Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal - Inserm - Institut national de la santé et de la recherche médicale Accéder directement au contenu
Article Dans Une Revue Signal Processing Année : 2015

Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal

Résumé

The purpose of this paper is to address the question of the existence of auto regressive moving average (ARMA) models with reduced order for neurodegenerative disorder signals by using Huberian approach. Since gait rhythm dynamics between Parkinson's disease (PD) or Huntington's disease (HD) and healthy control (CO) differ, and since the stride interval presents great variability, we propose a different ARMA modeling approach based on a Huberian function to assess parameters. Huberian function as a mixture of L 2 and L 1 norms, tuned with a threshold γ from a new curve, is chosen to deal with stride signal disorders. The choice of γ is crucial to ensure a good treatment of NO and allows to reduce the model order. The disorders induce disturbances in the classical estimation methods and increase of the number of parameters of the ARMA model. Here, the use of the Huberian function reduces the number of parameters of the estimated models leading to a disease transfer function with low order for PD and HD. Mathematical approach is discussed and experimental results based on a database containing 16 CO, 15 PD, and 19 HD are presented.
Fichier principal
Vignette du fichier
Huberian Approach for Reduced.pdf (570.41 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

inserm-01142514 , version 1 (15-04-2015)

Identifiants

Citer

Christophe Corbier, Mohamed El Badaoui, Hector Manuel Romero Ugalde. Huberian approach for reduced order ARMA modeling of neurodegenerative disorder signal. Signal Processing, 2015, 113, pp.273-284. ⟨10.1016/j.sigpro.2015.02.010⟩. ⟨inserm-01142514⟩
402 Consultations
837 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More