GBM2 ~ hQi Ho "B iBQM TT QtBK i2 2;ml
Lm+H2 " LQ K PTiBKBx iBQM 7Q" J i'Bt *QK
sm> M-CB bQM; gm-Gmqgq M;-u M; *?2M- GQi}a2M? |

hQ +Bi2 i?Bb p2°bBQM,

sm> M-CB bQM; gm-Gmqgq M;-u M; *?2M- GQi}a2M? /IDB-2i HXX GBM2
~2;mH 'Bx2/Lm+H2 "LQ KPTiIiBKBx iBQM7Q  J i Bt *QKTH2iBQMX #bi
/ rB SmM#HBb?BM; *Q TQ iBQM- kyR9- kyR9- TTXde8d3kX IRYyXRR88fk}

> G A/, BMb2 'K@YyRRYRKRS8
20T, ffrrrX? HXBMb2 KX7 fBMb2 K@yRRYRKRS8
am#KBii2/ QM ke J v kyR8

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


http://www.hal.inserm.fr/inserm-01101215
https://hal.archives-ouvertes.fr

JJOEBXJ 1VCMJTIJOH $PSQPSBUJPO
"CTUSBDU BOE "QQMJFE "OBMZTJT
TPMVNF "SUJDMF *% QBHFT
IlUUQ EY EPJ PSH

Hindawi

Research Article

Linear Total Variation Approximate Regularized Nuclear Norm
Optimization for Matrix Completion

Xu Han,'?Jiasong Wul#3*Lu Wang?3*Yang Chen>??
Lotfi Senhadiji,>**and Huazhong Shu?

Laboratory of Image Science and Technology, Southeast University, Nanjing , China
Centre de Recherche en Informatioedidale Sino-fraacs (CRIBS), France

INSERM, U ,Rennes , France

Universie de Rennes , LTSI, Rennes , France

Correspondence should be addressed to Xu Han; xuhan@seu.edu.cn
Received February ;Accepted May ;Published May
Academic Editor: Zhiwu Liao

Copyright ©  Xu Han et al. isis an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproductienany medium, provided the original work is properly cited.

Matrix completion that estimates missing values in visual data is an important topic in computer vision. Most of the recent studies
focused on the low rank matrix approximation via the nuclear norm. However, the visual data, such as images, is rich in texture
which may not be well approximated by low rank constraint. In this paper, we propose a novel matrix completion method, which
combines the nuclear norm with the local geometric regularizer to solve the problem of matrix completion for redundant texture
images. And in this paper we mainly consider one of the most commonly graph regularized parameters: the total variation norm
which is a widely used measure for enforcing intensity continuity and recovering a piecewise smooth image. e experimental
results show that the encouraging results can be obtained by the proposed method on real texture images compared to the state-

of-the-art methods.

1. Introduction and the sum of the largest few singular values. Since most

] ) ] of the existing matrix completion models aim to solve the
e problem of matrix completion, which can be seen as |ow rank optimization via nuclear norm, we recall here this
the extension of recently developed compressed sensing (Cijodel. For an incomplete matrid  R*  of rank , the

theory [ ...], plays an important role in the eld of signal model can be described as follows:
and image processing [.. ]. is problem occurs in many

real applications in computer vision and pattern recognition, minrank(X) st.X =M, 0
such as image inpainting [, ], video denoising [ ], and . _
recommender systems | ]. Reconstruction algorithms whereX R”™ andM =M, (,) ,and isthe set

for matrix completion have received much attention. Cai et of locations corresponding to the observed entries.

al. [ ] proposed an algorithm, namely, the singular value  Unfortunately, the rank minimization problem in ) is
thresholding (SVT) algorithm for matrix completion and an NP-hard one, so the following convex relaxation is widely
related nuclear norm minimization problems. In [, a  used:

simple and fast singular value projection (SVP) algorithm min X st X =M , 0
for rank minimization with a ne constraints is exploited. X

Keshavan et al. [] dealt with the matrix completion based \yhere is the nuclear norm given by

on singular value decomposition followed by local manifold _

optimization. In order to achieve a better approximation of < = min(.) 0

the rank of matrix, Hu et al. [] presented an approach
based on the truncated nuclear norm regularization (TNNR),
which is de ned by the di erence between the nuclear norm where denotes the th largest singular value .

=1
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In this paper, our objective is to exploit the intrinsic norm approximate de ned in (), which can be reformulated
geometry of the data distribution and incorporate it as as
an additional regularization term to deal with the images
which are rich in texture. e total variation (TV) norm
has demonstrated its usefulness as a graph regularizer in the

eld of image processing, so we propose here a method that +Tr XS X XS X ()
combines the nuclear norm with the linear TV approximate . 5 . )
norm to solve the problem of matrix completion. We call = XSX; "+ XS X 7,

it the linear total variation approximate regularized nuclear
norm (LTVNN) minimization problem. is combination
optimization problem will be solved by simple and e cient
optimization scheme based on the alternating direction

where «TrZ means the trace of the matrix, denotes the
Frobenius norm of the matrix, and, and , are, respectively,
the column and row transform matrix given by

method of multipliers (ADMM) model [ , ]. 000 0
e paper is organized as follows. In the next section, 10 0 0%
we introduce the proposed LTVNN model and we describe 01 000
the optimization schemes. Ii5ection, we establish the 1= .. . ,
convergence results for the iterations given Section . »od oo
Experimental results on a set of images are provided in )
Section . Finally, we draw some conclusions$ection . (51)x(81) .
($1)x(51) O
--------- [---=--"g
2. Proposed Method 0 10 5Y
.. Some Preliminaries.e total variation along the vertical 0 0100
and horizontal directions can be described as 2= 0 L g
v _ X SX, o, 1 < : 00 1
F)= - O 0 00 1 .,
X 8X 4, 1 < So, the problem in () can be rewritten as
+1
C(X) = 0 ' _ 0 s = 2
' - min 1S X + XSX
Sothe total variation oK is the summation for the magnitude + XS§ .x 2 ()
of the gradient of each pixel []: 2
st. X =M .
2 2
Xy = VX o+ X . () o . N
' ' e Optimization Scheme. e alternating direction
method of multipliers-ADMM [ , ] is an e cient and
And the equvalent total variation formula as follows: scalable optimization model which exploits the structure of
the optimization problem. In this section, we use ADMM to
X 1y = Vix o+ X deal with the problem in ('), which can be reformulated as

0
mn 18 X + WSW, 2
Here, we use the linear total variation approximate oftp ’
approximate the second kind of total variation; that is, + WS W 2 ()

X Lrva = YX2+ ’XZ. 0 St X=W, W =M,
: where (WSW ;) 2 and (WS ,W) ? are the indicator

functions. e augmented Lagrange function of () is
.. Proposed Model As mentioned above, the key point of

the proposed approach is the combination of the nuclear L (X,Y,W,3)=1S X + WSW ;
norm and the linear total variation approximate norm;

2

. . . . . o 2 3 o
therefore, the optimization problem is described as + WS LW %+ G WSX 2 ()
mnis X+ Xyw stX =M. () FTY (WSX)
where0 1 isapenalty parameterX isthe nuclear where3 > Ois the penalty parameter aridis the multiplier.

norm de ned in (), and X |1 iS linear total variation e solution can be obtained by incorporating the solutions
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of each regularization problem separately which are de nedStep (computingWC ., ). FixXC,; andYC and calculate

as follows.

Row TV is as follows:
L (XR,YR,WR,3)

2

=18 XR + WRS ,WR 0)
3

+5 WRSXR 2+Tr YR (WRSXR) ,

whereXR denotes the optimization result along the

vertical direction of the total variation de ned in {.

Column TV is as follows:
L (XC,YC,WC,3)

=1 XC + wcswc, ® 0)

w U

+5 WC SXC ?+Tr YC (WCSXC) ,

whereXC denotes the optimization result along the
horizontal direction of the total variation de ned in

()

We deal with column linear TV optimization problem in

() by the following steps in each iteration.

Step (initial setting). XC; =M ,WC,; = XC,, YC; = XC,,
with the toleranceb.

Step (computingXC ., ). FixXWC andYC , and minimize
() for obtainingXC ,; as

XC,, =argmin1S XC + Wwc Swc , °
X

+%wcéxc 24T YC WCSXC

()

Ignoring the constant terms, () can be rewritten as
XC,, =argmin1lS XC
X

3 1 ) ()
+Z XC S 6WC +§YC7 :

To solve (), Cai et al. [ ] introduce the so -thresholding
operatorD which is de ned as follows:

D (X):=UD (8)V , 0
D (8)=diagdmax S; .?,

where@ = max0, @)
Using the operatob in( ), the solution of ( ) can be
obtained as

XC., =Dusy 6WC +%YC 7. 0)

WC ,, as follows:
WC,; =arg min. XC,;,YC ,WC,3 ()
w
which is a quadratic function dVC and can be easily solved

by setting the derivation df (XC,;,YC ,WC, 3) to zeros,
and then we get

WC,; = 3XC,; SYC

. & ()
x4 18,8+ , ,+30,
enwe X the values at the observed entries:
WC,, = WC,,; +M , ()

where  denotes the set of the missing entries.

Step (computingYC 4 ). FixXC,; andWC ,; and calcu-
lateYC,, as follows:

YC,; =YC +3 WC,, SXC,, . ()
Until the stop condition: XC,; SXC 5.

Row TV problem de ned by () can be solved in a similar
way to that of column TV problem. e only di erence is the
WR ,; inthe second step, which is given by

WR,, =4 18,8 ,+ ,,+31, = 0

x 3XR,; SYR

And the stop condition isXR,; SXR 5.
Finally, we obtaine ,; as the average ofC,; and
XR,; ;thatis,
_XC, +XRy

Xy = 20 )

3. Convergence Analysis

In this section, we give the proof of the convergence of
column total variation ( ) and the convergence of row total
variation is similar to the column total variation. Here, the
objection function ( ) about column variation is as follows:

mxinA xX)
st. X =M
()

AX)=; X XSX , X$

X

1
+=Tr ,
4 1

1S
1 4 .
Lemma . LetZ BA (X)andZ BA (X). en
87 XSXDE X8X °. ()

e details of the proof can be found in [].
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(b) Random masked image (c) =0,PSNR: .

(e) =1,PSNR: .

(@ =0,PSNR: . (h) =0.5,PSNR: . () =1,PSNR: .
F  : erecovered results with % random mask and word mask for =0, . and by LTVNN.

eorem . Assuming that the sequence of step size obelykcroso Windows operating system and has an Intel Core
0<inf3 <sup3 <(@4F), =GK SX)(IS 1 S | CPU with spe_ed of . GHzand GB RAM. _
L+ 5 )X X Hand = X §X 2_ HereX denotes We deal with three channels,(,J) of color images

th timizati itand denotes theth iterati biect separately and combine the results together to get the nal
€ oplimization result ana -denotes theth iteration object 4 ;1come. We use peak signal-to-noise ratio (PSNR) values to
variable; then by the iteration procedure de ne&ection .,

; ; Rt evaluate the performance:
we can obtain the unique optimization result, thais, And P

the details of the proof can be found in the Appendix. 4L12

PSNR= 10 xlogyo KoM, ()

4. Experiments
) _ where MSE denotes mean squared error,
In this section, we test the proposed method on a set of

images. e algorithm was implemented with MATLAB MSE= erro () +erol | + ermol(d) . ()
programming language on a PC machine, which sets up '
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40

35¢

30+
25+

PSNR

20+
15

10

01 02 03 04 05 06 07 08 09
value

5
0 1

—o— 40% sample
—— 50% sample
—— 60% sample

70% sample

—— 80% sample
90% sample
—— Word mask sample

F : erecovered PSNR for Pepper under di erent random
sample ratio and word mask sample witfrom to by LTVNN.

36

x
4
N
o
18 ' : : :
0.4 0.5 0.6 0.7 0.8 0.9
Sampled ratio under= 0.5
—o— LTVNN SVP
—— TNNR —e— OptSpace
—— SVT
F  :Recovered PSNR for Pepper under = 0.L with di erent

random sample ratio by LTVNN, TNNR, SVT, SVP, and OptSpace.

In the experiments, we consider two situations: random
mask sample and word mask samgtégure describes the
recovered results with % random mask and word mask for

= 0,0.Land by LTVNN. Figure shows the recovered
PSNR for Pepper under di erent random sample ratios and
word mask sample for from to with step of . by
LTVNN. It can be observed from these two gures that the
best result is obtained for the value ofhear to ., which

corresponds to the case where the two norms (nuclear and

LTV) are equivalently used in §. For the two extreme cases:

= 0 (only the nuclear norm is taken into consideration)
and =1 (only the linear total variation approximate norm
is considered), the algorithm loses its e ciency.

We also compare our method (LTVNN) with other
matrix completion methods including TNNR [, ], SVT
[ 1,SVP][ ],and OptSpace[]. Figure plotstherecovered
PSNR for Pepper for = 0.L with di erent random sample
ratios (from %to %) by LTVNN and other four methods
(TNNR, SVT, SVP, and OptSpace). It can be seen from
Figure that the proposed LTVNN method achieves much
higher PSNR than the other methodBigure shows the
comparison of PSNR of recovered methods for Lena under
word mask with = 0.L by LTVNN and the other methods.
Table lists the PSNR results under word mask sample with
0.L for dierent images by LTVNN and the other
methods. FromFigure and Table , we can see that the
proposed method outperforms the other matrix completion
methods under word mask for di erentimages.

5. Conclusion

In this paper, we have proposed a new model that combines
the nuclear norm and total variation norm for the matrix
completion problem, which was then solved by ADMM
model. Experimental results demonstrate the e ectiveness of
the proposed algorithm compared to other methods.

Appendix
Before we give the proof oforem , we supplement one
proof about
CXSX 1S ;S ,+ ,,,XSXDEO0. (A)
Without loss of generality, we take an example maix=
(X$X) R**and the corresponding transform matrix
L 28100
(IS 1S 1+ 1 1)=PT &5 en,
0000
™ §$,5,+,,00

=4 Cf,l’* C§,1+ C§,1+ Ci,l
$Q,Q,+Q:3,+Q,Q,+Q,Q,

+4&,+4,+d,+d,
$Q.9,+Q:0,+Q:Q,+Q,Q.
$Q/Q:+3,0:+Q,Q:+QQs

+4 %+, 4+ d,
$Q,Q:+3,0:+Q,Q3+QQ5
G, +G,+G,+G, + 0,,5Q,>
+0,:8Q,°+0,8Q,%+ 0,,8Q,°
+0,8Q3"+ 0,5Q;°+ 0,5Q;”
+0,,8Q %+ 3+ G+ g+ 4,

E O,

(A.)
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(a) Originalimage ( x ) (b) Word masked image (c) LTVNN (PSNR: . )

(d) TNNR (PSNR: . ) (e) SVT (PSNR: . ) (f) SVP (PSNR: . )

(g) OptSpace (PSNR: . )

F  :Comparison of PSNR of recovered methods for Lena under word mask witk 0.L by LTVNN, TNNR, SVT, SVP, and OptSpace.

T :PSNR results under word mask sample with = 0.L for di erentimages by LTVNN, TNNR, SVT, SVP, and OptSpace.

LTVNN TNNR[ , ] SVTI ] SVP[ ] OptSpace| ]

Mandrill (4LR x 4LR
Pepper4LR x 4LR
Barbara 4S0 x 1T4%
Barbara (14 x L1}
Girl (4LR x 4LR
Couple BLR x 4LR
Airplane L14 x L1
House BLR x 4LR
Sailboat (14 x L14
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sothetermGK SX)(IS ;S ;+ ; ;),XSXHEOe
proof of eorem s as follows.

Proof.Let (X ,Y ) be primal-dual optimization for the
problem (). e optimality conditions give

0=z §p Y,
) (A.)
0=z §P VY |,

whereZ BA (X )andZ BA (X ). enfrom( A.),we
deduce that

z5z sp Y8y =0 A.)
and combine A. ) with Lemma that
X $x ., Y™SY D
=z $zZ X SX D (A.)
ECX SX S ,S,+ ,,,XSXD.
We observe ()thatP X =P W,

P Y SY

P Y8y +3 P WSX (A.)

P Y&y +3 P X &X

Here,weset = P (Y SY ) ;then
2= 2 843 YSSY X SXD

2 ~ 2
+3° P X SX

2 ~ ~ ~ ~ ~
2, 843CX 8X 8,8 ,+ , ,,X8XD

+32 X 8X
_ 2 > S A2
=3 %43 §3 |
(A.)
where =GK SX ) S ;S ;+ ; ), X SXHED
= X 83X “Eq

Based onA. ), when(43 $3% ) > 0, that is,3
(0,4 F), the term P (Y SY ) is nonincreasing and
convergesto limit. e parameter3 is very easy for satisfying
this conditionwher8 is smaller constant. And we can obtain
other properties as follows.

Let3 = F,andthend3 $3 = 2F . Duetothe
factthat 2F converges to zero, sd is in nite small about

and converges to zero. Now we reconsidgr §; evidently

the rst column in Oconverges to zero; that i ; U 0,
Qi:U0,Q;U0,Q;UO0. esecondcolumn converges
to the rst column and then converges to zero; that@, U

Q.U 0,Q,UG,U0Q,UQ0,UD0Q,U

Q1 U 0. e third column converges to the second column
and then converges to zero; that@g U O, , U 0,Q 3 U
Q,U0,Q3UQ, U 0,Q,U O, U O, sothrough
the iterationX converges tX except the last column due
to the de nition in ( ) and (); the last column and the last
row are set to zero.

Fortunately, this problem does not have side e ect for
global result.eorem is established. O
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