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ABSTRACT 

Intra-tumor uptake heterogeneity in 18F-FDGPET has been associated with patient 

treatment outcomes in several cancer types. Textural features (TF) analysis is 

apromising method for its quantification. An open issue associated with the use of TF 

for the quantification of intratumoral heterogeneity concerns its added contribution 

and dependence on the metabolically active tumor volume (MATV), which has 

already been shown as a significant predictive and prognostic parameter.Our 

objective was to address this question using a largercohort of patients covering 

different cancer types. 

Methods: Asingle database of 555 pre-treatment 18F-FDG PET images (breast, 

cervix, esophageal, head&neck andlung cancer tumors) was assembled. Fourrobust 

and reproducibleTF-derived parameters wereconsidered.The issues associated with 

the calculation of TF using co-occurrence matrices(such as the quantization and 

spatial directionality relationships) werealso investigated. The relationship 

betweenthese featuresand MATV, as well as among the features themselves was 

investigated using Spearman rank coefficients, for different volume ranges.The 

complementary prognostic value of MATV and TF was assessed through multivariate 

Cox analysis in the esophageal and NSCLC cohorts. 

Results: A large range of MATVs was included in the population considered (3-415 

cm3, mean=35, median=19, SD=50). The correlation between MATV and TF varied 

greatly depending on the MATVs, with reduced correlation for increasing volumes. 

These findings were reproducible across the different cancer types. The quantization 

and the calculation method both had an impact on the correlation.Volume and 

heterogeneity were independent prognostic factors (P=0.0053 and 

0.0093respectively) along with stage (P=0.002) in NSCLC, but in the esophageal 
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tumors, volume and heterogeneity had less complementary value due to smaller 

overall volumes. 

Conclusion: Our results suggest that heterogeneity quantification and volumemay 

provide valuable complementary informationforvolumesabove 10cm3, although the 

complementary information increases substantially with larger volumes. 

 

Keywords: 18FDG-PET/CT, heterogeneity, textural features, metabolically active 

tumor volume, prognosis. 

  



 4 

18F-FDG Positron Emission Tomography/Computed Tomography (PET/CT) is a 

powerfultoolfor diagnosis and staging inoncology (1). Its use intherapy 

assessment(2,3)isincreasing.Within this context more and more emphasis is being 

given to image-derived indices (4). On the one hand, features extracted from PET 

images, including metabolically active tumor volume (MATV), mean standardized 

uptake value (SUVmean) and total lesion glycolysis (TLG) have providedpotentially 

higher prognostic value than standard maximum SUV (SUVmax) in various cancer 

types(5).On the other hand, more recently the heterogeneity of 18F-FDG uptakes 

within tumorshas been associated with treatment failure (4,6–8).Proposed 

approaches for the assessment of intra-tumor activity distribution heterogeneity 

includevisual evaluation (9), SUV coefficient of variation (SUVCOV) (10), area under 

the curve of the cumulative histogram (CHAUC) (11),fractals(12)or textural 

features(TF)analysis (10,13).The lattercan provide a number of 

parametersquantifyingtumor heterogeneity at the scales of voxels or groups of 

voxels. A recent study, based on the use of one of these parameters (local entropy 

calculated from co-occurrence matrices) has suggested that a minimum MATV of 

45cm3 is required to provide an estimate of heterogeneity independent of MATV 

confounding effects(14). However, this studyinvestigateda single heterogeneity 

parameter, ina single cancer type, and used an image quantization schemewith>150 

grey levels. Another recent study investigating the relationship between MATV and 

TF(15)has included a relatively small number of tumors (including patients who 

already had distant metastases) and cancer types,without explicitly reporting on the 

lesion sizes considered or making conclusions regarding the minimum tumor volume 

that should be considered. In addition, this study used Pearson correlation to 
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testlinear relationship between MATV and TF, which would missnon-linear trendsthat 

may exist between these parameters.  

To our knowledge, the potential interactionbetween MATV and TF has not been 

previously considered within the context of patient outcome prognosis. 

This study was therefore designed to investigate in detail, and across a large number 

of primary tumors and cancer types, the relationship between tumor MATV and 

derived heterogeneity measurements using TF, in order (a) to determine whether a 

minimum MATV should be consideredin such analyses and (b)if tumor heterogeneity 

quantified through TF could provide complementary prognostic value relative to 

MATV. 

 

MATERIALS AND METHODS 

FDG PET images 

Severalpatient cohorts wereretrospectively collectedin a dataset of 55518F-FDG PET 

baseline images of different primary locally advanced tumors, excluding patients with 

distant metastases because they usually have a very different prognosis and 

treatment management. In all cohorts, patients were selected as consecutive patients 

withan 18F-FDG PET/CT scan at diagnosis prior to any treatment.  

The resulting datasetconsisted of158 breasttumors with three different subtypes 

(luminal, her2+/ER-, triple negative), 45 cervixtumors, 112 esophageal tumors, 139 

head and neck (H&N) tumors, and 101 non-small cell lung cancer (NSCLC) tumors 

(Fig. 1).These tumor entities were chosen because they have often been considered 

in the literature for studying FDG uptake heterogeneity. They have a wide range of 

tumor size, significant FDG uptake, and a high rate of treatment failures. Each cohort 

for a given cancer site came from one clinical center except H&N tumors that 
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involved two different University Hospitals (Supplemental Table 1). Within each 

cohort, all acquisitions followed corresponding institutional protocols. All cohorts 

except the 66 H&N tumors from McGillwere acquired usingthe same acquisition 

settings and protocols: a Philips GEMINI PET/CT scanner, CT-based attenuation 

correction, reconstruction with 3D Row-Action Maximum Likelihood Algorithm with 

4×4×4mm3 voxels and 5mm full-width-at-half-maximum Gaussian post-filtering, 6-

hour fasting period, 3D whole-body acquisition performed60 min after injection of 18F-

FDG, and SUV normalized using body weight. The acquisitions for the 66 H&N 

tumors from McGill shared the same settings expect for the scanner model (a GE 

Discovery ST) and Ordered-Subset Expectation Maximization reconstruction 

(3.52×3.52×3.27mm3 voxels) without post-filtering.  

 

Only primary tumors (not lymph nodes) with MATVs >3cm3(which, assuming a 

spherical shape, corresponds to ~1.8cm diameter) were included due to 

thelimitations of PET imaging to characterizetracer distributionwithin smallertumors 

because of its limited spatial resolution and resulting partial volume effects (PVE). 

 

The institutional review boards of each involved group in this work approved this 

retrospective study and the requirement to obtain informed consent was waived. 

 

Image Analysis 

MATVswere firstdelineatedusing the Fuzzy Locally Adaptive Bayesian (FLAB) 

algorithm(16), which has been previously validated for accuracy and robustness 

using simulated and clinical datasets,including homogeneous and heterogeneous 

MATVs(17,18). FLAB was used withtwo or three classes in order to adequately cover 
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the entire MATV, including low uptake areas.The H&N tumors from McGill were 

manually delineated by an experienced radiation oncologist on fused PET/CT images 

as part of their radiotherapy treatment planning. 

The differences in scanner, reconstruction and delineation between the H&N McGill 

dataset and the other cohorts were taken into account by only considering features 

that were shown to be the most robust with respect to PVEand segmentation (19) or 

reconstruction settings (20), as well as test-retest reproducibility (21). 

Consequently,the present analysis included fourTFs, which have been previously 

shown to have a predictive and prognostic value in different cancer types.The two 

local TFscalculated using co-occurrence matrices(13)were entropy (E)and 

dissimilarity (D). D and E were calculated according to two different methods: 1) 

using 13 matrices, one for each spatial direction, followed by averagingthe values 

calculated separately in each matrix, and2) using only one matrix taking into account 

all 13 directions simultaneously without an averaging step.From a conceptual point of 

view, the second method is more accurate, as it fully describes the 3D co-occurrence 

properties within the volume. The first method results in taking an average from fewer 

co-occurrence measurements, thus information could be lost and the complexity of 

the distribution of grey levels may not be optimally captured. On the other hand, 

averaging could artificially reduce the effect of the residual noise from the 

quantization process. The parameters related to the first method (averaging 13 

matrices) will be denoted as E13 and D13, whereas the parameters from the second 

method (1 matrix) will be denoted as E1 and D1. 

RegionalTFs calculated using size-zone matrices (13)were high intensity large area 

emphasis (HILAE) and zone percentage (ZP). 
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Other TFs were not included in the present analysis because of high correlation with 

D and/or E (correlation>0.8), or previously shown poor reproducibility/robustness 

(19–21) (supplemental Table 2). 

Although an optimal quantization of 64 grey levels was identified in our previous work 

concerning the reproducibility(19), we also investigated the impact of the quantization 

pre-processing step by considering values from 4 to 256.  

Finally, SUVmax, SUVmean, and SUVCOVwere includedfor comparison purposes. 

 

Statistical Analysis 

Statistical analyses were performed using MedcalcTM (MedCalc Software, Belgium). 

Spearman rank correlation (rs) was used to study relationships between parameters, 

since such relationships are non-linear and all these parameters are frequently not 

normally distributed. In order to assess the potential complementarity and/or 

additional clinical value of MATV and derived heterogeneity parameters, a survival 

analysis was performed in theesophageal and NSCLC cohorts for which overall 

survival (OS), follow-up and other clinical data were available (Supplemental Tables3 

and 4), which was not the case for the other cohorts. Association with OS was 

assessed using univariate Cox proportional hazard regression including features as 

continuous variables (i.e. no dichotomization). Correction for multiple testing was 

performed using the false discovery rate Benjamini-Hochberg step-up procedure. It 

consists in declaring positive discoveries at level α (here α=0.05), among the k=1…K 

tested variables ordered according to their p-values p in increasing order, those 

ranked above the one satisfying the condition p(k)≤ 
𝑘

𝐾
× α (22).After univariate 

analysis, a stepwise multivariate Cox analysis(significant variables are entered 

sequentially, then removed if they become non-significant) was performed to identify 
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independent prognostic factors. Kaplan-Meier survival curves (with optimal cut-off 

values determined through ROC curves analysis) were subsequently used to assess 

the prognostic value of previously identified independent factors. Median survival, 

percentage of deaths in each group and hazard ratios(HR) were reported for each 

risk factor separately and for their combination, in order to quantify 

anyimprovedpatient stratification. 

 

RESULTS 

Correlation betweenparameters 

To avoid confusion, absolute rs values are reported, although correlation direction 

results can be found in figure 2. Threeimportant observations can be emphasized.  

First, significant detailsregarding the grey-levels distribution are lost when using a 

quantization <32 (Fig. 3), and the quantization had an important impact on the 

correlation between volume andE1, decreasing from almost 1 for a quantization of 

256, to <0.6 for quantization<64. Correlation with MATV was much lower for 

E1compared to E13, except for quantization <16. In contrast, dissimilarity (either D1 or 

D13) was insensitive to the quantization value (rs~0.8) and there was no difference 

between D1 and D13.The correlation ofHILAE and ZP withMATV was very sensitive to 

the quantization, although contrary to entropy, rs increased from <0.5 to >0.8 with 

decreasing quantization (Fig. 3).For quantization=32, the correlation with volume was 

>0.75 and <0.85 for all TFs except E1 (0.3), whereas withquantization=64 there was 

a wider range (rs<0.2 for HILAE to rs≈1 for E13), and several TFs had a correlation 

<0.7, suggesting a higher potential of complementary information with respect to 

MATV for 64 than 32. Quantization=64 was also previously shown to provide the 

highest TFs’ reproducibility (21) and robustness(19).A quantization into 64 grey-
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levels wasthus considered for the rest of the analysis, as it represents the best 

compromise between sufficient sampling of voxel SUVs, preservation of original 

intensities information, andpotential complementary information with respect to 

MATV. 

 

Secondly, significant correlations were found amongst almost all features considered. 

In addition, MATV correlated with those features, as well as with SUVmax and 

SUVmean (Fig. 2). The correlation between the co-occurrence matrix-derived features 

themselves and their respective correlation with MATV were sensitiveto theuse of 

asingle matrix compared to averaging 13 directional matrices. This was particularly 

true for entropy. The correlation between D13 and E13 was 0.76, whereas the 

correlation between D1 and E1was 0.18. Correlation of D13 and E13 with MATV was 

0.80 and 0.96, whereas it was 0.82 and 0.56 for D1 and E1respectively (Fig.2).  

 

Thirdly, correlation between D1, E1, ZP, and HILAE with MATV ranged from 0.17 to 

0.96, suggesting that a substantial amount of complementary information with 

respect to MATV may be found in some of these heterogeneity quantification 

features, similarly to SUV measurements which exhibited correlations of 0.31 to 0.42. 

 

Figures 4 and 5 provide visual representations of the distributions of TFs with respect 

to MATV.Supplemental figures 1-4 provide similar graphsfor each cancer type, for 

other TFs and quantization values. The difference between E13 and E1 was important 

(Fig.4A-B), the calculation using only one matrix leading to a much tighter distribution 

with a smaller range (5.6-8 for E1vs. 3.9-7.3 E13) of higher values (7.1±0.4 vs. 

5.7±0.8), and with substantially lower correlation with volume (0.56vs. 0.96). The 
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difference between D13 and D1 (Fig.4C-D) was less important but nonetheless led 

also to a tighter distributionfor D1with a smaller range (3.5-24.1 vs. 0.9-30.5) of higher 

values (12.6±3.8 vs. 10.7±3.7) but with a similar correlation with MATV (0.82vs. 

0.80). 

 

By restricting the analysis to larger tumor volumes (from ≥10cm3 to ≥60cm3using 

5cm3 steps), it was found thatthe correlation between TFs and MATV tended to 

decrease substantially with ranges of increasing volumes (Fig. 6). This was observed 

for all TFs but was especially true for entropy.The only exception to this observation 

was HILAE since its correlation with MATV was low even when considering the entire 

dataset.E13correlation with MATVdropped from 0.96 when considering the entire 

range of volumes, to <0.3 when considering only tumors >60cm3. E1 dropped to 

<0.25 for volumes >10cm3. Similar observations were made for D13 with rs>0.8 when 

considering all tumors, dropping <0.6 in tumors >15cm3. Although the overall 

correlation of D1with MATV was slightly higher than for D13, it was also more rapidly 

reduced with increasing MATV (Fig.6). The same analysis for ZP led to similar 

observations, witha reduced correlation with increasing MATV when considering 

larger tumors, from 0.68for all tumors to 0.5 for those >15cm3. 

 

The relationships between MATV and TFs were similar across the different tumor 

types, although measured correlations varied: cervix tumors included mostly large 

tumors (MATV>20cm3), whereas the other tumor types included a larger number of 

tumors with MATV<10cm3 (Fig.1). The resulting correlation between E1 and MATV 

was not significant for cervix cancer tumors (rs<0.003, P>0.9), whereas it wasfor 

esophageal, NSCLC, H&N, and breast tumors (rs=0.80, 0.39, 0.35, and 0.74 
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respectively). For dissimilarity (D1) and ZP, smaller differences were observed, with 

rs from0.73 and 0.63 (cervix) to 0.93 and 0.83 (NSCLC) for D1 and ZP respectively. 

HILAE correlations with MATV were <0.2 for all tumor types. 

 

 

Survival prognosis in esophageal and NSCLC cohorts 

In the esophageal cohort, median OS was17.0 months (range 1.0-71.0, mean 22.0), 

with 44 patients still alive at last follow-up. The trend for MATV did not reach 

statistical significance (p=0.0315) and none of the variableswere prognostic 

factorsexcept D1 (p=0.0016) (Table 1), therefore no multivariate analysis was 

performed. However,if dichotomized with optimal cut-off values in the K-M analysis, 

both D1 (HR 1.92, p=0.0052)and MATV (HR 1.66, p=0.0375) could differentiate 

survival curves(Fig.7A). Adding volume and heterogeneity increased HR to 2.02 

(p=0.0024, 95% CI 1.22-3.34) with 23months (N=64) vs.10months (N=48) median 

OS (supplemental table 5, Fig. 7A). 

 

In the NSLC cohort, medianOS was 18.4 months (range 1.1-57.4, mean 27.4), with 

39 patients still alive at last follow-up. In the univariate analysis, all variables were 

significantly associated with OS, expect age, histology, smoking history and SUVmax 

(Table 1).The multivariate analysis retained clinical stage (P=0.0018), MATV 

(P=0.0053) and heterogeneity (E1, P=0.0093) as independent prognostic 

factors.MATV allowed for the highest differentiation (HR=2.8), whereas stage and 

heterogeneity led to lower HRs (2.3 and 2.1 respectively). Adding stage to MATV did 

not increase stratifying power (HR=2.84), whereas adding heterogeneity increased 

HR to 3.55, with 49monthsvs. 9.1months median OS. The addition of the three led to 
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the highest HR of 3.81(supplemental table 6, Fig. 7B). Survival curves were also 

evaluated according to a 3-valued score (MATV<35cm3 AND E1<7.35, MATV>35cm3 

OR E1<7.35, and MATV>35cm3 AND E1>7.35), leading to survival curves with 

median OS of 49, 20 and 9 months (p<0.0001, HRs of 1.8 and 4.3) (supplemental 

Fig. 5B, Fig. 7C), highlighting the higher complementary value of heterogeneity and 

volume in this cohort. 

 

DISCUSSION 

There is an increasing interest in the use of PETimagetextural 

featuresforquantification of intra-tumorheterogeneity(4,6).Few studies investigated 

the relationships between tumor volume and TFs(15,19,23). 

Most studies using textural features considered volumes>3-5cm3, assuming that PET 

could not characterize heterogeneity on smaller volumes due to its limited spatial 

resolution. A recent theoretical analysis suggestedthat volumes>45cm3shouldbe 

consideredto avoid volume related confounding effects(14). However, 

thisanalysisconsidered a single parameter (entropy), calculated on 2D co-occurrence 

matricesover 2 spatial directions followed by averaging, and using a 

quantizationvalue >150 (14). 

 

In this work, we addressed the question of the minimum functional volume that could 

be considered and investigated the potential complementary prognostic value 

between volume and heterogeneity.We investigated the influence of the quantization 

pre-processing and of thetextural featurescalculation methodology, investigating 

more thoroughly the relationships between heterogeneity and functional volume in a 

substantially larger tumors’ database, covering large tumor volume ranges and 
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different cancer types.Considering a patient cohort with variable cancer types and 

complementary volume ranges allowed providing a better picture of the relationship 

between the measured feature and its corresponding volume. 

 

Our results partly confirm those of recent studies. Indeed, severaltextural 

featureswere found to be highly correlated with the volumefrom which they were 

calculated.In addition, high correlations were found between most of these 

parameters.We observed differences in the heterogeneity-volume distributions as a 

function oftumor type, although these differences can beexplained by differences in 

volumeranges for each cancer patient cohort, rather than the histology or 

heterogeneity specific to each tumor type. For instance, the distribution of textural 

features with respect to volume in the cervix tumors was significantly different than 

the others because it included only large tumors (>20cm3)relative to the other patient 

cohorts considered that also included smaller tumor volumes. 

Our results emphasize that(i) the relationship and the level of correlation is not the 

same for all features, (ii) the level of correlation tends to decrease substantially when 

consideringlargertumor volumes, (iii) the calculation method and the quantization 

step both have an impact on the relationshipand level of correlation between volume 

and the feature, and (iv) volume and heterogeneity can have complementary 

prognostic value: in the NSCLC cohort, heterogeneity and volumewere identified as 

independent prognostic factors and hazard ratios were shown to increase from <2.9 

to >3.8 when adding these risk factors for patient stratification. Although multivariate 

analysis could not be performed in the esophageal cohort, combining heterogeneity 

with volume led to an increased although non-statistically significant different 

stratification. NSCLC tumor volumes were much larger than esophageal ones 
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(58±77cm3, median 34, range 3-415 vs. 25±27cm3, median 15, range 3-140), which 

is likely why heterogeneity and volume had higher complementary prognostic values 

in NSCLC.  

When considered together, these results point to the potential added prognostic 

value of tumor heterogeneity quantified with textural feature, although regarding 

Kaplan-Meier curves, cut-off values found with ROC analysis are probably over-fitted 

and specific to the data, and thus validation in independent cohorts will be required. 

The quasi-linear relationship between entropy (either E1 or E13) and volume in the 

range3-10cm3 (rs>0.9, Fig. 4) suggests that entropyfor volumes<10cm3cannotprovide 

complementary information. However, when choosing appropriate quantization and 

co-occurrence matrix calculation, the correlation between volume and entropy for 

volumes in the range 10-50cm3 was much lower. The minimal volume to consider 

may therefore be closer to 10cm3 than 45cm3, a value previously suggested based 

on calculations carried out after a quantization into >150 grey-levels and using 

several co-occurrence matrices followed by averaging(14). In addition, for other TFs 

not considered in that last study, the correlation was weaker, even for volumes 

between 3 and 10cm3. It was only 0.4 and 0.6 for D13 and D1 respectively, and 0.3 

and 0.2 for ZP and HILAE. Therefore, instead of excluding patients with volumes 

below the proposed 10cm3 threshold from such analysis, we rather recommend to 

report the correlation between volume and heterogeneity and highlight their 

complementary value as tumor volumes increase. Indeed, the correlation with volume 

decreased substantially for all textural features when considering larger 

volumes.Larger tumors are known to exhibit higher hypoxia, necrosis or anatomical 

and physiological complexity at the microscopic and macroscopic scales, which 

logically translates to higher FDG uptake spatial distribution complexity and 
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consequentlyassociated heterogeneity quantification. A significant correlation 

between quantified heterogeneity (viaany method) and its corresponding volume is 

therefore to be expected in a standard cohort of patients covering a large range of 

tumor sizes. Prospective clinical studies with optimized pre-defined imageacquisition 

settings and heterogeneity analysis protocols, as well as experimental studies 

demonstrating that tumor properties on a scale comparable with the PET resolution 

can actually lead to identifiable image textural features could benefit from the results 

of the present study and should now be conducted. 

 

One important aspect of this study is that the 555 PET images in our databasecame 

from six cohorts acquired in differentcenters, albeit with certain homogeneity in 

acquisition parameters (same scanner, reconstruction algorithm, voxel size), except 

for one. This variability was handledby restricting the analysis to robust features 

only,as to minimize the associated impact.Indeed, excluding the H&N cohort with a 

different imaging protocol did not change the results. On the other hand, the inclusion 

of a small number of heterogeneity quantification metrics may be considered as a 

limitation. However, the four textural featuresincludedhave been previously shown to 

be the most reproducible and robust amongst those shown to have a predictive and 

prognostic value in different cancer types. We also restricted the prognosis analysis 

to the esophageal and NSCLC cohorts because clinical and survival data for the 

other cohorts were not available forenough patients to allow formultivariate analysis. 

 

CONCLUSIONS 

Most of textural features considered to quantify intra-tumor heterogeneity were found 

to be significantly correlated with tumor volume. However, our detailed analysis also 
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suggests that heterogeneity quantification through textural features may potentially 

provide valuable clinical complementary information in addition to functional volume, 

especially for tumors above 10cm3, with increasing complementary prognostic value 

for larger volumes. In 112 esophageal patients, heterogeneity was found to have 

some prognostic value that was not significantly improved when combined with 

volume, whereas in a cohort of 101 NSCLC patients, heterogeneity, volume and 

stage were independent prognostic factorsthat allowedincreased stratification of 

patients when combined.  
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Table 1. Prognostic value for OS in the NSCLC and esophagealcohorts assessed 
using Cox regression for univariate and multivariate analysis 

 

 
Esophageal 

 
NSCLC 

Parameters 
p-value p-value 

Univariate Univariate Multivariate 

Clinical 

Surgery 0.3654 0.0084 NRM 

Age 0.1861 0.0441
¥
 - 

Sex 0.1795 0.0227 NRM 

Smoker 0.4511 0.8997 - 

Histology 0.2154 0.3041 - 

Stage 0.0391
¥
 0.0003 0.0018 

Volume and 
SUV 

MATV 0.0315
¥
 0.0008 0.0053 

SUVmax 0.2781 0.0599 - 

SUVmean 0.6008 0.0256 NRM 

Heterogeneity 
(TF) 

D13 
0.0405

¥
 0.0046 NRM 

D1 0.0016 0.0027 NRM 

E13 0.1087 0.0002  NRM 

E1 0.3922 0.0287 0.0093 

HILAE 0.2596 0.0132 NRM 

ZP 0.4391 0.0005 NRM 

NRM: not retained in the model 
¥: Not significant after correction for multiple testing 
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Figure captions 
 

Figure 1. MATV distribution in each cancer site. 

Figure 2.Illustration of quantization (A) and impact on the correlation between TF and 

MATV (B). 

Figure 3. Spearman rank correlationsbetweenparameters(555 tumors). Red: [0.8,1.0] 

orange: [0.6,0.8[, green: [0.3,0.6[, violet: [0.1,0.3[ and grey: [0.0,0.1]. 

Figure 4. Distributions of E1 (A), E13 (B), D1 (C) and D13 (D) (quantization=64) with 

respect to MATV. 

Figure 5. Distributions of HILAE (A) and ZP (B) (quantization=64) with respect to 

MATV. 

Figure 6. Absolute Spearman rank correlation with MATV for each TF 

(quantization=64), considering different ranges of increasing MATVs. 

Figure 7. Kaplan-Meier curves using volume and heterogeneity for(A) 112 

esophageal patients,(B-C) 101 NSCLC patients. 


