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Abstract 

In metastatic castration-resistant prostate cancer (mCRPC) clinical trials, the assessment 

of treatment efficacy essentially relies on the time-to-death and the kinetics of prostate-

specific antigen (PSA). Joint modelling has been increasingly used to characterize the 

relationship between a time-to-event and a biomarker kinetics but numerical difficulties 

often limit this approach to linear models. Here we evaluated by simulation the capability 

of a new feature of the Stochastic Approximation Expectation-Maximization algorithm in 

Monolix to estimate the parameters of a joint model where PSA kinetics was defined by a 

mechanistic nonlinear mixed-effect model. The design of the study and the parameter 

values were inspired from one arm of a clinical trial. Increasingly high levels of association 

between PSA and survival were considered and results were compared with those found 

using two simplified alternatives to joint model, a two-stage and a joint sequential model. 

We found that joint model allowed for a precise estimation of all longitudinal and survival 

parameters. In particular the effect of PSA kinetics on survival could be precisely 

estimated, regardless of the strength of the association. In contrast, both simplified 

approaches led to bias on longitudinal parameters and two-stage model systematically 

underestimated the effect of PSA kinetics on survival.  

In summary we showed that joint model can be used to characterize the relationship 

between a nonlinear kinetics and survival. This opens the way for the use of more complex 

and physiological models to improve treatment evaluation and prediction in oncology. 
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Introduction 

Prostate cancer is the second most frequently diagnosed cancer in men and is responsible 

for about 300 000 deaths worldwide every year [1]. Although treatment can be effective, 

a number of factors, such as resistance or delayed treatment (4% of cancer have 

metastasized at diagnosis [2]) considerably worsen the treatment outcome. In the case of 

metastatic castration-resistant prostate cancer (mCRPC), the evaluation of chemotherapy 

efficacy primarily relies on the overall survival [3] and is complemented by the analysis of 

the Prostate-Specific Antigen (PSA). Although countless studies have explored the 

relationship between different PSA kinetic parameters (such as doubling time or time to 

nadir) and survival, the choice of a clearly-defined parameter remains controversial.  

The lack of consensus on how to use PSA kinetics is exacerbated by the difficulty to 

properly handle PSA kinetics and the time-to-event (time-to-death or dropout) in statistical 

models. Several methods have been proposed in the literature. The simplest one is to 

plug the individual PSA kinetic parameters into a survival model [4]. However the fact that 

these parameters are often not directly observed from the data makes this approach error 

prone. A second approach is to use a model to describe the entire PSA kinetics using 

mixed-effect models to precisely account for between-subjects variability, and then to plug 

individual model predictions as covariates in a survival model [5,6]. However this method, 

called in the following “two-stage” approach, is prone to bias because it does not take into 

account the relationship between the marker’s kinetic and the time-to-event and the 

uncertainty in the individual model predictions [7]. In order to eliminate the bias found in 

the two-stage approach, one can use models which simultaneously, or “jointly”, handle 

longitudinal and time-to-event data [7–13]. For the latter, one can either aim to estimate 

all parameters simultaneously (“joint” model) or in a sequential manner (“joint sequential” 

model), as it has been suggested in the pharmacometric field [14].    

The main challenge in using joint model is the numerical complexity involved by the 

calculation and the maximization of the likelihood. This difficulty can be circumvented by 

using a linear model for the PSA kinetics as implemented in the large majority of published 
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models [7,15] or softwares [16]. However this precludes the use of physiologically more 

accurate models for PSA kinetics which are in essence nonlinear.  

In the last years, pharmacometric softwares have addressed the need for joint model 

when the longitudinal model is defined by a nonlinear mixed-effect model (NLMEM). This 

approach was firstly implemented in NONMEM using a Laplacian approximation of the 

likelihood and was essentially used to account for informative dropouts [17,18]. Recently 

the Stochastic Approximation Expectation-Maximization (SAEM) algorithm, a method 

relying on an “exact” calculation of the likelihood, was extended to include time-to-event 

data [19,20] in Monolix and NONMEM. 

Here we evaluated the benefit of joint models using the SAEM algorithm for characterizing 

the relationship between survival and a biomarker having a non-linear kinetics. We 

compared by simulation the precision and the type 1 error of longitudinal and survival 

parameters obtained using a joint, a joint sequential and a two-stage model in the context 

of a clinical study in mCRPC according to the strength of the association between PSA 

kinetics and survival. 

 

Models and notations 

A Mechanistic model for PSA kinetics 

In absence of treatment we assume that prostatic cells, C (mL-1), proliferate with rate r 

(day-1) and are eliminated with rate d (day-1). PSA (ng.mL-1) is secreted with a production 

rate p (ng.day-1) and cleared from the blood with rate δ (day-1). We suppose that a 

chemotherapy for mCRPC acts by blocking cell proliferation with time-varying 

effectiveness, e(t), and hence the proliferation rate under treatment is given by �� =
��1 − ��	
� with 0 ≤ ��	
 ≤ 1 (Figure 1): 

� ���� = ��1 − ��	

��	
 − ���	
	������ = ���	
 − �����	
																			 (1) 
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Treatment is initiated at t=0, PSA(0)=PSA0 and C(0)=C0 are PSA value and the number 

of prostatic cells at treatment initiation respectively. Here, treatment is assumed to be 

constantly effective until a certain time, Tesc, after what tumor escapes and treatment has 

no longer an effect: 

��	
 = ��			� 		 ≤ !"#$0			� 		 > !"#$    (2) 

Further, we made the assumption of quasi steady-state at treatment initiation and thus 

�& = '×���)*  . With this piecewise constant treatment effect (2), the model (1) has an 

analytical solution given by: 

����	, ,
 =
� '���)-�./0
/�1' 	��-�./0
/�
� + 3���& − '���)-�./0
/�1'4 �/'�																																					� 		 ≤ !"#$
'���)-/�1' 	��-/�
�/-05678 + 3����!"#$
 − '���)"�9�:;<
;=
>678-/�1' 4 �/'��/5678
										� 		 > !"#$							(3) 

Because only 4 parameters can be identified from Eq. 3 ,we fixed d to 0.046 day-1 , 

corresponding to a half-life of tumor cells of 15 days, consistent with an apoptotic index of 

5% in metastatic prostate cancer [21]. Moreover we fixed δ to 0.23 day-1, corresponding 

to a PSA half-life in blood of about 3 days [22]. Thus PSA kinetics was defined by the 

vector parameter ψ={r, PSA0, ε and Tesc}. 

Statistical model for PSA measurements 

Let yij denote the jth longitudinal measurement of log(PSA+1) for the individual i at time tij, 

where i=1, …, N, j=1, …, ni, N is the number of subjects and ni the number of 

measurements in subject i. The nonlinear mixed-effect model (NLMEM) for PSA is defined 

as follows: 

@AB = log�����	AB, ,A� + 1� + F�AB     (4), 

where PSA is given by the formula (3), ψi is the vector of the individual parameters and eij 

the residual error which follows a standard normal distribution with mean 0 and variance 

1. The vector of the individual parameters ψi is decomposed as fixed effects µ={r, PSA0, 

ε, Tesc} representing median effects of the population and random effects ηi specific for 

each individual. It is assumed that ηi∼N(0, Ω) with Ω the variance-covariance matrix. In 
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this work, Ω is supposed to be diagonal. Each diagonal element ωq2 represents the 

variance of the qth component of the random effect vector ηi. We assumed log-normal 

distribution for r, PSA0 and Tesc: 

log�ψH,A� = log�IH� + ηH,A 
and logit-normal distribution for ε: 

KLM�	��A
 = KLM�	�μ0
 + η0,A with KLM�	�O
 = log	P Q./QR for 0<x<1. 

The population parameters vector of PSA noted θl is composed of {µ, Ω, σ}. 

Statistical model for survival  

Let Xi denote the time to event and Ci the censoring time for the ith subject. Survival data 

(Ti, δi) are observed in all individuals, where Ti=min(Xi, Ci) and δT = 1, if	XT ≤CT, 0	otherwise. For the event process, we used a hazard function of the form: 

ℎA�	|����	, ,A
� = ℎ&�	
 exp�c����	, ,A
�     (5) 

where the baseline hazard function, h0, is a Weibull hazard function ℎ&�	
 = de P�eRd/.. The 

parameter β measures the strength of the association between the PSA kinetics and the 

risk of death. If β=0, the survival process is independent on the PSA evolution and survival 

data can be fitted by a Weibull model without adjusting for PSA. If β≠0, the survival 

process depends on the PSA kinetics. The survival parameters to estimate are θs={λ, k, 

β}. 

Joint model 

Joint models assume conditional independence: given the random effects ηi, longitudinal 

measurements and survival events are independent. All parameters, f = {fh, f#}  are 

simultaneously estimated. Thus the joint log-likelihood for subject i can be written as follow 

[23]: 

KA�f
 = log	j ��@A|kA; f
mℎA�!A|kA; f
'n�A�!A|kA; f
o��kA; f
�kA     (6) 
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where �A�	|kA ; f
 = exp P	−j ℎ&�p|kA ; f
exp	�c����p, ,A
�
& 
�pR  is the survival function 

conditionally on the random effects, ��@A|kA; f
 the density of the longitudinal observations 

conditionally on the random effects and ��kA; f
 the density of the random effects. 

Two-stage model 

In order to simplify the heavy calculations involved by Equation (6) one may also use a 

two-stage approach. In the first step PSA kinetics parameters (θl) are estimated assuming 

complete independence of PSA kinetic and survival and the Empirical Bayes Estimates 

(EBEs), defined as the mode of the conditional distribution ��,A|@A , fqh
, are used to provide 

individual parameters, noted ,qA . In the second step, the survival parameters (θs) are 

estimated maximizing the usual log-likelihood K�f#
 =

∑ KLM sℎA�!At����	, ,qA�; f#�
'n�A�!At����	, ,qA�; f#�uv

Aw. . 

This method is analogous to the sequential method called “Individual Pharmacokinetic 

Parameters” (IPP) used in pharmacometric field  to handle 

PharmacoKinetic/PharmacoDynamic (PKPD) data [14]. 

Joint sequential model 

In order to reduce the number of parameters to estimate in Equation (6), an alternative 

consists in first estimating population PSA kinetic parameters, as done in the two-stage 

model, and then estimating parameters related to survival (θs) fixing the all population 

PSA parameters (θl) in Equation (6) to the values obtained at the previous stage. This 

method, inspired  from the “Population PK parameter and individual PK data” for the 

combined analysis of PKPD data, has been shown to limit the bias compared to two-stage 

approach [14].  
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Simulation study 

Design 

Simulation setting was inspired by one arm of a phase III study of clinical development of 

chemotherapy for metastatic prostate cancer [3]. M=100 datasets with N=500 patients 

were simulated with PSA measurements every 3 weeks for 2 years (i.e., the last possible 

measurement time was at t=735 days), leading to a maximum of 36 observations per 

patient (Table I). Follow-up was censored at t=735 and no other mechanism than death 

was considered for dropout. For the simulation of the time to death, k was fixed to 1.5, 

and 3 values for β were considered: 0, 0.005 and 0.02, corresponding to ‘no link’, ‘low link’ 

and ‘high link’ between PSA kinetics and survival, respectively. In order to maintain a 

comparable amount of PSA measurements across scenarios, λ was determined in each 

scenario such that the probability of survival at the end of the follow-up (i.e., 735 days) 

was equal to 25% with the median PSA kinetic parameters (Table I), leading to λ=580, 

765 and 2150 in scenarios ‘No link’, ‘Low link’ and ‘High link’, respectively (Table II). Lastly, 

we evaluated the effects of having both a large baseline risk and a strong effect of PSA 

kinetics by setting β=0.02 and λ=580 in the scenario called ‘Short survival’. Figure 2 shows 

the survival functions for these 4 scenarios for the “median patient”, i.e., a virtual patient 

having PSA kinetic parameters equal to the median values in the population.  

In order to take into account the effect of withdrawals from PSA follow-up, we also 

explored additional scenarios where PSA and/or vital status were censored in case of 

PSA progression defined as an increase of 25% above the nadir and of at least 2 ng/ml 

compared to nadir (see supplementary file 1).  

All simulations were carried out with the R software version 3.0.1 [24]. 

Parameter estimation  

The estimation of two-stage, joint sequential and joint models was performed for each 

dataset and each scenario using the Stochastic Approximation Expectation-Maximization 

(SAEM) algorithm in the software Monolix version 4.2.2.  
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The initial values of the parameters were those used for the scenario ‘No link’. Minus twice 

log-likelihood (-2LL) was calculated by Importance Sampling, fixing the Monte-Carlo sizes 

to achieve a sufficient level of precision for Likelihood Ratio Test (LRT) to 100 000 Monte-

Carlo sizes for the scenario ‘No link’, 20 000 for the other scenarios in joint model and 

2 000 in two-stage model. 

SAEM was run using 1 chain and we verified that using 3 chains, as suggested in a related 

context [19], gave similar results. CPU (Central Processing Unit) times for parameters 

estimations and -2LL estimations were recorded on a i7 64bits 3.33GHz. 

Evaluation criteria 

We used Relative Estimation Errors defined by: xyy�fqz� = 	 {|};{∗{∗ × 100,	where f∗and fqz 

are the true and estimated parameters, respectively, for dataset m, m=1…M. Boxplots of 

the REEs with the 10% and 90% percentiles were plotted. When β=0 (scenario ‘No link’), 

the boxplot of the absolute estimation error, c�d, with the 10% and 90% percentiles were 

plotted .  

The type 1 error and power were calculated as the proportion among the M datasets for 

which LRT (called in the following “uncorrected LRT”) led to reject the null hypothesis H0: 

β=0. The type 1 error was evaluated in the scenario ‘No link’ and the power was calculated 

for the 3 other scenarios. The significance level of the tests α for the observed type 1 error 

was fixed to 0.05, leading to a 95% prediction interval for 100 replicates equal to [0.7%-

9.3%]. 

In some cases the estimation of -2LL, which relies on a stochastic approximation, was 

associated with a non-negligible standard error. Because this can lead to an inflation of 

the type 1 error, we also evaluated a “corrected LRT”. In this test H0 was rejected if 

−2����&
 + 2����.
 was larger than ��.� + ���p�/�����&
� + p�/�����.
�	; 	∞
 where -se-

2LL(H0) and se-2LL(H1) are the estimated standard error of -2LL under H0 and H1, 

respectively, whereas �.� and �� are the chi-squared value with 1 degree of freedom and 

the αth quantile of the standard normal distribution, respectively. 

�se/����H&
� + se/����H.
� is the uncertainty for the sum of the two estimated -2LL. We 

used a corrected LRT if ���p�/�����&
� + p�/�����.
�	 was non negligible compared to 
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�.�, i.e., for a significance level of 5%, p�/�����&
� or p�/�����.
� non negligible compared 

to 2. 

Results 

Simulated data 

Figure 3 shows the spaghetti-plots along with the Kaplan-Meier curves of one typical 

dataset for each of the 4 scenarios. Because the scenario ‘No link’ assumes that death 

does not depend on PSA kinetics, PSA rebound after loss of treatment efficacy (at time 

Tesc) was more frequently observed than in the 3 other scenarios. As expected (see 

methods), the numbers of measurements in the first 3 scenarios were largely similar 

(Table III). In the last scenario where both the baseline hazard function and the effect of 

PSA kinetics were large, early events frequently occurred and the total amount of PSA 

data was much smaller. 

Estimation performance 

No bias was observed in the scenario ‘No link’ regardless of the approach. In the two-

stage approach, increasing effect of PSA on survival led to higher levels of bias (Figures 

4 and 5). In particular there was a systematical underestimation of the PSA effect on 

survival with median (Q1;Q3) REE  for β equal to -8.4% (-12.6 ; -4.1), -14.8% (-18.9 ; -

10.2) and -9.1% (-16.7 ; -5.7) in scenarios ‘Low link’, ‘High link’ and ‘Short survival’, 

respectively. The bias was corrected by using joint sequential models or joint models, with 

median (Q1;Q3) REE for β of 0.005% (-3.6 ; 5.3), -0.6% (-3.3 ; 2.9) and 0.03% (-4.8 ; 5.7) 

in scenarios ‘Low link’, ‘High link’ and ‘Short survival’, respectively for this latter method. 

Although the three approaches led to low REEs for the almost all parameters of PSA 

kinetics (Figure 4), a bias was observed for the proliferation rate of tumor cells, r, with 

median (Q1;Q3) REE equal to -0.4% (-0.7 ; -0.05), -0.8% (-1.0 ; -0.5) and -1.2% (-1.8 ; -

0.7) in scenarios ‘Low link’, ‘High link’ and ‘Short survival’, respectively, when using the 

two-stage or joint sequential approach. Here as well, the bias was largely reduced when 

using a joint model, with median (Q1;Q3) REE for r equal to 0.01% (-0.4 ; 0.3), -0.004% 

(-0.3 ; 0.2) and -0.08% (-0.6 ; 0.5), in scenarios ‘Low link’, ‘High link’ and ‘Short survival’, 
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respectively. Of note large REE were found for the parameters λ and k (|REE|>30%) in 

the scenario ‘High link’ when using joint and joint sequential models, due to the presence 

of a local extremum of the likelihood function.  

Lastly we also considered additional scenarios where PSA data and/or vital status were 

censored in case of PSA increase (see supplementary file 1). Although the precision of 

the parameter estimates was deterioriated due to the reduction in the amount of data 

available no substantial bias in the PSA kinetic parameters was found. However bias was 

found in survival related parameters, in particular when both PSA and vital status were 

censored after disease progression and this bias systematically led to an overestimation 

of the hazard function. 

Test performance 

The uncorrected LRT led to a type 1 error of 21%, 9% and 12% for the joint model, the 

joint sequential model and the two-stage model, respectively, i.e., outside the 95% 

prediction interval ([0.7%-9.3%] for 100 replicates). The use of a corrected LRT (see 

methods) led to a smaller type 1 error of 4%, 3% and 12% for the joint model, the joint 

sequential model and the two-stage model, respectively. The reason why the type 1 error 

for the two stage model with or without correction were similar is due to the fact that the 

standard error of -2LL were negligible with this model (<10-4). For the scenarios with β≠0, 

the power was 100% with all three models, regardless of the correction. 

Computation time 

Mean CPU times for the simultaneous estimation of the 12 parameters using joint model 

were about 5 times larger than the total CPU times using two-stage model (70 vs 14 

minutes) and about 1.2 times larger than the total CPU times using joint sequential model 

(70 vs 59 minutes), ignoring time for specific data manipulation required for setting the 

two-stage and joint sequential approaches. Mean CPU times for the -2LL estimation using 

joint model (respectively joint sequential model) and 100,000 chains was about 3.1 

(respectively 3.6) times larger than when using the joint approach and 20,000 chains (264 

vs 86 minutes (respectively 207 vs 57 minutes)) but led to a mean se-2LL(H1) of 1.96  vs 

5.14 (respectively 2.40 vs 5.90). 
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Discussion 

Numerical complexities have long limited the use of joint models to longitudinal processes 

defined by linear mixed-effect models [7,10,15]. Here we evaluated by simulation, in the 

context of PSA and survival in metastatic prostate cancer, the capability of a new feature 

of the Stochastic Approximation Expectation-Maximization algorithm in Monolix to 

estimate the parameters of a joint model where the longitudinal process was defined by a 

nonlinear model. And we compared the results to two simplified approaches, two-stage 

and joint sequential models. 

We found that joint model provided unbiased parameters of both longitudinal and survival 

processes. In contrast, the use of a two-stage model [5,25] led to large biases when PSA 

kinetics and survival were linked. In particular, the impact of the biomarker kinetics on the 

survival, as measured by the link parameter β, was systematically underestimated, 

consistent with results found in linear mixed-effect model [8,9]. Beside survival 

parameters, a bias on the tumor proliferation rate, r, which is the driving force for the 

increase in PSA, was also observed in scenarios with β≠0. The fact that no such bias 

occurred when using joint model shows that the simultaneous estimation of the hazard 

function also improved the estimation of the longitudinal parameters. Moreover, a two-

stage approach led to an inflation of type 1 error (i.e., conclude to an effect of PSA on 

survival while there is none) which could be explained by the shrinkage of the EBEs in 

patients with short survival [26]. By construction the joint sequential model led to the same 

biases on PSA longitudinal parameters than the two-stage model, but the estimation of 

survival parameters was close to that obtained with the joint model. This, therefore, 

suggests that joint sequential model could be a relevant approach when joint model 

cannot be performed.  

In spite of the increasing numerical capability, the likelihood of joint models remains 

particularly complex to calculate. Here we reported that the likelihood was estimated with 

a relatively large uncertainty. Increasing the Monte-Carlo sizes led to smaller standard 

errors of the likelihood but considerably increased the computation time. The impact of 

this error on type 1 error was in part accounted by using a corrected likelihood ratio test 

(LRT). However more studies will be needed to precisely determine when this correction 
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is necessary and whether it can be improved. Here for instance the corrected rejection 

region did not take into account the covariance between the likelihood calculated under 

the null and alternative hypotheses. Although the Wald test may be an alternative, we 

found here that standard errors of the estimates tended to be smaller than the Root Mean-

Squared Errors (RMSE), indicating a potential underestimation of the standard errors. 

Furthermore, and in spite of the stochastic algorithm, the estimation of parameters related 

to survival was complicated in some cases by the existence of local extremum of the 

likelihood function. This stresses the need, in practice, to perform several runs of likelihood 

maximization using different initial values.   

The main advantage of nonlinear models is the possibility to develop physiological models 

based on nonlinear differential equations, which naturally integrate the correlations 

between the different biomarkers. In this study, we used a rather simple model where the 

treatment effectiveness was piecewise constant, which allowed us to derive a 

biexponential analytical solution for the PSA kinetics. However this model may clearly be 

over-simplistic and more complex models will be needed that rely on several markers, 

such as tumor size or drug pharmacokinetics. The facilitated use of these models via joint 

models holds the promise that the determinants of survival may be much better 

characterized [20].  

Regarding the survival model, we restricted here to a rather simple fully parametric model, 

where the baseline hazard function was a Weibull model [27] and the hazard function was 

related to the current PSA values. In practice complex survival models could be evaluated 

and standard tools for model selection (e.g., AIC or BIC) could be used to evaluate the 

effect of various transformations of the biomarker, such as the derivative or the cumulative 

value of PSA. Lastly with a fully parametric model the prediction and the simulation of the 

individual hazard function can easily be performed, making possible to guide treatment 

adaptation in a dynamic manner [28].  

Conclusion 

SAEM algorithm implemented in Monolix was shown to provide precise estimates for joint 

models where the longitudinal model was defined by a non-linear mixed-effect model. This 
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opens the way for a more systematic use of joint models and a better understanding of 

the relationship between biomarker kinetics and survival, especially in the field of 

metastatic cancer where survival and non-linear biomarker kinetics are intrinsically 

related. 
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Table I: Values of the population PSA parameters used for the simulations in all 

scenarios 

  Fixed 
effects 

Transformation Inter-individual  
standard deviation (ω) 

r (day-1) 0.05 log-normal 0.1 
PSA0 (ng.mL-1) 80 log-normal 0.6 

ε 0.3 logit-normal 1.5 
Tesc (day) 140 log-normal 0.6 

σ 0.36 - - 

 

 

Table II: Values of the population survival parameters used for the simulations of the 

4 scenarios 

 Scenario No 
link 

Scenario Low link Scenario High 
link 

Scenario Short 
survival 

β 0 0.005 0.02 0.02 
λ (day) 580 765 2150 580 

k 1.5 1.5 1.5 1.5 

 

 

Table III: Number of PSA measurements per patient and median survival in the total 

number of simulated (50000) patients for the 4 simulated scenarios 

Number of 
PSA 
measurements 

Scenario No 
link 

Scenario Low 
link 

Scenario High 
link 

Scenario Short 
survival 

1-5 7% 7% 8% 29% 
6-10 12% 13% 10% 20% 
11-20 26% 31% 22% 26% 
21-35 30% 29% 21% 17% 
36 24% 21% 39% 8% 
Median 
survival (day) 

457 414 552 217 
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Figure 1: Schema of the secretion of PSA by prostate and cancer cells. PSA is 

expressed in ng.mL-1 and C in mL-1. r is the rate of prostatic cells proliferation in 

absence of treatment (day-1), d the rate of prostatic cells elimination (day-1), p the rate 

of PSA secretion by C (ng.day-1), δ the rate of PSA elimination (day-1) and e(t) the time-

dependent treatment effect. 
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Figure 2: Typical evolution of PSA(t) (solid black) and survival functions in the typical 

patient (who have the fixed effects of the Table I as PSA parameter) for the scenarios 

‘No link’ (β=0, λ=580) (solid orange), ‘Low link’ (β=0.005, λ=765) (dashed green), ‘High 

link’ (β=0.02, λ=2150) (dotted blue) and ‘Short survival’ (β=0.02, λ=580) (dotdash 

purple)  
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Figure 3: Spaghetti-plots (black lines) and estimated Kaplan-Meier curves (colored 

lines) for one typical dataset (N=500) for each of the four scenarios 
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Figure 4: Boxplots of the relative estimation errors for parameters related to PSA for 

two-stage model (blue), joint sequential model (purple) and joint model (red), for the 4 

scenarios. Top left: scenario No link (β=0, λ=580), top right: scenario Low link 

(β=0.005, λ=765), bottom left: scenario High link (β=0.02, λ=2150) and bottom right: 

scenario Short survival (β=0.02, λ=580). 
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Figure 5: Boxplots of the relative estimation errors for parameters related to survival 

(in % except for β of the scenario No link for which estimated values are represented) 

for two-stage model (blue), joint sequential model (purple) and joint model (red), for 

the 4 scenarios. Top left: scenario No link (β=0, λ=580), top right: scenario Low link 

(β=0.005, λ=765), bottom left: scenario High link (β=0.02, λ=2150) and bottom right: 

scenario Short survival (β=0.02, λ=580). 
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Supplementary file 1: Impact of withdrawal from PSA follow-up on 

joint estimation 
 
 
 
 
 
It is frequent in clinical trial protocols that treatment is stopped when a disease progression 

(increase in PSA or tumor size, adverse events) is observed. When treatment is stopped, the 

patient may drop out of the study. Although the vital status may continue to be collected, the 

PSA measurements are no longer recorded in the study. 

 

Simulation framework 

 

For the sake of simplicity we consider here that a disease progression was only due to a PSA 

progression defined as an increase of 25% above the nadir and of at least 2 ng/ml compared 

to nadir. PSA data were removed accordingly in all datasets of the scenarios ‘No link’, ‘High 

link’ and ‘Short survival’ (see main analysis), leading to a dramatic decrease in the number of 

PSA measurements (Table S1).  

In order to assess the impact of withdrawal data, two cases were considered: 

� The vital status is known at the end of the study (scenarios ‘Withdrawal’) 

� The vital status is censored at the time of the disease progression (scenarios 

‘Withdrawal + censor’) 

 

Thus, in the first case the number of observed deaths is equal to that observed in the main 

analysis, and in the second case the number of observed deaths is much smaller that observed 

in the main analysis (scenarios ‘No withdrawal’). This results in much larger confidence interval 

for the Kaplan-Meier curves (Figure S1). 

 

Results 

 

The variability of the parameter estimates increases when patients withdrawal from PSA 

follow-up (Figures S2 and S3) which was expected because there is a smaller number of PSA 

measurements. PSA kinetic parameters (Figure S2) were not affected by withdrawal, with or 

without censor of vital status. However all three parameters related to survival were estimated 

with a bias in case of censor of survival (Figure S3): β and k tend to be overestimated while λ 
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tends to be underestimated. These trends led to an overestimation of the hazard function and 

hence an underestimation of the survival function. 

 

Conclusion  

 

Drop out caused by predefined levels of PSA progression does not affect the estimation of the 

parameters associated with PSA kinetics.  

Regarding survival parameters, a bias towards an overestimation of the hazard function may 

occur, in particular when not only PSA but also the vital status is not collected after disease 

progression. 
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Table S1: Number of PSA measurements per dataset and per patient and mean number of events per dataset in the total number of simulated 
datasets 

 
Scenario No link Scenario High link Scenario Short survival 

No 
withdrawal 

Withdrawal 
Withdrawal 
+ censor 

No 
withdrawal 

Withdrawal 
Withdrawal 
+ censor 

No 
withdrawal 

Withdrawal 
Withdrawal 
+ censor 

Number of PSA 
measurements per 
dataset 

11 104 3 062 3 062 12102 3488 3488 6 834 2 804 2 804 

Number of 
PSA 
measurements 
per patient 

1-5 7% 65% 65% 8% 64% 64% 29% 70% 70% 
6-10 12% 22% 22% 10% 21% 21% 20% 19% 19% 
11-20 26% 7% 7% 22% 7% 7% 26% 7% 7% 
21-35 30% 3% 3% 21% 3% 3% 17% 3% 3% 

36 24% 1% 1% 39% 4% 4% 8% 1% 1% 
Mean number of events 
per dataset 

379 379 66 305 305 36 462 462 145 
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Figure S1: Spaghetti-plots (black lines) and estimated Kaplan-Meier curves (colored solid lines) 
with their 95% confidence interval (colored dashed lines) for one typical dataset (N=500) for each 
scenario, without withdrawal (red curves), with withdrawal after PSA progression (pink curves) 
and with withdrawal and censor after PSA progression (grey curves). 
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Figure S2: Boxplots of the relative estimation errors for the parameters related to PSA for joint 
model without withdrawal (red), with withdrawal (pink) and with withdrawal and censor (gray) and 
for the 3 scenarios. Top: scenario No link (β=0, λ=580), middle: scenario High link (β=0.02, 
λ=2150) and bottom: scenario Short survival (β=0.02, λ=580). 
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Figure S3: Boxplots of the relative estimation errors for the parameters related to survival (in % 
except for β of the scenario No link for which estimated values are represented) for joint model 
without withdrawal (red), with withdrawal (pink) and with withdrawal and censor (gray) and for the 
3 scenarios. Top: scenario No link (β=0, λ=580), middle: scenario High link (β=0.02, λ=2150) and 
bottom: scenario Short survival (β=0.02, λ=580). 

 

 

 

 


