A. Lapolla, R. Flamini, D. Vedova, A. Senesi, A. Reitano et al., Glyoxal and Methylglyoxal Levels in Diabetic Patients: Quantitative Determination by a New GC/MS Method, Clinical Chemistry and Laboratory Medicine, vol.41, issue.9, pp.1166-1173, 2003.
DOI : 10.1515/CCLM.2003.180

V. Jagt, D. Hunsaker, and L. , Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase, Chem Biol Interact, vol.143, issue.144, pp.341-351, 2003.

N. Rabbani, L. Godfrey, M. Xue, F. Shaheen, and M. Geoffrion, Glycation of LDL by Methylglyoxal Increases Arterial Atherogenicity: A Possible Contributor to Increased Risk of Cardiovascular Disease in Diabetes, Diabetes, vol.60, issue.7, pp.1973-1980, 2011.
DOI : 10.2337/db11-0085

K. Uchida, Role of reactive aldehyde in cardiovascular diseases, Free Radical Biology and Medicine, vol.28, issue.12, pp.1685-1696, 2000.
DOI : 10.1016/S0891-5849(00)00226-4

F. Moheimani, P. Morgan, D. Van-reyk, and M. Davies, Deleterious effects of reactive aldehydes and glycated proteins on macrophage proteasomal function: Possible links between diabetes and atherosclerosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.6, pp.561-571, 2010.
DOI : 10.1016/j.bbadis.2010.02.007

T. Chang and L. Wu, Methylglyoxal, oxidative stress, and hypertension, Canadian Journal of Physiology and Pharmacology, vol.84, issue.12, pp.1229-1238, 2006.
DOI : 10.1139/y06-077

J. Liu, R. Wang, K. Desai, and L. Wu, Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome, Cardiovascular Research, vol.92, issue.3, pp.494-503, 2011.
DOI : 10.1093/cvr/cvr239

P. Matafome, C. Sena, and R. Seica, Methylglyoxal, obesity, and diabetes, Endocrine, vol.1243, issue.5, pp.472-484, 2013.
DOI : 10.1007/s12020-012-9795-8

S. Kaur, K. Zilmer, V. Leping, and M. Zilmer, Serum methylglyoxal level and its association with oxidative stress and disease severity in patients with psoriasis, Archives of Dermatological Research, vol.47, issue.5, pp.489-494, 2013.
DOI : 10.1007/s00403-013-1362-5

M. Beeri, E. Moshier, J. Schmeidler, J. Godbold, and J. Uribarri, Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals, Mechanisms of Ageing and Development, vol.132, issue.11-12, pp.583-587, 2011.
DOI : 10.1016/j.mad.2011.10.007

B. Kuhla, H. Luth, D. Haferburg, K. Boeck, and T. Arendt, Methylglyoxal, Glyoxal, and Their Detoxification in Alzheimer's Disease, Annals of the New York Academy of Sciences, vol.240, issue.1, 2005.
DOI : 10.1196/annals.1333.026

G. Munch, B. Kuhla, H. Luth, T. Arendt, and S. Robinson, Anti-AGEing defences against Alzheimer's disease, Biochemical Society Transactions, vol.31, issue.6, pp.1397-1399, 2003.
DOI : 10.1042/bst0311397

S. Dukic-stefanovic, R. Schinzel, P. Riederer, and G. Munch, AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs, Biogerontology, vol.2, issue.1, pp.19-34, 2001.
DOI : 10.1023/A:1010052800347

G. Munch, B. Westcott, T. Menini, and A. Gugliucci, Advanced glycation endproducts and their pathogenic roles in neurological disorders, Amino Acids, vol.91, issue.16, pp.1221-1236, 2012.
DOI : 10.1007/s00726-010-0777-y

Z. Turk, Glycotoxines, carbonyl stress and relevance to diabetes and its complications, Physiol Res, vol.59, pp.147-156, 2010.

I. Nemet, L. Varga-defterdarovic, and Z. Turk, Methylglyoxal in food and living organisms, Molecular Nutrition & Food Research, vol.579, issue.144, pp.1105-1117, 2006.
DOI : 10.1002/mnfr.200600065

A. Stitt, A. Jenkins, and M. Cooper, Advanced glycation end products and diabetic complications, Expert Opinion on Investigational Drugs, vol.275, issue.28, pp.1205-1223, 2002.
DOI : 10.1074/jbc.M108196200

N. Murata-kamiya and H. Kamiya, Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA, Nucleic Acids Research, vol.29, issue.16, pp.3433-3438, 2001.
DOI : 10.1093/nar/29.16.3433

D. Yao, T. Taguchi, T. Matsumura, R. Pestell, and D. Edelstein, Methylglyoxal Modification of mSin3A Links Glycolysis to Angiopoietin-2 Transcription, Cell, vol.128, issue.3, pp.275-286, 2006.
DOI : 10.1016/j.cell.2007.01.026

P. Thornalley, L. Edwards, Y. Kang, C. Wyatt, and N. Davies, Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo, Biochemical Pharmacology, vol.51, issue.10, pp.1365-1372, 1996.
DOI : 10.1016/0006-2952(96)00059-7

T. Lo, M. Westwood, A. Mclellan, T. Selwood, and P. Thornalley, Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin, J Biol Chem, vol.269, pp.32299-32305, 1994.

H. Yim, S. Kang, Y. Hah, P. Chock, and M. Yim, Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals, J Biol Chem, vol.270, pp.28228-28233, 1995.

M. Kalapos, The tandem of free radicals and methylglyoxal, Chemico-Biological Interactions, vol.171, issue.3, pp.251-271, 2008.
DOI : 10.1016/j.cbi.2007.11.009

M. Okouchi, N. Okayama, and T. Aw, Preservation of Cellular Glutathione Status and Mitochondrial Membrane Potential by N-Acetylcysteine and Insulin Sensitizers Prevent Carbonyl Stress-Induced Human Brain Endothelial Cell Apoptosis, Current Neurovascular Research, vol.6, issue.4, pp.267-278, 2009.
DOI : 10.2174/156720209789630348

H. Yamawaki, K. Saito, M. Okada, and Y. Hara, Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells, AJP: Cell Physiology, vol.295, issue.6, pp.1510-1517, 2008.
DOI : 10.1152/ajpcell.00252.2008

C. Sena, P. Matafome, J. Crisostomo, L. Rodrigues, and R. Fernandes, Methylglyoxal promotes oxidative stress and endothelial dysfunction, Pharmacological Research, vol.65, issue.5, pp.497-506, 2012.
DOI : 10.1016/j.phrs.2012.03.004

W. Li, R. Maloney, M. Circu, J. Alexander, and T. Aw, Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: Role for glutathione-dependent metabolism of methylglyoxal, Free Radical Biology and Medicine, vol.54, pp.51-61, 2013.
DOI : 10.1016/j.freeradbiomed.2012.10.552

K. Desai and L. Wu, Methylglyoxal and Advanced Glycation Endproducts: New Therapeutic Horizons?, Recent Patents on Cardiovascular Drug Discovery, vol.2, issue.2, pp.89-99, 2007.
DOI : 10.2174/157489007780832498

P. Thornalley, Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts, Archives of Biochemistry and Biophysics, vol.419, issue.1, pp.31-40, 2003.
DOI : 10.1016/j.abb.2003.08.013

T. Watanabe, Y. S. Egawa, M. Nishi, and H. , Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions, J Pharmacol Exp Ther, vol.268, pp.1597-1604, 1994.

S. Kono, K. Deguchi, N. Morimoto, T. Kurata, and T. Yamashita, Intravenous Thrombolysis with Neuroprotective Therapy by Edaravone for Ischemic Stroke Patients Older than 80 Years of??Age, Journal of Stroke and Cerebrovascular Diseases, vol.22, issue.7, pp.1175-1183, 2013.
DOI : 10.1016/j.jstrokecerebrovasdis.2013.02.010

T. Yamashita, T. Kamiya, K. Deguchi, T. Inaba, and H. Zhang, Dissociation and Protection of the Neurovascular Unit after Thrombolysis and Reperfusion in Ischemic Rat Brain, Journal of Cerebral Blood Flow & Metabolism, vol.26, issue.4, pp.715-725, 2009.
DOI : 10.1056/NEJM199512143332401

V. Lukic-panin, K. Deguchi, T. Yamashita, J. Shang, and X. Zhang, Free Radical Scavenger Edaravone Administration Protects against Tissue Plasminogen Activator Induced Oxidative Stress and Blood Brain Barrier Damage, Current Neurovascular Research, vol.7, issue.4, pp.319-329, 2010.
DOI : 10.2174/156720210793180747

K. Omori, Y. Shikata, K. Sarai, N. Watanabe, and J. Wada, Edaravone mimics sphingosine-1-phosphate-induced endothelial barrier enhancement in human microvascular endothelial cells, AJP: Cell Physiology, vol.293, issue.5, pp.1523-1531, 2007.
DOI : 10.1152/ajpcell.00524.2006

H. Onodera, M. Arito, T. Sato, H. Ito, and T. Hashimoto, Novel effects of edaravone on human brain microvascular endothelial cells revealed by a proteomic approach, Brain Research, vol.1534, pp.87-94, 2013.
DOI : 10.1016/j.brainres.2013.08.019

W. Li, H. Xu, Y. Hu, P. He, and Z. Ni, Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress, PLoS ONE, vol.79, issue.9, p.76025, 2013.
DOI : 10.1371/journal.pone.0076025.g004

M. Deli, A. ´. , C. Kataoka, Y. Niwa, and M. , Permeability Studies on In Vitro Blood???Brain Barrier Models: Physiology, Pathology, and Pharmacology, Cellular and Molecular Neurobiology, vol.69, issue.3, pp.59-127, 2005.
DOI : 10.1007/s10571-004-1377-8

B. Weksler, E. Subileau, N. Perriere, P. Charneau, and K. Holloway, Blood-brain barrier-specific properties of a human adult brain endothelial cell line, The FASEB Journal, vol.19, pp.1872-1874, 2005.
DOI : 10.1096/fj.04-3458fje

B. Weksler, I. Romero, and P. Couraud, The hCMEC/D3 cell line as a model of the human blood brain barrier, Fluids and Barriers of the CNS, vol.10, issue.1, p.16, 2013.
DOI : 10.1038/nbt.2247

URL : https://hal.archives-ouvertes.fr/inserm-00812147

R. Paolinelli, M. Corada, L. Ferrarini, K. Devraj, and C. Artus, Wnt Activation of Immortalized Brain Endothelial Cells as a Tool for Generating a Standardized Model of the Blood Brain Barrier In Vitro, PLoS ONE, vol.52, issue.8, p.70233, 2013.
DOI : 10.1371/journal.pone.0070233.s008

D. Edelstein and M. Brownlee, Mechanistic Studies of Advanced Glycosylation End Product Inhibition by Aminoguanidine, Diabetes, vol.41, issue.1, pp.26-29, 1992.
DOI : 10.2337/diab.41.1.26

O. , B. Puskás, L. Nagy, L. Kanizsai, I. Gyuris et al., A cellmicroelectronic sensing technique for the screening of cytoprotective compounds, Int J Mol Med, vol.25, pp.525-530, 2010.

L. Kiss, F. Walter, A. Bocsik, S. Veszelka, O. ´. et al., Kinetic Analysis of the Toxicity of Pharmaceutical Excipients Cremophor EL and RH40 on Endothelial and Epithelial Cells, Journal of Pharmaceutical Sciences, vol.102, issue.4, pp.1173-1181, 2013.
DOI : 10.1002/jps.23458

L. Kürti, R. Gáspár, A. Márki, E. Kápolna, and A. Bocsik, In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration, European Journal of Pharmaceutical Sciences, vol.50, issue.1, pp.86-92, 2013.
DOI : 10.1016/j.ejps.2013.03.012

L. Kürti, S. Veszelka, A. Bocsik, O. ´. , B. Puskás et al., Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability, Cytotechnology, vol.8, issue.3, pp.395-406, 2013.
DOI : 10.1007/s10616-012-9493-7

K. Youdim, A. Avdeef, and N. Abbott, In vitro trans-monolayer permeability calculations: often forgotten assumptions, Drug Discovery Today, vol.8, issue.21, pp.997-1003, 2003.
DOI : 10.1016/S1359-6446(03)02873-3

K. Alm, Z. El-schich, F. Miniotis, A. Wingren, and B. Janicke, Cells and Holograms ??? Holograms and Digital Holographic Microscopy as a Tool to Study the Morphology of Living Cells, pp.978-953, 2013.
DOI : 10.5772/54505

R. Madácsi, I. Kanizsai, L. Fehér, M. Gyuris, O. ´. et al., Aromatic Sulfonamides Containing a Condensed Piperidine Moiety as Potential Oxidative Stress-Inducing Anticancer Agents, Medicinal Chemistry, vol.9, issue.7, pp.911-919, 2013.
DOI : 10.2174/1573406411309070004

R. Whitmer, Type 2 diabetes and risk of cognitive impairment and dementia, Current Neurology and Neuroscience Reports, vol.292, issue.2Suppl1, pp.373-380, 2007.
DOI : 10.1007/s11910-007-0058-7

A. Bruno, D. Liebeskind, Q. Hao, R. Raychev, and U. Investigators, Diabetes Mellitus, Acute Hyperglycemia, and Ischemic Stroke, Current Treatment Options in Neurology, vol.9, issue.6, pp.492-503, 2010.
DOI : 10.1007/s11940-010-0093-6

M. Mukohda, M. Okada, Y. Hara, and H. Yamawaki, Exploring Mechanisms of Diabetes-Related Macrovascular Complications: Role of Methylglyoxal, a Metabolite of Glucose on Regulation of Vascular Contractility, Journal of Pharmacological Sciences, vol.118, issue.3, pp.303-310, 2012.
DOI : 10.1254/jphs.11R12CP

W. Li, J. Liu, P. He, Z. Ni, and Y. Hu, Hydroxysafflor yellow A protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells, Neuroscience Letters, vol.549, pp.146-150, 2013.
DOI : 10.1016/j.neulet.2013.06.007

C. Lee, M. Yim, P. Chock, H. Yim, and S. Kang, Oxidation-Reduction Properties of Methylglyoxal-modified Protein in Relation to Free Radical Generation, Journal of Biological Chemistry, vol.273, issue.39, pp.25272-25278, 1998.
DOI : 10.1074/jbc.273.39.25272

N. Rabbani and P. Thornalley, Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress, Biochemical Society Transactions, vol.36, issue.5, pp.1045-1050, 2008.
DOI : 10.1042/BST0361045

P. Pun, J. Lu, and S. Moochhala, Involvement of ROS in BBB dysfunction, Free Radical Research, vol.201, issue.3, pp.348-364, 2009.
DOI : 10.1111/j.1600-079X.2005.00282.x

K. Desai and L. Wu, FREE RADICAL GENERATION BY METHYLGLYOXAL IN TISSUES, Drug Metabolism and Drug Interactions, vol.23, issue.1-2, pp.151-173, 2008.
DOI : 10.1515/DMDI.2008.23.1-2.151

H. Aberle, H. Schwartz, and R. Kemler, Cadherin-catenin complex: Protein interactions and their implications for cadherin function, Journal of Cellular Biochemistry, vol.3, issue.4, pp.514-523, 1996.
DOI : 10.1002/(SICI)1097-4644(19960616)61:4<514::AID-JCB4>3.0.CO;2-R

S. Liebner and K. Plate, Differentiation of the brain vasculature: the answer came blowing by the Wnt, Journal of Angiogenesis Research, vol.2, issue.1, 2010.
DOI : 10.1186/2040-2384-2-1

R. Beard, . Jr, J. Reynolds, and S. Bearden, Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions, Blood, vol.118, issue.7, pp.2007-2014, 2011.
DOI : 10.1182/blood-2011-02-338269

F. Cardoso, A. Kittel, S. Veszelka, I. Palmela, and A. Tóth, Exposure to Lipopolysaccharide and/or Unconjugated Bilirubin Impair the Integrity and Function of Brain Microvascular Endothelial Cells, PLoS ONE, vol.72, issue.728, p.35919, 2012.
DOI : 10.1371/journal.pone.0035919.g009

K. Roe, M. Kumar, S. Lum, B. Orillo, and V. Nerurkar, West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases, Journal of General Virology, vol.93, issue.Pt_6, pp.1193-1203, 2012.
DOI : 10.1099/vir.0.040899-0

D. Zoppo, G. Milner, R. Mabuchi, T. Hung, S. Wang et al., Vascular matrix adhesion and the blood-brain barrier, Biochem Soc Trans, vol.34, pp.1261-1266, 2006.

C. Wang and A. Shuaib, Critical role of microvasculature basal lamina in ischemic brain injury, Progress in Neurobiology, vol.83, issue.3, pp.140-148, 2007.
DOI : 10.1016/j.pneurobio.2007.07.006

D. Dobler, N. Ahmed, L. Song, K. Eboigbodin, and P. Thornalley, Increased Dicarbonyl Metabolism in Endothelial Cells in Hyperglycemia Induces Anoikis and Impairs Angiogenesis by RGD and GFOGER Motif Modification, Diabetes, vol.55, issue.7, pp.1961-1969, 2006.
DOI : 10.2337/db05-1634

M. Kaste, S. Murayama, G. Ford, D. Dippel, and M. Walters, Safety, Tolerability and Pharmacokinetics of MCI-186 in Patients with Acute Ischemic Stroke: New Formulation and Dosing Regimen, Cerebrovascular Diseases, vol.36, issue.3, pp.196-204, 2013.
DOI : 10.1159/000353680

M. Kalapos, Where does plasma methylglyoxal originate from?, Diabetes Research and Clinical Practice, vol.99, issue.3, pp.260-271, 2013.
DOI : 10.1016/j.diabres.2012.11.003

N. Mangalmurti, S. Chatterjee, G. Cheng, E. Andersen, and A. Mohammed, Advanced glycation end products on stored red blood cells increase endothelial reactive oxygen species generation through interaction with receptor for advanced glycation end products, Transfusion, vol.17, issue.11, pp.2353-2361, 2010.
DOI : 10.1111/j.1537-2995.2010.02689.x

A. Rouhiainen, J. Kuja-panula, S. Tumova, and H. Rauvala, RAGE-Mediated Cell Signaling, Methods Mol Biol, vol.963, pp.239-263, 2013.
DOI : 10.1007/978-1-62703-230-8_15