L. Yildirimer, N. T. Thanh, M. Loizidou, and A. M. Seifalian, Toxicology and clinical potential of nanoparticles, Nano Today, vol.6, issue.6, pp.585-607, 2011.
DOI : 10.1016/j.nantod.2011.10.001

M. Jonathan, H. Soucé, P. Marchais, and . Dubois, Molecular composition of iron oxide 361 nanoparticles, precursors for magnetic drug targeting, as characterized by confocal 362 Raman microspectroscopy, Analyst, pp.130-1395, 2005.

M. Marchais, K. Soucé, P. Hervé, I. Dubois, and . Chourpa, On the interaction of doxorubicin 365 with oleate ions: Fluorescence spectroscopy and liquid-liquid extraction study, Pharmaceutical Bulletin, vol.366, pp.55-1006, 2007.

P. Pouponneau, J. C. Leroux, G. Soulez, L. Gaboury, and S. Martel, Co-encapsulation of 368 magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue 369 targeting by vascular MRI navigation, Biomaterials, pp.32-3481, 2011.

. Zelphati, Magnetofection: Magnetically assisted & targeted nucleic acids delivery, Drug 372 Delivery Technology, pp.24-29, 2010.

A. L. Coates, Guiding Aerosol Deposition in the Lung, New England Journal of Medicine, vol.358, issue.3, pp.304-305, 2008.
DOI : 10.1056/NEJMcibr0707489

J. Ally, B. Martin, M. Behrad-khamesee, W. Roa, and A. Amirfazli, Magnetic targeting of 376 aerosol particles for cancer therapy, Journal of Magnetism and Magnetic Materials, vol.293, pp.377-442, 2005.

D. Upadhyay, S. Scalia, R. Vogel, N. Wheate, R. O. Salama et al., Chrzanowski, Magnetised thermo responsive lipid vehicles for targeted and controlled 380 lung drug delivery, Pharmaceutical Research, vol.379, pp.29-2456, 2012.
DOI : 10.1007/s11095-012-0774-9

C. Bittmann, T. Bergemann, L. Weyh, J. Trahms, C. Rosenecker et al., Targeted 383 delivery of magnetic aerosol droplets to the lung Nucleic acid 386 delivery using magnetic nanoparticles: The Magnetofection? technology, Therapeutic 387 Delivery, pp.495-384, 2007.

D. Mintzes, N. Deaver, R. Lotan, and . Langer, Large porous particles for pulmonary drug 393 delivery Development of an inhaled dry-powder 395 formulation of tobramycin using PulmoSphere technology, Science J Aerosol Med Pulm Drug, vol.394, issue.396, pp.276-1868, 1997.

D. Healy, B. F. Mcdonald, L. Tajber, and O. I. Corrigan, Characterisation of excipient- 398 free nanoporous microparticles (NPMPs) of bendroflumethiazide, European Journal of 399, Pharmaceutics and Biopharmaceutics, vol.24, issue.400, pp.175-182, 2008.

]. L. Nolan, J. Li, L. Tajber, O. I. Corrigan, and A. M. Healy, Particle engineering of 404 materials for oral inhalation by dry powder inhalers. II -Sodium cromoglicate, 405, European Journal of Pharmaceutical Sciences International Journal of Pharmaceutics, vol.3717, issue.406, pp.593-602, 2009.

]. F. Healy, L. Tewes, O. I. Tajber, C. Corrigan, A. M. Ehrhardt et al., Development and 413 characterisation of soluble polymeric particles for pulmonary peptide delivery, European 414 The role of the interface in carbon-fiber epoxy 416 composites, Evaluation of HP?CD-PEG microparticles for salmon calcitonin administration 411 via pulmonary delivery, pp.1887-1898, 1987.

. Demokritou, A novel platform for pulmonary and cardiovascular toxicological 419 characterization of inhaled engineered nanomaterials 680-690. 420 [22] R. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical 421 Research Particle Size Analysis in 423, Nanotoxicology, vol.2523, issue.422, pp.999-1022, 2008.

P. Applications, ]. P. Research24, J. G. Decarlo, D. R. Slowik, P. Worsnop et al., Particle 426 Morphology and Density Characterization by Combined Mobility and Aerodynamic 427 Diameter Measurements Part 1: Theory, Aerosol Science and Technology In Vitro Investigation of Drug 430 Particulates Interactions and Aerosol Performance of Pressurised Metered Dose Inhalers, 431 Measurement of the surface energy of 433 lubricated pharmaceutical powders by inverse gas chromatography Improving aerosolization 436 of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating 437 approach, [28] L.N. Okassa, H. Marchais, L. Douziech-Eyrolles, K. Hervé, S. Cohen-Jonathan, pp.424-203, 2004.

M. Munnier, C. Soucé, P. Linassier, I. Dubois, O. R. Chourpa et al., Optimization of iron oxide 440 nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles, 441 Review of Adhesion Fundamentals for Micron-Scale Particles, KONA 443 Powder and Particle Journal Nanomedicine for the management of lung and blood diseases Mucociliary and long- 447 term particle clearance in airways of patients with immotile cilia, European Journal of Pharmaceutics and Biopharmaceutics Nanomedicine Respiratory Research, vol.672930, issue.10, pp.31-38, 2006.

]. I. Chai33, H. D. El-sherbiny, and . Smyth, Particokinetics and extrapulmonary translocation of intratracheally instilled ferric 451 oxide nanoparticles in rats and the potential health risk assessment Controlled release pulmonary administration of 454 curcumin using swellable biocompatible microparticles Swellable microparticles as carriers for 456 sustained pulmonary drug delivery, Toxicol Sci. Mol Pharm J Pharm Sci C.J. Fee Biotechnology and Bioengineering, vol.10735, issue.99, pp.452-342, 2007.

J. M. Harris, R. B. Chess, J. Pauluhn, K. Müller, J. N. Skepper et al., Subchronic inhalation toxicity of iron oxide (magnetite, Fe3O4) in rats: 462 pulmonary toxicity is determined by the particle kinetics typical of poorly soluble 463 particles Effect of ultrasmall superparamagnetic iron 466 oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro, Magnetic aerosol targeting of nanoparticles 469 to cancer: nanomagnetosols, Methods in molecular biology, pp.214-221, 2003.