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Matrix completion that estimates missing values in visual data is an important topic in computer vision. Most of the recent studies
focused on the low rank matrix approximation via the nuclear norm. However, the visual data, such as images, is rich in texture
which may not be well approximated by low rank constraint. In this paper, we propose a novel matrix completion method, which
combines the nuclear norm with the local geometric regularizer to solve the problem of matrix completion for redundant texture
images. And in this paper we mainly consider one of the most commonly graph regularized parameters: the total variation norm
which is a widely used measure for enforcing intensity continuity and recovering a piecewise smooth image. 	e experimental
results show that the encouraging results can be obtained by the proposed method on real texture images compared to the state-
of-the-art methods.

1. Introduction

	e problem of matrix completion, which can be seen as
the extension of recently developed compressed sensing (CS)
theory [�…
 ], plays an important role in the �eld of signal
and image processing [� …�� ]. 	is problem occurs in many
real applications in computer vision and pattern recognition,
such as image inpainting [�� , �
 ], video denoising [�� ], and
recommender systems [�� , �� ]. Reconstruction algorithms
for matrix completion have received much attention. Cai et
al. [�� ] proposed an algorithm, namely, the singular value
thresholding (SVT) algorithm for matrix completion and
related nuclear norm minimization problems. In [�� ], a
simple and fast singular value projection (SVP) algorithm
for rank minimization with a
ne constraints is exploited.
Keshavan et al. [�� ] dealt with the matrix completion based
on singular value decomposition followed by local manifold
optimization. In order to achieve a better approximation of
the rank of matrix, Hu et al. [�� ] presented an approach
based on the truncated nuclear norm regularization (TNNR),
which is de�ned by the di�erence between the nuclear norm

and the sum of the largest few singular values. Since most
of the existing matrix completion models aim to solve the
low rank optimization via nuclear norm, we recall here this
model. For an incomplete matrixM � R�×� of rank � , the
model can be described as follows:

min
X

rank(X) s.t. X� = M� , (�)

whereX � R�×� andM� = M�� , (�, �) � � , and� is the set
of locations corresponding to the observed entries.

Unfortunately, the rank minimization problem in (�) is
an NP-hard one, so the following convex relaxation is widely
used:

min
X

� X� � s.t. X� = M� , (�)

where� � � � is the nuclear norm given by

� X� � =
min(�,�)

	
�=1


 � , (
)

where
 � denotes the� th largest singular value ofX.

�)�J�O�E�B�X�J���1�V�C�M�J�T�I�J�O�H���$�P�S�Q�P�S�B�U�J�P�O
�"�C�T�U�S�B�D�U���B�O�E���"�Q�Q�M�J�F�E���"�O�B�M�Z�T�J�T
�7�P�M�V�N�F�����������
���"�S�U�J�D�M�F���*�%���������������
�������Q�B�H�F�T
�I�U�U�Q�������E�Y���E�P�J���P�S�H����������������������������������������
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In this paper, our objective is to exploit the intrinsic
geometry of the data distribution and incorporate it as
an additional regularization term to deal with the images
which are rich in texture. 	e total variation (TV) norm
has demonstrated its usefulness as a graph regularizer in the
�eld of image processing, so we propose here a method that
combines the nuclear norm with the linear TV approximate
norm to solve the problem of matrix completion. We call
it the linear total variation approximate regularized nuclear
norm (LTVNN) minimization problem. 	is combination
optimization problem will be solved by simple and e
cient
optimization scheme based on the alternating direction
method of multipliers (ADMM) model [�� , �� ].

	e paper is organized as follows. In the next section,
we introduce the proposed LTVNN model and we describe
the optimization schemes. InSection 
, we establish the
convergence results for the iterations given inSection �.
Experimental results on a set of images are provided in
Section �. Finally, we draw some conclusions inSection �.

2. Proposed Method

�.�. Some Preliminaries.	e total variation along the vertical
and horizontal directions can be described as

� V
�,� (X) = 


X�,� Š X�+1,� , 1 � � < �
0, � = �,

(�)

� 	
�,� (X) = 


X�,� Š X�,�+1 , 1 � � < �
0, � = �.

(�)

So the total variation ofX is the summation for the magnitude
of the gradient of each pixel [�� ]:

� X� TV = 	
�,�

� �� V
�,� X�

2
+ �� 	

�,� X�
2
. (�)

And the equvalent total variation formula as follows:

� X� TV = 	
�,�

�
������

V
�,� X

����� +
������

	
�,� X

������ . (�)

Here, we use the linear total variation approximate of (� ) to
approximate the second kind of total variation; that is,

� X� LTVA = 	
�,�

��� V
�,� X�

2
+ �� 	

�,� X�
2
� . (�)

�.�. Proposed Model.As mentioned above, the key point of
the proposed approach is the combination of the nuclear
norm and the linear total variation approximate norm;
therefore, the optimization problem is described as

min
X

�1 Š �� � X� � + � � X� LTVA s.t. X� = M� , (�)

where0 � � � 1 is a penalty parameter,� X� � is the nuclear
norm de�ned in (
 ), and � X� LTVA is linear total variation

norm approximate de�ned in (� ), which can be reformulated
as

� X� LTVA = Tr �� X Š X� 1� � X Š X� 1�

 �

+ Tr �� X Š � 2X� � X Š � 2X� 
 �

= ���� �X Š X� 1�
����

2
� + ���� �X Š � 2X� ����

2
� ,

(��)

where •TrŽ means the trace of the matrix,� � � � denotes the
Frobenius norm of the matrix, and� 1 and� 2 are, respectively,
the column and row transform matrix given by

� 1 =

�
�
�
�
�
�
�
�

 

0 0 0 � � � 0
1 0 � � � 0
0 1 0 0
...

... d
...

0 0 � � � 1!"""""""""#"""""""""$
(�Š1 )×(�Š1 )

0
0
...
1

%
&
&
&
&
&
&
&

' �×�

,

� 2 =

�
�
�
�
�
�
�
�
�
�

 

(� Š 1 ) × (� Š 1 )
0

*---------/---------2
1 0 � � � 0

0 0 1 0 0

0 ...
... d

...
... 0 0 � � � 1
0 0 0 � � � 1

%
&
&
&
&
&
&
&
&
&

' �×�

.

(��)

So, the problem in (� ) can be rewritten as

min
X

�1 Š �� � X� � + � ���� �X Š X� 1�
����

2
�

+ � ���� �X Š � 2X� ����
2
�

s.t. X� = M� .

(��)

�.�. 
e Optimization Scheme. 	e alternating direction
method of multipliers-ADMM [�� , �� ] is an e
cient and
scalable optimization model which exploits the structure of
the optimization problem. In this section, we use ADMM to
deal with the problem in (�� ), which can be reformulated as

min
X,W

�1 Š �� � X� � + � ���� �W Š W� 1�
����

2
�

+ � ���� �W Š � 2W� ����
2
�

s.t. X = W, W� = M� ,

(�
)

where�( W Š W� 1)�
2
� and �( W Š � 2W)� 2

� are the indicator
functions. 	e augmented Lagrange function of (�
 ) is

L (X,Y,W, 3) = �1 Š �� � X� � + � ���� �W Š W� 1�
����

2
�

+ � ���� �W Š � 2W� ����
2
� +

3
4

� W Š X� 2
�

+ Tr � Y
 (W Š X)� ,

(��)

where3 > 0 is the penalty parameter andY is the multiplier.
	e solution can be obtained by incorporating the solutions
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of each regularization problem separately which are de�ned
as follows.

Row TV is as follows:

L � (XR,YR,WR, 3)

= �1 Š �� � XR� � + � ���� �WR Š � 2WR� ����
2
�

+
3
4

� WR Š XR� 2
� + Tr � YR
 (WR Š XR)� ,

(��)

whereXR denotes the optimization result along the
vertical direction of the total variation de�ned in (� ).

Column TV is as follows:

L 
 (XC,YC,WC, 3)

= �1 Š �� � XC� � + � ���� �WC Š WC� 1�
����

2
�

+
3
4

� WC Š XC� 2
� + Tr � YC
 (WC Š XC)� ,

(��)

whereXC denotes the optimization result along the
horizontal direction of the total variation de�ned in
(� ).

We deal with column linear TV optimization problem in
(�� ) by the following steps in each iteration.

Step �(initial setting). XC1 = M� , WC1 = XC1, YC1 = XC1,
with the tolerance5.

Step �(computingXC�+1 ). FixWC� andYC� , and minimize
(�� ) for obtainingXC�+1 as

XC�+1 = arg min
X

�1 Š �� � XC� � + � ���� �WC� Š WC� � 1�
����

2
�

+
3
4

���� WC Š XC�
����

2
� + Tr � YC


� �WC Š XC� �� .

(��)

Ignoring the constant terms, (�� ) can be rewritten as

XC�+1 = arg min
X

�1 Š �� � XC� �

+
3
4

�������
XC Š 6WC� +

1
3

YC� 7
�������

2

�
.

(��)

To solve (�� ), Cai et al. [�� ] introduce the so�-thresholding
operatorD � which is de�ned as follows:

D � (X) := UD � (8) V
 ,

D � (8) = diag9max�
 � Š ;� +? ,
(��)

where@+ = max(0, @).
Using the operatorD � in (�� ), the solution of (�� ) can be

obtained as

XC�+1 = D (1Š�)/� 6WC� +
1
3

YC� 7 . (��)

Step �(computingWC�+1 ). FixXC�+1 andYC� and calculate
WC�+1 as follows:

WC�+1 = arg min
W

L �XC�+1 ,YC� ,WC, 3� (��)

which is a quadratic function ofWC and can be easily solved
by setting the derivation ofL (XC�+1 ,YC� ,WC, 3) to zeros,
and then we get

WC�+1 = �3XC�+1 Š YC� �

× �4� � I Š � 1 Š � 

1 + � 


1 � 1� + 3 I �×� �
Š1

.
(��)

	en we �x the values at the observed entries:

WC�+1 = �WC�+1 � � �
+ M� , (�
)

where� � denotes the set of the missing entries.

Step 	(computingYC�+1 ). FixXC�+1 andWC�+1 and calcu-
lateYC�+1 as follows:

YC�+1 = YC� + 3 �WC�+1 Š XC�+1 � . (��)

Until the stop condition:� XC�+1 Š XC� � � � 5 .

Row TV problem de�ned by (�� ) can be solved in a similar
way to that of column TV problem. 	e only di�erence is the
WR�+1 in the second step, which is given by

WR�+1 = �4� � I Š � 2 Š � 

2 + � 


2 � 2� + 3 I �×� �
Š1

× �3XR�+1 Š YR� � .
(��)

And the stop condition is� XR�+1 Š XR� � � � 5 .
Finally, we obtainedX�+1 as the average ofXC�+1 and

XR�+1 ; that is,

X�+1 =
XC�+1 + XR�+1

4
. (��)

3. Convergence Analysis

In this section, we give the proof of the convergence of
column total variation (�� ) and the convergence of row total
variation is similar to the column total variation. Here, the
objection function (�� ) about column variation is as follows:

min
X

A� (X)

s.t. X� = M�

A� (X) = ; � X� � +
1
4

Tr �� X Š X� 1� � X Š X� 1�

 � ,

; =
1 Š �
4�

.

(��)

Lemma �. LetZ � BA� (X) andZ� � BA� (X� ). 
en

CZ Š Z� ,X Š X� D E
����� X Š X� �����

2

�
. (��)


e details of the proof can be found in [�� ].
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(a) Original image (��� × ���) (b) Random masked image (c) � = 0 , PSNR: �.�
�

(d) � = 0.5 , PSNR: ��.��
 (e) � = 1 , PSNR: �.��
 (f) Word masked image

(g) � = 0 , PSNR: ��.��� (h) � = 0.5 , PSNR: 

.��� (i) � = 1 , PSNR: ��.���

F����� �: 	e recovered results with ��% random mask and word mask for � = 0 , �.� and � by LTVNN.

�eorem �. Assuming that the sequence of step size obeys
0 < inf 3� < sup3� < (4� F� ), � = G(X� Š X� )(I Š � 1 Š

� 

1 + � 1�



1 ),X� Š X� Hand� = � X� Š X� �

2
� . Here,X� denotes

the optimization result andX� denotes the� th iteration object
variable; then by the iteration procedure de�ned inSection �.�,
we can obtain the unique optimization result, that is,X� . And
the details of the proof can be found in the Appendix.

4. Experiments

In this section, we test the proposed method on a set of
images. 	e algorithm was implemented with MATLAB
programming language on a PC machine, which sets up

Microso� Windows � operating system and has an Intel Core
I� CPU with speed of �.�� GHz and � GB RAM.

We deal with three channels (�, I, J ) of color images
separately and combine the results together to get the �nal
outcome. We use peak signal-to-noise ratio (PSNR) values to
evaluate the performance:

PSNR= 10 ×log10 K
4LL2

MSE
M , (��)

where MSE denotes mean squared error,

MSE=
1

N��
� error2 (� ) + error2 �I� + error2 (J)� . (
�)
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F����� �: 	e recovered PSNR for Pepper under di�erent random
sample ratio and word mask sample with� from � � to � by LTVNN.
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F����� 
: Recovered PSNR for Pepper under� = 0.L with di�erent
random sample ratio by LTVNN, TNNR, SVT, SVP, and OptSpace.

In the experiments, we consider two situations: random
mask sample and word mask sample.Figure � describes the
recovered results with ��% random mask and word mask for
� = 0, 0.L and � by LTVNN. Figure � shows the recovered
PSNR for Pepper under di�erent random sample ratios and
word mask sample for� from � to � with step of �.� by
LTVNN. It can be observed from these two �gures that the
best result is obtained for the value of� near to �.�, which
corresponds to the case where the two norms (nuclear and
LTV) are equivalently used in (� ). For the two extreme cases:
� = 0 (only the nuclear norm is taken into consideration)
and� = 1 (only the linear total variation approximate norm
is considered), the algorithm loses its e
ciency.

We also compare our method (LTVNN) with other
matrix completion methods including TNNR [�� , �� ], SVT
[�� ], SVP [�
 ], and OptSpace [�� ]. Figure 
plots the recovered
PSNR for Pepper for� = 0.L with di�erent random sample
ratios (from ��% to ��%) by LTVNN and other four methods
(TNNR, SVT, SVP, and OptSpace). It can be seen from
Figure 
 that the proposed LTVNN method achieves much
higher PSNR than the other methods.Figure � shows the
comparison of PSNR of recovered methods for Lena under
word mask with� = 0.L by LTVNN and the other methods.
Table � lists the PSNR results under word mask sample with
� = 0.L for di�erent images by LTVNN and the other
methods. FromFigure � and Table �, we can see that the
proposed method outperforms the other matrix completion
methods under word mask for di�erent images.

5. Conclusion

In this paper, we have proposed a new model that combines
the nuclear norm and total variation norm for the matrix
completion problem, which was then solved by ADMM
model. Experimental results demonstrate the e�ectiveness of
the proposed algorithm compared to other methods.

Appendix

Before we give the proof of	eorem � , we supplement one
proof about

C�X Š X� � � I Š � 1 Š � 

1 + � 1�



1 � , X Š X� D E 0. (A.�)

Without loss of generality, we take an example matrixO =
(X Š X� ) � R4×4 and the corresponding transform matrix

(I Š � 1 Š � 

1 + � 1�



1 ) = P

2 Š1 0 0
Š1 2 Š1 0
0 Š1 2 0
0 0 0 0

Q. 	en,

Tr �� � Š � 1 Š � 

1 + � 


1 � 1� O

 O�

= 4 �O2
1,1 + O2

2,1 + O2
3,1 + O2

4,1�

Š �O1,1O1,2 + O2,1O2,2 + O3,1O3,2 + O4,1O4,2�

+ 4 �O2
1,2 + O2

2,2 + O2
3,2 + O2

4,2�

Š �O1,1O1,2 + O2,1O2,2 + O3,1O3,2 + O4,1O4,2�

Š �O1,2O1,3 + O2,2O2,3 + O3,2O3,3 + O4,2O4,3�

+ 4 �O2
1,3 + O2

2,3 + O2
3,3 + O2

4,3�

Š �O1,2O1,3 + O2,2O2,3 + O3,2O3,3 + O4,2O4,3�

= �O2
1,1 + O2

2,1 + O2
3,1 + O2

4,1� + �O1,1 Š O1,2�
2

+ �O2,1 Š O2,2�
2 + �O3,1 Š O3,2�

2 + �O4,1 Š O4,2�
2

+ �O1,2 Š O1,3�
2 + �O2,2 Š O2,3�

2 + �O3,2 Š O3,3�
2

+ �O4,2 Š O4,3�
2 + �O2

1,3 + O2
2,3 + O2

3,3 + O2
4,3�

E 0,

(A.�)
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(a) Original image (��� × ���) (b) Word masked image (c) LTVNN (PSNR: 
�.���)

(d) TNNR (PSNR: 
�.���) (e) SVT (PSNR: 
�.���) (f) SVP (PSNR: ��.���)

(g) OptSpace (PSNR: ��.���)

F����� �: Comparison of PSNR of recovered methods for Lena under word mask with� = 0.L by LTVNN, TNNR, SVT, SVP, and OptSpace.

T���� �: PSNR results under word mask sample with� = 0.L for di�erent images by LTVNN, TNNR, SVT, SVP, and OptSpace.

LTVNN TNNR [�� , �� ] SVT [�� ] SVP [�
 ] OptSpace [�� ]
Mandrill (4LR × 4LR) ��.��� ��.��� ��.�
� ��.��� ��.���
Pepper (4LR × 4LR) 

.��� 
�.��� 
�.��� �
.��� ��.���
Barbara (4S0 × 1T4) 
�.��� ��.��� ��.
�� ��.��� �
.���
Barbara (L14 × L14) 
�.��� 
�.��� ��.��� ��.��
 ��.���
Girl (4LR × 4LR) 
�.��� 
�.��� 

.��� ��.��� 
�.���
Couple (4LR × 4LR) 
�.��� 
�.��� 
�.��� ��.��� 
�.���
Airplane (L14 × L14) 
�.��
 
�.��
 ��.��� ��.��
 ��.���
House (4LR × 4LR) 
�.
�� 

.��� 
�.��� ��.
�� ��.���
Sailboat (L14 × L14) 
�.��� ��.��
 ��.��� ��.��� ��.���
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so the termG(X Š X� )(I Š � 1 Š � 

1 + � 1�



1 ),X Š X� H E 0. 	e

proof of 	eorem � is as follows.

Proof.Let (X� ,Y� ) be primal-dual optimization for the
problem (�� ). 	e optimality conditions give

0 = Z� Š P � � Y�Š1 � ,

0 = Z� Š P � �Y� � ,
(A.
)

whereZ� � BA� (X� ) andZ� � BA� (X� ). 	en from ( A.
 ), we
deduce that

� Z� Š Z� � Š P � � Y�Š1 Š Y� � = 0 (A.�)

and combine (A.� ) with Lemma �that

CX� Š X� ,P � � Y�Š1 Š Y� �D

= CZ� Š Z� ,X� Š X� D

E C�X� Š X� � � � Š � 1 Š � 

1 + � 


1 � 1� , X� Š X� D .

(A.�)

We observe (�
 ) that P � X� = P � W,

����� P � � Y� Š Y� �
����� �

=
����� P � � Y�Š1 Š Y� � + 3 � P � � W Š X� �

����� �

=
����� P � � Y�Š1 Š Y� � + 3 � P � � X� Š X� �

����� �
.

(A.�)

Here, we set� � = � P � (Y� Š Y� )� � ; then

� 2
� = � 2

�Š1 Š 43� CP � � Y�Š1 Š Y� � , X� Š X� D

+ 32
�
����� P � � X� Š X� �

�����
2

�

� � 2
�Š1 Š 43� C�X� Š X� � � � Š � 1 Š � 


1 + � 

1 � 1� , X� Š X� D

+ 32
�
����� X

� Š X� �����
2

�

= � 2
�Š1 Š �43� � Š 32

� � � ,
(A.�)

where� = G(X� Š X� )(� Š � 1 Š � 

1 + � 


1 � 1),X
� Š X� H E 0,

� = � X� Š X� �
2
� E 0.

Based on (A.� ), when(43� � Š 32
� � ) > 0, that is,3� �

(0, 4� F� ), the term � P � (Y� Š Y� )� � is nonincreasing and
converges to limit. 	e parameter3� is very easy for satisfying
this condition when3� is smaller constant. And we can obtain
other properties as follows.

Let3� = � F� , and then43� � Š 32
� � = � 2F� . Due to the

fact that� 2F� converges to zero, so� 2 is in�nite small about
� and converges to zero. Now we reconsider (A.� ); evidently
the �rst column in Oconverges to zero; that is,O1,1 U 0 ,
O2,1 U 0 , O3,1 U 0 , O4,1 U 0 . 	e second column converges
to the �rst column and then converges to zero; that is,O1,2 U
O1,1 U 0 , O2,2 U O2,1 U 0 , O3,2 U O3,1 U 0 , O4,2 U

O4,1 U 0 . 	e third column converges to the second column
and then converges to zero; that is,O1,3 U O1,2 U 0 , O2,3 U
O2,2 U 0 , O4,3 U O4,2 U 0 , O1,2 U O1,1 U 0 , so through
the iterationX� converges toX� except the last column due
to the de�nition in (� ) and (� ); the last column and the last
row are set to zero.

Fortunately, this problem does not have side e�ect for
global result.	eorem � is established.
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