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Abstract 

The neuromuscular junction (NMJ) is the synaptic connection between motor neurons and 

muscle fibers. It is involved in crucial processes such as body movements and breathing. Its 

proper development requires the guidance of motor axons toward their specific targets, the 

development of multiinnervated myofibers, and a selective synapse stabilization. It first 

consists of the removal of excessive motor axons on myofibers, going from multi-innervation 

to a single innervation of each myofiber. Whereas guidance cues of motor axons toward their 

specific muscular targets are well characterized, only few molecular and cellular cues have 

been reported as clues for selecting and stabilizing specific neuromuscular junctions.  

We will first provide a brief summary on NMJ development. We will then review molecular 

cues that are involved in NMJ stabilization, in both pre- and post-synaptic compartments, 

considering motor neurons and Schwann cells on the one hand, and muscle on the other hand. 

We will provide links with pathologies and highlight advances that can be brought both by 

basic research on NMJ development and clinical data resulting from the analyses of 

neurodegeneration of synaptic connections to obtain a better understanding of this process. 

The goal of this review is to highlight the findings toward understanding the roles of poly- or 

single-innervations and the underlying mechanisms of NMJ stabilization. 

 

 

Introduction  

The neuromuscular (NM) junction is the synaptic connection between motor neurons and 

muscle fibers. It is among one of the earliest synapses formed during mammalian 



development. NM junctions (NMJ) are involved in crucial processes, and their proper 

functionality governs complex and vital processes such as breathing and body movements. 

Consequently, unproper NMJ formation with abnormal developmental selective synapse 

stabilization or unproper NMJ maintenance later on during life may originate various 

neurodegenerative diseases. 

NMJ remains the best-studied model for understanding the mechanisms involved in 

synaptogenesis. Its accessibility and size permit analyses of interactions between the nerve 

and its muscular target. The development of a mature NMJ first require the guidance of the 

motor axons toward the specific muscles to be innervated and then the stabilization of the 

contact. The stabilization of synapses is a key step for both development and function of the 

nervous system. Several animal models have been used to investigate the cues that are 

involved in these processes. Neuronal growth cones are located at the tip of the axon and act 

as chemical sensors of molecular guidance cues present in the environment and targets. 

Accumulating data has allowed to elucidate mechanisms involved in the guidance of growth 

cones and motor axons toward their muscle targets in Drosophila, C. elegans, mouse or 

human. However, only very few reports bring clues explaining the stabilization of NMJ 

throughout life. The secretion of the Acetylcholine neurotransmitter (Ach) - the only 

neurotransmitter used in the motor division of the somatic nervous system which behaves as 

an excitatory neurotransmitter at NMJ in skeletal muscle - is among the main characteristics 

of the NMJ. Ach activates skeletal muscles and is a major neurotransmitter in the autonomic 

nervous system. Ach binds to nicotinic acetylcholine receptors (AchR) on skeletal muscle 

fibers and induces the contraction of skeletal muscle. A third cellular type is present at the 

NMJ in close proximity to the neuron-muscle synapse. It consists of a class of non-

myelinating Schwann cell, called terminal (or perisynaptic) Schwann cell. Altogether, nerve 

terminals, muscle fibers and Schwann cells constitute the tripartite cellular synaptic 

compartment. Several parameters have been considered to analyze the stability of the NMJ: 

the maintenance of the tripartite cellular synaptic compartment, the number and localization 

of AchR patches, the number of nerve terminals per fiber according to the developmental 

stage, Schwann cells capping the nerve terminal, cytoskeleton that coats the in-folded 

postsynaptic membrane, and the basal lamina that runs through the synaptic cleft - a small 

space neurons release neurotransmitter molecules into. Here, we will discuss the mechanisms 

that determine whether a synapse will persist or will be remodeled or eliminated, focusing on 

key periods that could be considered as "critical periods" (Figure 1). We will first provide a 

brief up-to-date summary on NMJ development. Then we will focus on reviewing most of 



molecular cues that are involved in NMJ stabilization, in both pre- and post-synaptic 

compartments. We will provide links with pathologies and highlight advances that can be 

brought by both developmental basic data - including molecular candidates involved in pre- 

and post-synaptic development - and clinical data to get a better understanding of this still 

poorly understood process. Indeed, we will consider the causal cues that have been 

hypothesized from the analyses of neurodegeneration of NM synaptic connections following 

injuries or genetic alterations in cases of amyotrophic lateral sclerosis (ALS) and spinal 

muscular atrophy (SMA) caused by mutations within the survival motor neuron 1 gene. The 

goal of this review is to highlight the findings that have possible applications for 

understanding the role of polyinnervation, in particular timely maintenance and retrieval. We 

will consider the types of muscles and NMJ that are concerned, the physiology and 

physiopathology of NMJ development, and axon stabilization in peripheral but also central 

synapses.  

 

Development of the NMJ 

Motor neurons proliferate in the ventricular zone of the neural tube and become postmitotic 

between stage 14 and 23, i.e. between E2 and E4.5 in chick embryo [1] and between E9 and 

E10/E11 in mouse, according to the motor neuronal population. Subsequently, motor neurons 

differentiate into limb and axial motor neurons. They assume their topographic organization 

in distinct columns based on the combinatorial expression of homeoproteins [2], in particular 

unique combinations of LIM-type homeodomain factors [3]. It also allows subtype identity 

(fast:slow and flexor:extensor) and the formation of proper and characteristic motor circuits 

whose development is linked to the presence of guidance cues [4]. These multiple classes and 

subtypes of motor neurons, as fast and slow, alpha (!) and gamma (" ) allow NM specific 

contractile and motor functions and physiology [5 for an extensive Review]. Alpha motor 

neurons are the most abundant of these classes driving muscle contraction and they can in 

turn be classified into subtypes according to the contractile properties of the motor units that 

they form with target muscle fibers: fast-twitch fatigable (FF), fast-twitch fatigue-resistant 

(FR), and slow-twitch fatigue resistant (S) [6]. Gamma motor neurons innervate intrafusal 

muscle fibers of the muscle spindle and play complex roles in motor control. We will not 

insist here on a third not so well-defined population called #-motor neurons [5]. Although the 

existence of separate programs for the determination of !- and "-motor neurons identities 

seems to be a pre-requisite, the identification of early markers is still needed to determine how 

and when the various populations diverge. Whether genetic cues that will allow this diversity 



of cell types at early stages of development or differential interactions with the periphery will 

finally establish a molecular distinction between motor neurons subtypes is still to be 

determined [7]. Gamma-motor neurons express higher levels of the glial cell lineÐderived 

neurotrophic factor (GDNF) receptor subunit GFR!1 than ! -motor neurons, and the 

transcription factor Err3 - an orphan nuclear hormone receptor - also becomes restricted to "- 

motor neurons during the first two postnatal weeks [7]. Thus, these markers only begin to 

distinguish "- from ! -motor neuronss at postnatal stages, which may suggest a role in the 

period of polyinnervation retraction and in the selective axon stabilization/retraction that will 

be detailed below. 

Another specificity of motor neurons is their remarkably long axonal length since they can 

innervate distal muscle targets such as the limbs, thanks to appropriate export of membranes 

from their cell bodies. Synaptic formation begins as an intrinsic property of axonal terminal to 

form specific synaptic sites, even in the absence of postsynaptic contacts, through an intrinsic 

synaptogenic activity. Among specific features of presynaptic differentiation is the formation 

of active zones (AZ) where a dense network of macromolecules called active zone material 

(AZM) is attached to the presynaptic membranes next to docked vesicles. Later on, retrograde 

signals, including LRP4 (see below and [8]), will regulate presynaptic differentiation at 

neuromuscular synapses. Presynaptic active zones are synaptic vesicle release sites that play 

essential roles in the function and pathology of mammalian NMJs. The molecular 

mechanisms of active zone organization use presynaptic voltage-dependent calcium channels 

(VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-

derived synapse organizer laminin #2, and interact intracellularly with active zone-specific 

proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs (for a 

Review, [9]). Muscle innervation by motor neurons leads to a high concentration of 

acetylcholine receptors (AChRs) in postjunctional membranes of muscle fibers, a complex 

process that involves AChR aggregation in subsynaptic areas, the dispersion of nonsynaptic 

AChR-rich sites and local AChR synthesis. The anterograde signals used during development 

include agrin, a polypeptide used by motor neurons to cluster AChRs and ACh which 

suppresses AChR subunit gene expression and disassembles AChR clusters in nonsynaptic 

areas once muscle fibers have been activated. Retrograde neurotrophic information has to be 

brought from the muscle target transported along the axon to reach the cell bodies, to assert 

motor neurons survival, which also makes motor neurons great models to study the dialogues 

between synaptic targets and cell bodies to regulate cell survival. A complex interplay exists 

between axons, Schwann cells and the differentiating muscle fibers, composing a tripartite 



NM synapse. Schwann cells migrate and contact axon terminals as they branch on young 

myotubes. Postsynaptic AChR clustering also occurs prenatally. As motor neurons make 

contact with muscle fibers, the number of motor neurons is greatly reduced. The process of 

motor neuron elimination takes place between E12-E14 for phrenic motor neurons - that 

specifically innervate the diaphragm, the major muscle of respiration -  for example in mice 

[10]. In most types of motor neurons, up to 50% of motor neurons are lost by apoptosis at this 

time, possibly involving motor neurons activity and their functional connections. The 

neurotrophic theory elaborated by Victor Hamburger and Rita Levi-Montalcini is based on a 

competition concept between adjacent axons. Some neurons in a population die because 

trophic molecules are available in only limited amounts by the muscular target during periods 

of naturally occurring cell death [11]. Indeed, it has become evident that muscles provide 

signals to regulate differentiation and function of presynaptic terminals. In parallel with agrin 

pathway, the Wnt signaling pathways has been shown to be crucial in mediating nerve-muscle 

interactions during NMJ formation. Wnt is a family of secreted glycoproteins that have 

important roles in the development and maturation of the nervous system, including brain 

patterning, axon guidance and synapse formation. The muscle §-catenin has been shown 

essential for NMJ development and function, more particularly for presynaptic differentiation. 

The specific suppression of §-catenin in skeletal muscles led to mouse's death soon after birth, 

with considerable presynaptic defects including the mislocation of primary branches of 

phrenic nerves and extended secondary branches. Indeed, §-catenin dependent transcription 

has been suggested to be necessary for the expression of a necessary retrograde signal protein 

[12]. #-Catenin may also regulate the expression of synaptic proteins including the AChR 

[13]. 

More recent in vivo experiments have studied NM development in mice expressing increased 

levels of #-catenin in either motor neurons or muscles. #-catenin overexpression in muscle 

only not in motor neurons increases nerve branching possibly due to an increase in motor 

neuron numbers but independent of the level on neuromuscular activity. Defasciculation and 

branching occur prior to the establishment of functional NMJs between phrenic motor 

neurons and their target diaphragm muscles [14].  

 During vertebrate NM development, all muscle fibers are transiently innervated by 

more than one neuron. Later on, during postnatal development, a step of polyneuronal 

innervation retraction is observed (Figure 1), leading to motor neuronal mono-innervation. 

Indeed, although synaptic connections can be stably maintained for prolonged periods, they 

can be rapidly disassembled during the development and refinement of neural circuitry. This 



retraction of polyinnervation can be considered as a form of NMJ instability [15]. We will 

review the mechanisms that are involved in this process.  

 

Activity -dependent competition for synapse elimination 

Synapse competition and elimination are a general developmental process both in CNS and 

PNS which is strongly activity dependent (Figure 2). It is well-established that the synaptic 

connections between motor axons and muscle are shaped by activity. Impaired postsynaptic 

activity at neuromuscular synapses  delays the withdrawal of presynaptic terminals and 

synapse elimination [16]. This has been demonstrated extensively for processes occurring late 

during synaptogenesis in which activity regulates synaptic maturation and refinement [17]. In 

the absence of activity, NMJs form an aberrant morphology with a reduction of post-synaptic 

specializations, as demonstrated in rat, Drosophila and mouse [18]. The blockade of neural 

transmission leads to the loss of synapse elimination, causing aberrant branching of motor 

axons and multiple innervation of muscle fibers, altogether with modifications of motor 

neuron survival during normal cell death [19]. Cholinergic transmission is a mediator of the 

neural control of stability of junctional AChRs in mammals. Accordingly, increasing activity 

accelerates the transition to mono-innervation. The synchronous activity of motor neurons 

first favors polyneuronal innervation whereas asynchronous activity subsequently promotes 

synapse elimination [20]. Interestingly, the blockade of action potential generation in muscle 

can inhibit synapse elimination through local signaling [21]. 

Nevertheless, the precise and successive physiological functions of steps of polyinnervation 

followed by mono-innervation stabilization Ð a developmental process that necessarily 

challenges NMJ activity and function -  still remain hypothetical in terms of activity 

regulation within appropriate physiological ranges. Synaptic activity drives synaptic 

rearrangement in the vertebrate nervous system, in particular the competitive process of 

synapse elimination during early postnatal life. Indeed, more powerful inputs are strongly 

favoured competitors during this process [20], and active synaptic sites can destabilize 

inactive synapses in their vicinity. Homeostatic stabilization and signaling mechanisms that 

allow cells to maintain appropriate levels of activity could also control developmental synapse 

growth and stabilization, or be controlled through retrograde or anterograde processes. 

Whether multi-innervation removal and mono-innervation at the NMJ is a homeostatic 

challenge remains to be demonstrated. Anyway, among answers to retrograde signalings that 

have already been demonstrated to be involved in homeostatic plasticity and compensation at 

the NMJ, in Drosophila in particular, are the size of readily releasable pool of synaptic 



vesicles and presynaptic calcium influx. It can occur through the postsynaptic inhibition of 

glutamate receptors, the impairment of muscle excitability, or through the alteration of the 

rates of innervation received by individual muscles, for Drosophila NMJ in particular as 

demonstrated through the use of fasciclin mutants (reviewed in[22]). It will be important to 

demonstrate the cues that are involved in synaptic homeostasis challenges, in addition to 

modulation of AchR density [23] during normal development and mono-innervation 

acquisition in mammalian central and peripheral synapses, but also in human health and 

pathophysiology. 

 

Presynaptic components involved in the regulation of NMJ stability  

 

Most of the cues mentioned below are illustrated in Figures 3 and 4. 

 

- An extracellular matrix molecule: agrin 

Agrin is the key neural factor that controls muscle postsynaptic differentiation. A 

physiological role of agrin, an essential synaptic organizing protein, is to counteract the 

destabilizing Ç antisynaptogenic È effects of the ACh neurotransmitter on nascent 

postsynaptic sites [24]. Agrin regulates nerve-induced transcriptional activation of several 

synapse-specific genes. Among them are neuregulins (NRG) that are expressed by motor 

neurons and activate ErbB receptors in muscle, and AchR [25]. Although initially described 

as an important inducer of AChR clustering in the postsynaptic membrane, agrin is now 

defined as a stabilizer of the postsynaptic membrane, rather than an inducer. Thus the 

blockade of Neuregulin (NRG)/ErbB signaling also reduces the stability of receptors in agrin-

induced AChR clusters in vitro [26]. Mice lacking neuregulin 1 or its receptors Erbb2 or 

Erbb3, expressed on Schwann cells surface lack Schwann cells [27], and their motoneurons 

form transient synapses with muscle fibers that fail to be maintained, indicating a crucial role 

for Schwann cells in NMJ formation and maintenance. 

Although secreted by the presynaptic compartment, agrin directly modulates the organization 

of key post-synaptic components involved in NMJ stabilization. Agrin transiently activates 

the kinase MuSK, but also later on, the Src family kinases (SFKs) required for AChR clusters 

stabilization [28]. The stabilization of agrin-induced AChR clusters requires Src and Fyn in 

terms of "adaptor activities", rather than the kinase activity (Figure 3). Yes, which also 

belongs to the Src family kinases, can act with Src downstream ErbB2, and could also be 



involved in the stabilization process of AChRs clusters [29]. The stabilization of some 

prepatterned AChR clusters requires the innervation. Indeed, once the muscle has been 

contacted by the nerve, ACh released by the motor neuron induces a postsynaptic potential 

which stabilizes previous AChR clusters in the contacted area and prevents AChR clustering 

in non-contacted areas. Moreover, agrin released by the neuron also stabilizes the AChR 

clusters and along with neuregulin, strongly increases AChR transcription in subsynaptic 

nuclei [30]. 

 

Agrin mutation can cause congenital myasthenia, with dramatic perturbations of the 

maintenance of the NMJ [31]. The expression of mutated proteins in muscles destabilizes 

wild type NMJ but not the induction of postsynaptic structures. Some of postsynaptic 

congenital myasthenic syndroma (CMS) including fetal akynesia are caused by mutations in 

Agrin, but also in DOK7, GFPT1, musk and Rapsyn, all of them being part of a molecular 

pathway essential for AChR aggregation and positioning on the postsynaptic membrane that 

will be detailed below [32].  

 

- Adhesion molecules 

Several CAMs have been identified at the neuromuscular junction where they regulate 

synaptic strength by recruiting scaffolding proteins, neurotransmitter receptors and synaptic 

vesicles in response to the binding of counter-receptors across the synaptic cleft. Among 

them, cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin 

adhesion proteins can be cited. Among cadherins, we will underline the possible role of N-

cadherin in the context of NMJ stabilization, but not of axon outgrowth. It accumulates at the 

neuromuscular junction only a few days after the first synaptic contacts have been established 

and remains at the adult neuromuscular junction, suggesting a role of this molecule in the 

stabilization of the mature neuromuscular junction. The presence of N-cadherin has also been 

described in basal lamina and its association with collagen fibres suggests the release of N-

cadherin in the extracellular space [33]. . 

Neurexin is mostly located on the presynaptic membrane. It is a synaptic cell adhesion 

protein critical for synapse formation, maturation and function. Its crucial role has been 

demonstrated for proper active zone apposition to postsynaptic densities, synaptic growth, and 

synaptic transmission. In vivo, it acts through the modulation of synaptic architecture and 

adhesive interactions between pre- and postsynaptic compartments, binding in particular 

proteins located in the synaptic cleft like Neuroligin. 



The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, providing bidirectional 

communication across the  synaptic cleft. It has recently been proposed in Drosophila that a 

postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin 

transsynaptic signaling complex to mediate normal synapse development and presynaptic 

active zone organization [34] [35]. Severe synapse assembly deficits are found in Drosophila 

melanogaster neurexin (Nrx-1, dnrx) and also neuroligin (Nlg1, dnlg1) mutant [36]. In 

addition, mutations in these genes in humans have been associated with cognitive disorders 

such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. Such central 

pathologies are linked with lower amounts of central synapses, in particular in the dorsolateral 

prefrontal cortex (DLPC) for Schizophrenia. But it is not known whether this is due to an 

additional loss of synapses during normal adolescence - linked with reduced abnormal 

stabilization/increased destabilizing mechanisms, - or whether it results from a failure to form 

a normal complement of synapses during childhood. 

 However, which adhesion factors establish the essential physical links across synaptic 

clefts and allow the assembly of synaptic machineries at the contact site in vivo is still 

unclear, mainly due to the redundancy that may occur among CAMs. Recent studies 

performed in Drosophila have pointed out the important contribution made by basal 

membrane-dependent mechanisms in addition to CAM-dependent adhesion [37]. 

 

- Matrix metalloproteinases  

Matrix metalloproteinases are key regulators of the extracellular matrix. Metalloproteases, 

particularly MMP3 and MMP9 that would be located at the active terminals, have been 

proposed to cleave proBDNF at the active terminal during synaptic competition in Xenopus 

NMJ. These proteases are expressed in motor neurons and are highly enriched at the NMJs 

[38], whereas pro-BDNF would be mainly secreted by muscle cells. Opposite data concerning 

the effects of inhibition of MMPs on synapse elimination remain to be reconciled.  

 Matrix metalloproteinase 3 (MMP3) has also been involved in the regulation of 

synaptic structure through its ability to cleave agrin and to remove it from the synaptic basal 

lamina [39]. Antibodies to MMP3 recognize molecules concentrated at the synapses of frog 

NMJs. NMJs in MMP3 null mutant mice have increased junctional folds and AChR 

aggregates [40]. The role of MMP3 in NMJ stabilization has not been directly tested, but 

MMP3 depletion prevents motor endplate degradation following traumatic peripheral nerve 

injury in KO mice. 



It is noteworthy that the changes in synaptic activity will alter the activity of MMP3 at the 

synapse. Thus, the extracellular matrix is critical to the formation of the synapse, and synaptic 

activity controls the structure and function of the molecules in the extracellular matrix.  

 

- Agrin, Microtubule-associated proteins and AChR clusters (Figure 4) 

Cytoplasmic linker associated proteins or CLASPs, are microtubule plus-end tracking 

proteins. The absence of CLASP2 has been reported to impair the maintenance of the neuro-

muscular junction with a decreased subsynaptic membrane in muscles, a decrease of synaptic 

AchRs and of the size of ACh clusters. Thus, the capturing of microtubules at the synaptic 

membrane through the effect of CLASP2 under the regulation by agrin is strictly required at 

the NMJ synaptic membrane [41]. Agrin modulates the local capture of dynamic microtubules 

at agrin-induced acetylcholine receptor clusters through the activation of PI3kinase and 

GSK3§ inactivation, a process largely mediated by CLASP2. PKC activation also accelerates 

postnatal synapse loss [42] which also occurs in parallel with AChR cluster dispersal 

postsynaptically.  

Dynactin is a multisubunit protein complex composed, among others, of p150Glued doublets 

that is required for most types of cytoplasmic dynein activity in eukaryotes. In Drosophila, 

Arp-1(Actin-related protein-1)/centractin, a subunit of the dynactin complex, has been shown 

to regulate synapse retraction. Arp-1 dsRNA enhances synapse retraction, and this effect is 

phenocopied by a mutation in P150/Glued, also a dynactin component. Retraction is 

associated with a local disruption of the synaptic microtubule cytoskeleton. Altogether, these 

results suggest that dynactin functions locally within the presynaptic arbor to promote synapse 

stability as demonstrated in Drosophila. Whereas the dynactin complex is found in all tissues 

including muscle and the central and peripheral nervous systems, Glued is enriched in 

presynaptic NMJ, and only presynaptic dynactin function is necessary for synapse 

stabilization [43].  

Another mouse model has provided interesting data about the role of microtubules in axonal 

degeneration of motor neurons. The tubulin-specific chaperone (TBCE) is a peripheral 

membrane-associated protein that accumulates at the Golgi apparatus. A function of TBCE is 

the binding of ! -tubulin toward polymerizing microtubules. The mouse model of progressive 

motor neuronopathy (pmn) is mutated in the TBCE which disappears form the Golgi 

apparatus of motor neurons, and microtubules are lost in distal axons [44]. The axonal 

microtubule loss proceeds retrogradely in parallel with the axonal degeneration. Thus axonal 



tubulin routing from the Golgi apparatus involves tubulin chaperones that are required to 

allow NMJ stabilization. 

 

- Other microtubule associated proteins and synapse stabilizations 

Interestingly, another microtubule associated protein of the Cytoplasmic Linker Proteins 

(CLIP) family named CLIP3/CLIPR-59, and mainly localized at the trans-golgi-netwok 

(TGN) has been recently shown to be involved in the stabilization of NMJ perinatally [45]. 

Indeed, in CLIP3 deficient embryos, animal death occurs perinatally, due to a decreased 

contraction force of the diaphragm and respiratory failure at birth. Whereas phrenic axon 

guidance normally occurs until E15, the diaphragm innervation pattern becomes incomplete 

between E15 and E18.5. Similar defects in axon maintenance have been observed in other 

muscles, in particular in hindlimb muscles. The ultrastructural analysis of NMJs revealed that 

the number of nerve terminals was reduced in the ventral region of the diaphragm in 

particular, due to a decrease in branching complexity of nerve terminals or in number of 

axons at NMJ. A mislocalization of Schwann cells has been reported in CLIP3 KO mice, 

suggesting premature phagocytosis and the elimination of nerve terminals. The structure and 

partners of CLIP3, as well as the phenotype of the KO mice suggest that protein/membrane 

trafficking or cytoskeleton remodeling play a key role for nerve terminal maintenance at the 

NMJ. Whereas the molecular mechanism of action of CLIP3 has not been elucidated so far, it 

appears to be necessary to prevent premature motor axon retraction during late 

embryogenesis. The maintenance of muscle multi-innervation by motor neurons would be 

strictly required for birth, possibly for the initial breathing and lung expansion and other 

movements in newborns. Thus, the requirement of the maintenance of multi-innervation 

perinatally would have a physiological role, and the multi-innervation elimination should not 

occur prior the post-natal period between P1 and P12. A different hypothesis was proposed 

from other studies. Synapse elimination is dramatically delayed in a specialized extraocular 

muscle, the levator palpebrae superioris (LPS). The delayed maturation could have a useful 

purpose since this specialized eyelid muscle remains immobile during early postnatal 

development. Thus, the maintenance of the multi-innervation could allow a rest state of the 

muscle [46]. Further studies will be required to determine whether polyinnervation may allow 

either a non synchronous but overactivity required at specific steps of development, or allow 

decreasing and resting activity according to the muscle types and  specific NMJ physiology.  

Through the analysis of differential defects in various types of motor units in CLIP3 KO, it 

appears that the selective impairments of synapse stability were possibly linked with specific 



physiology of motor units. Fast Synapsing (FaSyn) and Delayed Synapsing (DeSyn) muscles 

have been reported to differ significantly with respect to the initial focal clustering of 

postsynaptic AChRs, the timing of presynaptic maturation, and the maintenance of NMJs in 

young adult mice [47]. In CLIP3 KO, DeSyn muscles were more affected than FaSyn 

muscles. In SOD1 mutants, curiously, at the same time, some motor neurons sprout to 

compensate the degeneration of other motor neurons, indicating distinct sensibilities among 

the same motor pool. Deciphering the specificity of motor neurons types would possibly 

allow correlations with distinct stability profiles. During ALS disease, some motor axon 

branches attempt to compensate for the loss of innervation, resulting in enhanced axonal 

arbors. An elegant in vivo approach [48] has established that degenerative versus regenerative 

changes are mainly confined to distinct populations of neurons, but within the same motor 

pool. Thus, either two types of signals are emitted toward motor neurons with specific 

characteristics during ALS, or among one motor pool, motor neurons have the ability to 

answer either by sprouting and by degenerating, or by being hyper-reactive to death signals 

synthesized in their close vicinity that leads to sprouting cascade.  

 

Postsynaptic components involved in the regulation of NMJ stability 

 A sequence of required cross-talk between nerve and muscle for their proper 

maturation has proposed that postsynaptic areas bring the first trigger events. For example, 

during the development of NMJ (sternomastoid muscle), postsynaptic areas begin to be 

depleted of AChRs before there is any obvious loss of membrane in the nerve terminal [49]. 

The matter of stability/stabilization of certain synapses can also be considered as mechanisms 

involved in the selection of synapses to be eliminated. Nerve terminal withdrawal is 

accompanied by a loss of acetylcholine receptors (AChRs) at corresponding sites at 

developing NMJ. 

Concomitantly with nerve terminal retraction, a loss of Schwann cell processes occurs in the 

postsynaptic apparatus. In case of crushes, it has been proposed that changes in Schwann cells 

occur after alterations in the postsynaptic receptor density. The stabilization of the 

postsynaptic compartment through a balanced dialogue with the presynaptic activity may be 

another way of NMJ stabilization. Among other small GTPases activities that can act on the 

regulation of NMJ stability could be Ral and the exocyst. It has been reported that Ral 

mediates activity dependent growth of postsynaptic membranes [50].  

 

- Extracellular matrix and adhesion molecules 



Synaptic muscle fiber basal lamina is rich, among other components, in laminin. 

Laminin §2 mutant mice show vesicles that fail to aggregate near the presynaptic membrane 

and the formation of nerve terminals is severely impaired [51]. Interestingly, Schwann cells 

and their processes can be abnormally located in the synaptic cleft. This is the case in §2-/- 

mutants. Synaptic laminins have the ability to inhibit the extension of SC processes. Indeed, 

the maturation and maintenance of nerve terminals do not require collagen !2, but depend on 

laminin §2 [9, 52]. Laminin §2 probably binds directly to and clusters the P/Q-type calcium 

channels that flank active zones, which in turn recruit other presynaptic components [53] for a 

review. 

Truncating mutations in the gene encoding the laminin §2 subunit (LAMB2) can cause a 

severe form of synaptic congenital myasthenic syndroma (CMS) due to various defects in the 

organization of the NMJ, including the reduction of axon terminal size [54]. 

 

At synapses, pre- and post-synaptic cells are in direct contact with each other via cell 

adhesion molecules (CAMs).  

Genetic evidence indicates that cell adhesion molecules of the immunoglobulin 

superfamily (IgCAMs) are critical for activity-dependent synapse formation at the NMJ in 

Drosophila and have also been involved in synaptic remodelling during learning in Aplysia. 

In Drosophila, fasciclin II may play an important role in the maintenance of synapse integrity, 

particularly in the context of lesion and reinnervation. The role of neural cell adhesion 

molecule (NCAM), the fascII vertebrate homologue, has been investigated using NCAM -/- 

mutants. Mice that lack all three major isoforms of neural cell adhesion molecule (NCAM) 

(180 and 140 kDa transmembrane, and 120 kDa glycosylphosphatidylinositol linked) exhibit 

major alterations in the maturation of their NMJs [55]. Although functional NMJs form in 

NCAM-deficient mice, they show multiple alterations in presynaptic organization and 

function. The role of NCAM in the development and maturation of the NMJ was explored by 

structurally and functionally characterizing NMJs postnatally in NCAM null mutant mice. 

Both the withdrawal of polyneuronal innervation and the selective accumulation of synaptic 

vesicle protein in the presynaptic terminal were delayed [56]. 

Whereas many aspects of transmission are normal thanks to a proper assembling of many 

presynaptic and postsynaptic molecules in the absence of NCAM, the latter was indeed 

required for specific aspects of transmission, including paired-pulse facilitation and reliable 

transmission with repetitive stimuli, regulating directly or indirectly vesicle 

mobilization/cycling that are pre-synaptic processes [57]. 



 

NCAM null NMJs were unable to maintain effective transmitter output with high-frequency 

repetitive stimulation, exhibiting both severe initial depression and subsequent cyclical 

periods of total transmission failures that were of presynaptic origin. 

In addition to its role in developmental maturation and stabilization of NMJs, the role of 

NCAM has also been investigated in reinnervation and stabilization of NMJs after nerve 

injury. Although redundance weakened phenotypes in mouse mutant models, the elimination 

of polyneuronal innervation was slowed down after nerve crushes [58]. In such models of 

nerve injury, the absence of NCAM affected the 3 components of the NMJ, ie motor neuron, 

muscle and Schwann cells, neither prevented nor delayed the recovery of contractile force. 

Nevertheless, three months post lesion (nerve crush), synapses were withdrawn. A loss of fast 

muscle fibers was also observed, leading to a decrease in contractile force, signs of 

inappropriate axonal withdrawal and impaired synaptic neurotransmission. Thus, the recovery 

of contractile force was the same in wild-type and NCAM-/- mice one month after nerve 

injury, but only transiently. NCAM is required to maintain normal synaptic function at 

reinnervated NMJs, although its loss pre-synaptically or post-synaptically is not sufficient to 

induce synaptic destabilization, suggesting that NCAM must be absent pre-synaptically and 

post-synaptically or absent on peri- synaptic terminal Schwann cells in order to destabilize the 

synapse after reinnervation [59]. 

Altogether, these data reveal that NCAM is required both for the normal course of 

polyneuronal elimination during development, and for maintaining normal muscle function 

through appropriate stabilization of motor axons after a peripheral nerve injury.  

 

- Rapsyn, a 43kDa cytoplasmic protein, is precisely co-localized with AChRs at the NMJ.  

It is lost at the same rate as AChRs at junctions undergoing synapse elimination. In MuSK - 

or rapsyn - mutant muscle fibers, wild-type nerve terminals underwent continuous remodeling 

[60]. Normal postsynaptic differentiation appears to be dispensable for initial stages of 

presynaptic differentiation but required for presynaptic maturation. When nerves enter 

transplanted muscles derived from mice lacking muscle-specific receptor tyrosine kinase 

(MuSK) or rapsyn, wild-type nerve terminals undergo continuous remodeling, suggesting that 

these muscle components are required to stabilize the immature contacts so that they can 

mature [60]. Interestingly, biglycans that act as ligands for Musk are proposed to stabilize 

synapses after P14 once they reach their mature configuration, although they are not 

necessary for synapse formation in vivo, nor for the initial AChR clustering in vitro [61]. Thus 



NM stabilization would involve specific cues and cellular signaling that are specific of 

distinct steps of synapses maturation. Among them, LRP4 codes for the postsynaptic low-

density lipoprotein receptor-related protein 4. LRP4 is expressed on the surface of the 

postsynaptic membrane of the NMJ and acts as a receptor for the neurally secreted agrin. 

Once LRP4 is bound by agrin, MuSK becomes activated. LRP4 acts as a co-factor for MuSK 

in agrin signaling, interacting with MuSK like several other proteins in the early stages of 

synapse development including Dok-7 and Wnt11r [53]. Activated MuSK, together with Dok-

7, stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and 

interacts with other proteins implicated in the assembly and maintenance of the NMJ. Another 

specific domain of LRP4 functions as an inhibitor of Wnt/beta-catenin signaling. #-catenin 

interacts with rapsyn to favor AChR clustering, which also requires interaction with !-

catenin. By interacting with rapsyn and !-catenin, #-catenin may link the AChR to the 

cytoskeleton [13]. Myogenin - a muscle specific transcription factor - is involved in AchR 

expression, stabilization and clustering [62]. Some postsynaptic congenital myasthenic 

syndroms (CMS) are caused by mutations in Agrin, musk and Rapsyn, all of them being part 

of a molecular pathway essential for AChR aggregation and positioning on the postsynaptic 

membrane [63]. LRP4 has been proposed to be a novel congenital myasthenic syndrome 

disease gene [64]. In Myasthenia gravis (MG), a severely debilitating autoimmune disease 

that is due to a decrease in the efficiency of synaptic transmission at neuromuscular synapses, 

antibodies are generated against postsynaptic proteins, including acetylcholine receptors, 

MuSK, and (Lrp4), which prevents binding between MuSK and Lrp4, and inhibit Agrin-

stimulated MuSK phosphorylation [65]. 

 

- Dystroglycan (DGC) is a multi-molecular complex including dystrophin glycoprotein 

complex altogether with dystrophin, a cytoskeletal protein. The homologue of dystrophin at 

the NMJ synapse is utrophin. Another cytoplasmic component is !-dystrobrevin. The roles of 

DGC have been analyzed in KO mouse models. They could be involved in the maintenance of 

the NMJ, although only analyzed in terms of AChR clusters sizes, which reveals the 

anchoring of the AChRs in the synaptic membrane as a sign of stabilized mature synapse. But 

no data have been reported as for axon terminals in these mutants after neurofilaments 

stainings or electron microscopy. It is noteworthy that after denervation, a sequence of 

molecular loss occurs, syntrophin and dystrophin being lost later than rapsyn and utrophin. In 

addition, it has been shown that !-dystrobrevin tyrosine phosphorylation is strictly dependent 

on the functionality of Neuregulin (NRG)/ErbB signaling.  



 

 

- Nogo-A has been first described as an inhibitor of axon growth in the central nervous 

system. It has been shown that NogoA mRNA and proteins levels do increase in mSOD1 

mouse model as well as in Amyotrophic Lateral Sclerosis (ALS) denervated muscle fibers 

biopsies. ALS is a fatal paralytic disease that targets motor neurons, leading to motor neurons 

death and widespread denervation with atrophy of muscle. Clinical observations reported so 

far can bring interesting cues to get a better understanding of other cellular processes or 

molecular cues possibly involved in NMJ stabilization. NogoA overexpression has also been 

reported more generally in other muscle pathologies such as peripheral neuropathies [66]. The 

over-expression of Nogo in patient is limited to oxydative fibers, and the levels of Nogo-A are 

correlated with the clinical state of the patient [67]. 

The ectopic expression levels of Nogo-A in the muscles of ALS patients correlate with the 

severity of clinical symptoms. In wild-type mouse fibers, the overexpression of Nogo-A leads 

to the shrinkage of the postsynapse and retraction of the presynaptic motor ending. Indeed it 

has been shown that Nogo-A, previously described as acting as an inhibitor of neurite 

outgrowth is also able to promote denervation in an ALS model [68]. In ALS, Nogo-A early 

expression in skeletal muscles can cause the repulsion and the destabilization of the motor 

nerve terminals with axon elimination and motor neuronal death [68]. The cellular 

mechanisms may involve the Rho/ROCK pathway, since deleterious effects of Nogo as an 

axon growth inhibitor are reversed by blocking the Rho/ROCK pathway. Rho/ROCK could 

directly be involved in axon retraction, and possibly in initial collapse that could precede 

nerve terminal elimination. Whereas the precise role of RhoGTPase in NMJ stabilization 

remains to be further analyzed, it has been shown that the RhoGEF-ephexin1 regulates 

postnatally the stability of AChR clusters in a RhoA-dependent manner, regulating both the 

structural maturation of the postsynaptic apparatus and the precise neurotransmission of 

NMJs. Ephexin1 would mediate EphA-dependent dispersal of AChRs by a RhoA-dependent 

mechanism [69]. 

 

- Underlying possible mechanisms in the regulation of NMJ stability   

The stabilization of axons at the NMJ and the competition at the period of polyneuronal 

innervation elimination are not linked to apoptosis because they occur postnatally outside the 

period of motor neuron cell death. Nevertheless, the stabilization of the NMJ involves a 

synaptic competition that would be mediated by a ÒpunishmentÓ or ÒeliminationÓ signal 



produced by the postsynaptic cell, which causes the retraction of some of the terminals, as 

well as a ÒprotectiveÓ or ÒrewardÓ signal that stabilizes one terminal [70]. A hypothesis to 

explain synapse elimination has been the active versus inactive synapses involving a 

competitive process. But no consensus could be reached as for favoring or destabilizing axon 

maintenance according to activity alone. A common feature of competition at neuromuscular 

as well as CNS synapses, is that temporally correlated/synchronous activity seems to slow or 

prevent competition, while uncorrelated/asynchronous activity seems to trigger or enhance 

competition [71, 72]. 

Whereas molecular cues involved in this process have remained poorly characterized so far, it 

has been recently shown that the activity-dependent conversion of pro-brain-derived 

neurotrophic factor (proBDNF) to mature (m)BDNF mediates synaptic competition [70]. The 

activity of motor neurons will trigger the proteolytic conversion of proBDNF to mBDNF at 

nerve terminals whose respective roles are opposite : when two distinct motor neuron axons 

innervate one myocyte, proBDNF-p75(NTR) signaling promotes the retraction of the less 

active terminal, whereas mBDNF-tyrosine-related kinase B (TrkB) p75NTR facilitates the 

stabilization of the more active one. Thus, the activity-dependent conversion of proBDNF to 

mBDNF may regulate synapse elimination, through the selection of active terminals, both in 

vivo and in vitro. 

In vitro, a recent model consists in proposing a reward signal (mBDNF) which stabilizes the 

terminal by activating TrkB, whereas pro-BDNF would act as a default Òpunishment signalÓ 

to actively retract afferent terminals through p75NTR. 

The role of other trophic/neurotrophic factors such as bFGF and CNTF has also been 

investigated. When injected in muscles, they exert powerful and long-lasting effects for the 

maintenance of polyneuronal innervation [73]. 

 

 

 

Concluding remarks 

Whereas molecular mechanisms that regulate synapse formation have been well documented, 

little is known about the factors that modulate synaptic stability. Nevertheless, further 

identifying molecular cues involved in synapse stability would also probably inform on the 

mechanisms of synapse loss, which is an early and invariant feature of neurodegenerative 

diseases that can concern central and peripheral synapses. In Alzheimer's disease (AD), the 



extent of synapse loss correlates with the severity of the disease. Hence, understanding the 

molecular mechanisms that underlie synaptic maintenance is crucial to reveal potential targets 

that will allow the development of therapies to protect synapses. Crossing information from 

the central nervous system to be applied to peripheral pathologies would be informative. 

Moreover, the molecular factors that are expressed both during development and adulthood 

can be of special interest, suggesting their role in synaptic maintenance in the adult. For 

example, Wnts has been shown to play a central role in the formation and function of 

neuronal circuits, and could be involved in synapse maintenance in the adult brain [74]. Its 

role has been studied in satellite cells in muscle, but not in neuro-muscular cross-talks and 

NMJ stability.  

It has long been unclear whether disease progression reflects temporally defined selective 

vulnerabilities and loss of specific synapses or axons, or stochastic loss in progression. Using 

mouse models, including mSOD1, it has been shown that fast-fatigable (FF) motor axons are 

affected synchronously prior to fast-fatigue-resistant (FR) motor axons, both at symptom-

onset, whereas axons of slow motor neurons are resistant [75].  

In human multiple degenerative contexts including ALS, spinal muscular atrophy (SMA), and 

aging, fast-fatigable (FF) motor units degenerate early, whereas motor neurons innervating 

slow muscles and those involved in eye movement and pelvic sphincter control are strikingly 

preserved. The diversity of motor neurons in terms of NMJ stabilization could also reveal a 

great diversity in motor neuron subtypes and help getting a clearer understanding of the 

cellular and molecular cues involved in normal development and pathological destabilization 

of NMJ. NMJ dismantlement has been reported to occur generally earlier in multiple 

degenerative contexts including ALS. A motor unit is defined as a motor neuron (alpha1 or 2) 

and the muscle fibers it innervates. The twitch speed of a muscle fiber largely depends on the 

motor neurons that innervate it. Muscle fibers themselves have distinct metabolic capabilities. 

Slow twitch fibers rely primarily on oxidative metabolism, whereas Fast-twitch fibers may 

predominantly perform glycolytic conditions. Some fibers can be both oxidative and 

glycolytic.  

More recently, it has been proposed that the muscle itself would initiate the pathology that 

then would lead to NMJ destruction, motor neuron degeneration and death. It would be due to 

an energetic deficit generated by an increase in basal and energetic muscle metabolism, with 

an increase in the peripheral use of lipids which leads to a reduced adipose tissue 

accumulation in mSOD1 [76]. The increased muscular metabolism leads to a decrease in fat 

reserves and a chronic energetic deficit. These results - along with a comparative analysis 



between the phenotype of mSOD1 mice and ALS patients - suggest new therapeutic strategies 

including nutritional modifications, for example hyperlipidic diet [77]. 

In those diseases, functional changes in axonal transport  have been hypothesized and 

increasing evidence is in favor of a role of ER stress (endoplasmic reticulum stress) in motor 

neuron degeneration [78]. Among the candidates that are involved in the NMJ stabilization, 

CLIPR-59 is the first that is located at the trans-golgi network (TGN) so far. It also represents 

one of the recent candidates proposed to affect protein/membrane trafficking or cytoskeleton 

remodeling at the NMJ [45], and to be linked to axonal dieback from the NMJ. Thus, 

affecting the dynamics of intracellular compartments could itself affect the protein 

biosynthesis - as it is also the case in pmn model with mutated TBCE - and activate unfolded 

protein response leading to NMJ destabilization. So far, TBCE has been shown to bind 

microtubules and to protect against misfolded protein stress in yeast [79]. The extensive 

characterization of intracellular events involved in axon destabilization will bring cues to get 

a better understanding of signaling cascades involved in NMJ destabilization, both in normal 

development and in neuro-degenerative disease. 
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Legends: 

Figure 1: Critical periods of NMJ development with a focus on the elimination of multi-

innervation.  

Motoneurons emit axons toward myotubes from E10 to E15 in mice. In parallel, Schwann 

cells migrate to reach the NMJ from E16 and cap the terminal. The differentiation of 

myoblasts into myotubes and muscle fibers is also schematized altogether with the time 

course.  



Dispersed Acetylcholine receptors (AChRs) are expressed at moderate levels throughout 

myotubes surface prior to synapse formation, from E15 at the period of polyneuronal 

innervation, ie when each muscle fiber is still innervated by one or several axons of motor 

neurons (MNs). Postnatally, a critical step with the redrawal of about half multiinnervation 

occurs between P0 to P7, and the process of synapse elimination is achieved 2 weeks 

postnatally. AChR clustering occurs in the postsynaptic membrane, altogether with a 

progressive transition from multiple to single innervation of the NMJ. 

 

Figure 2: Activity dependent NMJ maintenance/stabilization 

In A, 2 motoneurons with synchronous activity are schematized. A similar activity will allow 

the synthesis of an equivalent amount of punishment (synaptotoxic factor) and reward 

(synaptotrophic factor) by both MNs, and their survival.  

In B, inactive MNs will not be induced to produce either punishment or reward signal; the 

absence of competition for survival factor will allow the maintenance of both MNs. In C, the 

stabilization of one out of two MNs axons innervating a similar myofiber will be regulated by 

the activity: the active MN will synthesis both protective (reward) and punishment signals, 

that will allow its survival, whereas the inactive MN will receive punishment signals from the 

neighbouring active MN only, that will lead to its elimination. Asynchronous AChR 

activation allows muscle to selectively destabilize synaptic sites to be eliminated.  

 

Figure 3: Molecular cues in NMJ formation/stabilization: a cross-talk between pre- and post-

synaptic components.  

The agrin-muscle specific kinase (MuSK)-rapsyn-AchR pathway is schematized. LRP4 acts 

as a co-factor for MuSK in agrin signaling. Agrin activates MuSK to cluster AChRs through 

the cytoplasmic linker protein rapsyn. Neuregulin that binds to ErbB receptors may also 

induce AChR transcription and agrin would direct AChR clustering. Neuregulin signalling 

also occurs from the axon to control Schwann cell survival. Schwann cells also belong to the 

tripartite NMJ with MN and muscle, and are essential for axon maintenance. Homophilic 

adhesion molecules such as NCAM are expressed on the surface of the three cell types 

composing the NMJ. Receptors to neurotrophic factors such as TrkB, p75 and GDNF 

receptors, are expressed at the MN surface. Actin regulators are present in the postsynaptic 

compartment, in particular NogoA, dystrophin and §-catenin. #-catenin interacts with rapsyn 

and !-catenin to favor AChR clustering. §-catenin dependent transcription is also necessary 

for NMJ maintenance. Myogenin is involved in AchR expression, stabilization and clustering. 



Synaptic muscle fiber basal lamina is rich in laminin §2. It binds to and clusters the P/Q-type 

calcium channels that flank active zones and recruit other presynaptic components. 

 

Figure 4: Possible intracellular mechanisms of NMJ stabilization through a focus on actors 

interacting with cytoskeleton and organelles 

The dynamics and stability of both actin and microtubules regulate NMJ maintenance. 

Dynactin complex includes among others Arp1, p150glued and dyneins. Although present in 

both pre- and post-synaptic compartments, the TBCE protein accumulates at the Golgi 

apparatus and has been shown to be mainly required for maintenance of microtubules in distal 

axons so far. CLIPR-59 is located at the trans-golgi network (TGN) and is proposed to affect 

protein/membrane trafficking or cytoskeleton remodeling at the NMJ, as well as in the 

presynaptic compartment, although its possible postsynaptic localization and role remain to be 

further analyzed. Molecular candidates have been proposed to act as synaptotoxic and 

synaptotrophic cues in NMJ stability: MMP3 and MMP9 located at the active terminals could 

cleave proBDNF at the active terminal during synaptic competition. The conversion of pro-

brain-derived neurotrophic factor (proBDNF) to mature (m)BDNF would be activity-

dependent and mediate synaptic competition and cell survival after endocytosis.  

!
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