Probabilistic One Class Learning for Automatic Detection of Multiple Sclerosis Lesions

Yogesh Karpate 1 Olivier Commowick 1 Christian Barillot 1, *
* Auteur correspondant
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This paper presents an automatic algorithm for the detec- tion of multiple sclerosis lesions (MSL) from multi-sequence magnetic resonance imaging (MRI). We build a probabilistic classifier that can recognize MSL as a novel class, trained only on Normal Appearing Brain Tissues (NABT). Patch based intensity information of MRI images is used to train a classifier at the voxel level. The classifier is in turn used to compute a probability characterizing the likelihood of each voxel to be a lesion. This probability is then used to identify a lesion voxel based on simple Otsu thresholding. The pro- posed framework is evaluated on 16 patients and our analysis reveals that our approach is well suited for MSL detection and outperforms other benchmark approaches.
Type de document :
Communication dans un congrès
IEEE International Symposium on Biomedical Imaging (ISBI), Apr 2015, Brooklyn, United States. pp.486-489, 2015
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01127690
Contributeur : Olivier Commowick <>
Soumis le : mercredi 6 mai 2015 - 14:58:27
Dernière modification le : mercredi 29 novembre 2017 - 15:41:19
Document(s) archivé(s) le : mercredi 19 avril 2017 - 18:17:09

Fichier

Yogesh_ISBI_Camera_Ready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inserm-01127690, version 1

Citation

Yogesh Karpate, Olivier Commowick, Christian Barillot. Probabilistic One Class Learning for Automatic Detection of Multiple Sclerosis Lesions. IEEE International Symposium on Biomedical Imaging (ISBI), Apr 2015, Brooklyn, United States. pp.486-489, 2015. 〈inserm-01127690〉

Partager

Métriques

Consultations de la notice

173

Téléchargements de fichiers

708