Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant et al., Role of Peptide Hydrophobicity in the Mechanism of Action of ??-Helical Antimicrobial Peptides, Antimicrobial Agents and Chemotherapy, vol.51, issue.4, pp.1398-1406, 2007.
DOI : 10.1128/AAC.00925-06

R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren et al., Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the ??-conotoxin MII, Proc. Natl. Acad. Sci. USA, pp.13767-13772, 2005.
DOI : 10.1073/pnas.0504613102

N. Dong, Q. Ma, A. Shan, Y. Lv, W. Hu et al., Strand Length-Dependent Antimicrobial Activity and Membrane-Active Mechanism of Arginine- and Valine-Rich ??-Hairpin-Like Antimicrobial Peptides, Antimicrobial Agents and Chemotherapy, vol.56, issue.6, pp.2994-3003, 2012.
DOI : 10.1128/AAC.06327-11

E. M. Fozo, K. S. Makarova, S. A. Shabalina, N. Yutin, E. V. Koonin et al., Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families, Nucleic Acids Research, vol.38, issue.11, pp.3743-3759, 2010.
DOI : 10.1093/nar/gkq054

S. Ghafourian, M. Raftari, N. Sadeghifard, and Z. Sekawi, Toxin-antitoxin systems: classification, biological function and application in biotechnology, Curr. Issues Mol. Biol, vol.16, pp.9-14, 2013.

S. M. Gupta, C. C. Aranha, J. R. Bellare, and K. V. Reddy, Interaction of contraceptive antimicrobial peptide nisin with target cell membranes: implications for use as vaginal microbicide, Contraception, vol.80, issue.3, pp.299-307, 2009.
DOI : 10.1016/j.contraception.2009.03.012

M. Hartmann, M. Berditsch, J. Hawecker, M. F. Ardakani, D. Gerthsen et al., Damage of the Bacterial Cell Envelope by Antimicrobial Peptides Gramicidin S and PGLa as Revealed by Transmission and Scanning Electron Microscopy, Antimicrobial Agents and Chemotherapy, vol.54, issue.8, pp.3132-3142, 2010.
DOI : 10.1128/AAC.00124-10

C. Junkes, R. D. Harvey, K. D. Bruce, R. Dolling, M. Bagheri et al., Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action, European Biophysics Journal, vol.3, issue.2, pp.515-528, 2011.
DOI : 10.1007/s00249-011-0671-x

T. Katsu, C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota et al., Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.939, issue.1, pp.57-63, 1988.
DOI : 10.1016/0005-2736(88)90047-8

M. Laurencin, O. Tasseau, and M. Baudy-floc-'h, Asymmetric synthesis of suitably protected ??-hydroxy-aza-??3-homothreonine building blocks, Tetrahedron: Asymmetry, vol.20, issue.10, pp.1103-1105, 2009.
DOI : 10.1016/j.tetasy.2009.03.019

M. Laurencin, A. Mosbah, Y. Fleury, and M. Baudy-floc-'h, De novo cyclic pseudopeptides containing aza-b3-amino acids exhibiting antimicrobial activities, J. Med. Chem, vol.24, pp.10885-10895, 2012.
DOI : 10.1021/jm3009037

B. Legrand, M. Laurencin, J. Sarkis, E. Duval, L. Mouret et al., Structure and mechanism of action of a de novo antimicrobial detergent-like peptide, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.1, pp.106-116, 2011.
DOI : 10.1016/j.bbamem.2010.08.020

URL : https://hal.archives-ouvertes.fr/hal-00586809

A. K. Marr, W. J. Gooderham, and R. E. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook, Current Opinion in Pharmacology, vol.6, issue.5, pp.468-472, 2006.
DOI : 10.1016/j.coph.2006.04.006

A. J. Mcbroom and M. J. Kuehn, Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response, Molecular Microbiology, vol.117, issue.2, pp.545-558, 2007.
DOI : 10.1111/j.1365-2958.2006.05522.x

M. N. Melo, R. Ferre, and M. A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations, Nature Reviews Microbiology, vol.269, issue.3, pp.245-250, 2009.
DOI : 10.1038/nrmicro2095

J. T. Mika, G. Moiset, A. D. Cirac, L. Feliu, E. Bardají et al., Structural basis for the enhanced activity of cyclic antimicrobial peptides: The case of BPC194, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.9, pp.2197-2205, 2011.
DOI : 10.1016/j.bbamem.2011.05.001

C. Neveu, B. Lefranc, O. Tasseau, J. Do-rego, A. Bourmaud et al., -pseudopeptide Agonist, Journal of Medicinal Chemistry, vol.55, issue.17, pp.7516-7524, 2012.
DOI : 10.1021/jm300507d

URL : https://hal.archives-ouvertes.fr/hal-00807181

L. T. Nguyen, J. K. Chau, N. A. Perry, L. De-boer, S. A. Zaat et al., Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs, PLoS ONE, vol.8, issue.9, p.12684, 2010.
DOI : 10.1371/journal.pone.0012684.s001

M. Pinel-marie, R. Brielle, and B. Felden, Dual Toxic-Peptide-Coding Staphylococcus aureus RNA under Antisense Regulation Targets Host Cells and Bacterial Rivals Unequally, Cell Reports, vol.7, issue.2, pp.424-435, 2014.
DOI : 10.1016/j.celrep.2014.03.012

URL : https://hal.archives-ouvertes.fr/inserm-00976764

N. Sayed, A. Jousselin, and B. Felden, A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide, Nature Structural & Molecular Biology, vol.1, issue.1, pp.105-112, 2011.
DOI : 10.1038/nsmb.2193

URL : https://hal.archives-ouvertes.fr/inserm-00696345

N. Sayed, S. Nonin-lecomte, S. Rety, and B. Felden, Functional and Structural Insights of a Staphylococcus aureus Apoptotic-like Membrane Peptide from a Toxin-Antitoxin Module, Journal of Biological Chemistry, vol.287, issue.52, pp.43454-43463, 2012.
DOI : 10.1074/jbc.M112.402693

URL : https://hal.archives-ouvertes.fr/inserm-00762197

T. Schneider, A. Mü-ller, H. Miess, and H. Gross, Cyclic lipopeptides as antibacterial agents ??? Potent antibiotic activity mediated by intriguing mode of actions, International Journal of Medical Microbiology, vol.304, issue.1, pp.37-43, 2014.
DOI : 10.1016/j.ijmm.2013.08.009

S. Sundriyal, R. K. Sharma, R. Jain, and P. V. Bharatam, Minimum requirements of hydrophobic and hydrophilic features in cationic peptide antibiotics (CPAs): pharmacophore generation and validation with cationic steroid antibiotics (CSAs), Journal of Molecular Modeling, vol.16, issue.4, pp.265-278, 2008.
DOI : 10.1007/s00894-008-0268-1

M. Vaara, Novel derivatives of polymyxins, Journal of Antimicrobial Chemotherapy, vol.68, issue.6, pp.1213-1219, 2013.
DOI : 10.1093/jac/dkt039

M. Wenzel, A. I. Chiriac, A. Otto, D. Zweytick, C. May et al., Small cationic antimicrobial peptides delocalize peripheral membrane proteins, Proc. Natl. Acad. Sci. USA 111, pp.1409-1418, 2014.
DOI : 10.1073/pnas.1319900111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986158

D. Wildes, W. , and J. A. , Sampling the N-terminal proteome of human blood, Proc. Natl. Acad. Sci. USA, pp.4561-4566, 2010.
DOI : 10.1073/pnas.0914495107

M. Wilmes and H. Sahl, Defensin-based anti-infective strategies, International Journal of Medical Microbiology, vol.304, issue.1, pp.93-99, 2014.
DOI : 10.1016/j.ijmm.2013.08.007

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a