 0.0056 0.0074 -

PD left

i 1 2 3 4 5

ai −0, 712 −0, 022 −0, 018 −0, 181 −0, 060

ci −0, 166 0, 119 0, 160 0, 133 -

λHai 0.0031 0.0022 0.0095 0.0015 0.0086

λHci 0.0002 0.0005 0.0066 0.0024 -
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Table A.3: Coefficients ANm in the covariance matrix of the CO (γ∗ = 0.05) and PD (γ∗ = 0.003) ARMA models.

CO left

m 0 1 2 3 4 5 6 7 8 9 10

ANm 1 0.91 0.86 0.74 0.62 0.45 0.33 0.22 0.19 0.11 0.09

PD left

m 0 1 2 3 4 5 6 7 8 9 10

ANm 1 0.94 0.81 0.71 0.63 0.51 0.41 0.29 0.18 0.10 0.08
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Figure A.3: Gaussian ARMA model of the left STS (red line) vs CO real signal (black line). nA = 45, nC = 25, Fit = 9.5%.
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Figure A.4: Huberian ARMA model of the left STS (red line) vs CO real signal (black line). nA = 5, nC = 4, Fit = 82.7%, γ = 0.05, N = 253.
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Figure A.5: Huberian ARMA model of the left STS (red line) vs PD real signal (black line). nA = 5, nC = 4, Fit = 82.8%, γ = 0.003, N = 288.
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