A. Schapira, J. Cooper, D. Dexter, P. Jenner, and J. Clark, Mitochondrial complex I deficiency in Parkinson's disease, Lancet, vol.1, p.1269, 1989.

V. Mann, J. Cooper, D. Krige, S. Daniel, and A. Schapira, BRAIN, SKELETAL MUSCLE AND PLATELET HOMOGENATE MITOCHONDRIAL FUNCTION IN PARKINSON'S DISEASE, Brain, vol.115, issue.2, 1992.
DOI : 10.1093/brain/115.2.333

D. Hauser and T. Hastings, Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism, Neurobiology of Disease, vol.51, pp.35-42, 2013.
DOI : 10.1016/j.nbd.2012.10.011

O. Corti, S. Lesage, and A. Brice, What Genetics Tells us About the Causes and Mechanisms of Parkinson's Disease, Physiological Reviews, vol.91, issue.4, pp.1161-1218, 2011.
DOI : 10.1152/physrev.00022.2010

F. Darios, O. Corti, C. Lucking, C. Hampe, and M. Muriel, Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death, Human Molecular Genetics, vol.12, issue.5, pp.517-526, 2003.
DOI : 10.1093/hmg/ddg044

R. Canet-aviles, M. Wilson, D. Miller, R. Ahmad, and C. Mclendon, The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proceedings of the National Academy of Sciences, vol.101, issue.24, pp.9103-9108, 2004.
DOI : 10.1073/pnas.0402959101

E. Valente, P. Abou-sleiman, V. Caputo, M. Muqit, and K. Harvey, Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1, Science, vol.304, issue.5674, pp.1158-1160, 2004.
DOI : 10.1126/science.1096284

O. Corti and A. Brice, Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease, Current Opinion in Neurobiology, vol.23, issue.1, pp.100-108, 2013.
DOI : 10.1016/j.conb.2012.11.002

D. Narendra, A. Tanaka, D. Suen, and R. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, The Journal of Cell Biology, vol.84, issue.5, pp.795-803, 2008.
DOI : 10.1073/pnas.0711845105

D. Narendra, S. Jin, A. Tanaka, D. Suen, and C. Gautier, PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin, PLoS Biology, vol.126, issue.1, p.1000298, 2010.
DOI : 10.1371/journal.pbio.1000298.s013

D. Narendra, J. Walker, and R. Youle, Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism, Cold Spring Harbor Perspectives in Biology, vol.4, issue.11, 2012.
DOI : 10.1101/cshperspect.a011338

C. Vives-bauza, C. Zhou, Y. Huang, M. Cui, and R. De-vries, PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.378-383, 2010.
DOI : 10.1073/pnas.0911187107

S. Geisler, K. Holmstrom, A. Treis, D. Skujat, and S. Weber, The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations, Autophagy, vol.6, issue.7, pp.871-878, 2010.
DOI : 10.4161/auto.6.7.13286

N. Matsuda, S. Sato, K. Shiba, K. Okatsu, and K. Saisho, PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, The Journal of Cell Biology, vol.19, issue.2, pp.211-221, 2010.
DOI : 10.1073/pnas.0802814105

Y. Yang, S. Gehrke, Y. Imai, Z. Huang, and Y. Ouyang, Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin, Proceedings of the National Academy of Sciences, vol.103, issue.28, pp.10793-10798, 2006.
DOI : 10.1073/pnas.0602493103

A. Poole, R. Thomas, L. Andrews, H. Mcbride, and A. Whitworth, The PINK1/Parkin pathway regulates mitochondrial morphology, Proceedings of the National Academy of Sciences, vol.105, issue.5, pp.1638-1643, 2008.
DOI : 10.1073/pnas.0709336105

H. Deng, M. Dodson, H. Huang, and M. Guo, The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14503-14508, 2008.
DOI : 10.1073/pnas.0803998105

X. Wang, D. Winter, G. Ashrafi, J. Schlehe, and Y. Wong, PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility, Cell, vol.147, issue.4, pp.893-906, 2011.
DOI : 10.1016/j.cell.2011.10.018

S. Liu, T. Sawada, S. Lee, W. Yu, and G. Silverio, Parkinson's Disease???Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria, PLoS Genetics, vol.5, issue.3, p.1002537, 2012.
DOI : 10.1371/journal.pgen.1002537.s008

J. Shin, H. Ko, H. Kang, Y. Lee, and Y. Lee, PARIS (ZNF746) Repression of PGC-1?? Contributes to Neurodegeneration in Parkinson's Disease, Cell, vol.144, issue.5, pp.689-702, 2011.
DOI : 10.1016/j.cell.2011.02.010

C. Pacelli, D. Rasmo, D. Signorile, A. Grattagliano, I. Di-tullio et al., Mitochondrial defect and PGC-1?? dysfunction in parkin-associated familial Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.8, pp.1041-1053, 2011.
DOI : 10.1016/j.bbadis.2010.12.022

N. Exner, B. Treske, D. Paquet, K. Holmstrom, and C. Schiesling, Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin, Journal of Neuroscience, vol.27, issue.45, pp.12413-12418, 2007.
DOI : 10.1523/JNEUROSCI.0719-07.2007

S. Gandhi, A. Wood-kaczmar, Z. Yao, H. Plun-favreau, and E. Deas, PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death, Molecular Cell, vol.33, issue.5, pp.627-638, 2009.
DOI : 10.1016/j.molcel.2009.02.013

H. Mortiboys, K. Thomas, W. Koopman, S. Klaffke, and P. Abou-sleiman, 7. Mitochondrial function and morphology are impaired in parkin mutant fibroblasts, Mitochondrion, vol.9, issue.1, pp.555-565, 2008.
DOI : 10.1016/j.mito.2008.12.009

V. Morais, P. Verstreken, A. Roethig, J. Smet, and A. Snellinx, Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function, EMBO Molecular Medicine, vol.14, issue.2, pp.99-111, 2009.
DOI : 10.1002/emmm.200900006

C. Zhang, M. Lin, R. Wu, X. Wang, and B. Yang, Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect, Proceedings of the National Academy of Sciences, vol.108, issue.39, pp.16259-16264, 2011.
DOI : 10.1073/pnas.1113884108

A. Grunewald, M. Gegg, J. Taanman, R. King, and N. Kock, Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology, Experimental Neurology, vol.219, issue.1, pp.266-273, 2009.
DOI : 10.1016/j.expneurol.2009.05.027

A. Grunewald, L. Voges, A. Rakovic, M. Kasten, and H. Vandebona, Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts, PLoS ONE, vol.5, issue.9, p.12962, 2010.
DOI : 10.1371/journal.pone.0012962.t001

M. Muftuoglu, B. Elibol, O. Dalmizrak, A. Ercan, and G. Kulaksiz, Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations, Movement Disorders, vol.254, issue.Suppl., pp.544-548, 2004.
DOI : 10.1002/mds.10695

F. Sterky, S. Lee, R. Wibom, L. Olson, and N. Larsson, Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo, Proceedings of the National Academy of Sciences, vol.108, issue.31, pp.12937-12942, 2011.
DOI : 10.1073/pnas.1103295108

V. Van-laar, B. Arnold, S. Cassady, C. Chu, and E. Burton, Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization, Human Molecular Genetics, vol.20, issue.5, pp.927-940, 2011.
DOI : 10.1093/hmg/ddq531

C. Gautier, T. Kitada, and J. Shen, Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress, Proceedings of the National Academy of Sciences, vol.105, issue.32, pp.11364-11369, 2008.
DOI : 10.1073/pnas.0802076105

S. Gispert, F. Ricciardi, A. Kurz, M. Azizov, and H. Hoepken, Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration, PLoS ONE, vol.18, issue.6, p.5777, 2009.
DOI : 10.1371/journal.pone.0005777.s010

J. Palacino, D. Sagi, M. Goldberg, S. Krauss, and C. Motz, Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice, Journal of Biological Chemistry, vol.279, issue.18, pp.18614-18622, 2004.
DOI : 10.1074/jbc.M401135200

M. Periquet, O. Corti, S. Jacquier, and A. Brice, Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function, Journal of Neurochemistry, vol.44, issue.5, pp.1259-1276, 2005.
DOI : 10.1111/j.1471-4159.2005.03442.x

C. Stichel, X. Zhu, V. Bader, B. Linnartz, and S. Schmidt, Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage, Human Molecular Genetics, vol.16, issue.20, pp.2377-2393, 2007.
DOI : 10.1093/hmg/ddm083

M. Goldberg, S. Fleming, J. Palacino, C. Cepeda, and H. Lam, Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons, Journal of Biological Chemistry, vol.278, issue.44, pp.43628-43635, 2003.
DOI : 10.1074/jbc.M308947200

J. Itier, P. Ibanez, M. Mena, N. Abbas, and C. Cohen-salmon, Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse, Human Molecular Genetics, vol.12, issue.18, pp.2277-2291, 2003.
DOI : 10.1093/hmg/ddg239

V. Coelln, R. Thomas, B. Savitt, J. Lim, K. Sasaki et al., Loss of locus coeruleus neurons and reduced startle in parkin null mice, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10744-10749, 2004.
DOI : 10.1073/pnas.0401297101

F. Perez and R. Palmiter, Parkin-deficient mice are not a robust model of parkinsonism, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.2174-2179, 2005.
DOI : 10.1073/pnas.0409598102

M. Fournier, J. Vitte, J. Garrigue, D. Langui, and J. Dullin, Parkin Deficiency Delays Motor Decline and Disease Manifestation in a Mouse Model of Synucleinopathy, PLoS ONE, vol.23, issue.8, p.6629, 2009.
DOI : 10.1371/journal.pone.0006629.s006

URL : https://hal.archives-ouvertes.fr/hal-00541956

C. Chinopoulos, S. Zhang, B. Thomas, V. Ten, and A. Starkov, Isolation and Functional Assessment of Mitochondria from Small Amounts of Mouse Brain Tissue, Methods Mol Biol, vol.793, pp.311-324, 2011.
DOI : 10.1007/978-1-61779-328-8_20

W. Friedman, C. Ibanez, F. Hallbook, H. Persson, and L. Cain, Differential Actions of Neurotrophins in the Locus Coeruleus and Basal Forebrain, Experimental Neurology, vol.119, issue.1, pp.72-78, 1993.
DOI : 10.1006/exnr.1993.1007

M. Morganti, J. Taylor, P. Pesheva, and M. Schachner, Oligodendrocyte-derived J1-160/180 extracellular matrix glycoproteins are adhesive or repulsive depending on the partner cell type and time of interaction, Experimental Neurology, vol.109, issue.1, pp.98-110, 1990.
DOI : 10.1016/S0014-4886(05)80012-3

M. Wu, A. Neilson, A. Swift, R. Moran, and J. Tamagnine, Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells, AJP: Cell Physiology, vol.292, issue.1, pp.125-136, 2007.
DOI : 10.1152/ajpcell.00247.2006

F. Medja, S. Allouche, P. Frachon, C. Jardel, and M. Malgat, Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis, Mitochondrion, vol.9, issue.5, pp.331-339, 2009.
DOI : 10.1016/j.mito.2009.05.001

URL : https://hal.archives-ouvertes.fr/inserm-00516056

H. Schagger and K. Pfeiffer, The ratio of oxidative phosphorylation complexes I?V in bovine heart mitochondria and the composition of respiratory chain supercomplexes, J Biol Chem, vol.276, pp.37861-37867, 2001.

E. Couplan, C. Gelly, M. Goubern, C. Fleury, and B. Quesson, High Level of Uncoupling Protein 1 Expression in Muscle of Transgenic Mice Selectively Affects Muscles at Rest and Decreases Their IIb Fiber Content, Journal of Biological Chemistry, vol.277, issue.45, pp.43079-43088, 2002.
DOI : 10.1074/jbc.M206726200

S. Viengchareun, M. Caron, M. Auclair, M. Kim, and P. Frachon, Mitochondrial toxicity of indinavir, stavudine and zidovudine involves multiple cellular targets in white and brown adipocytes, Antivir Ther, vol.12, pp.919-929, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00148353

F. Auchere, R. Santos, S. Planamente, E. Lesuisse, and J. Camadro, Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia, Human Molecular Genetics, vol.17, issue.18, pp.2790-2802, 2008.
DOI : 10.1093/hmg/ddn178

A. Bulteau, A. Dancis, M. Gareil, J. Montagne, and J. Camadro, Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia, Free Radical Biology and Medicine, vol.42, issue.10, pp.1561-1570, 2007.
DOI : 10.1016/j.freeradbiomed.2007.02.014

P. Magistretti and L. Pellerin, Cellular Mechanisms of Brain Energy Metabolism. Relevance to Functional Brain Imaging and to Neurodegenerative Disordersa, Annals of the New York Academy of Sciences, vol.90, issue.1, pp.380-387, 1996.
DOI : 10.1111/j.1749-6632.1996.tb34449.x

N. Larsen, A. G. Mullett, S. Berman, S. Hinkle, and D. , DJ-1 knock-down impairs astrocyte mitochondrial function, Neuroscience, vol.196, pp.251-264, 2011.
DOI : 10.1016/j.neuroscience.2011.08.016

A. Gimenez-cassina, J. Martinez-francois, J. Fisher, B. Szlyk, and K. Polak, BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures, Neuron, vol.74, issue.4, pp.719-730, 2012.
DOI : 10.1016/j.neuron.2012.03.032

H. Chen and D. Chan, Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases, Human Molecular Genetics, vol.18, issue.R2, pp.169-176, 2009.
DOI : 10.1093/hmg/ddp326

L. Flinn, H. Mortiboys, K. Volkmann, R. Koster, and P. Ingham, Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio), Brain, vol.132, issue.6, pp.1613-1623, 2009.
DOI : 10.1093/brain/awp108

D. Kirby, D. Thorburn, D. Turnbull, and R. Taylor, Biochemical Assays of Respiratory Chain Complex Activity, Methods Cell Biol, vol.80, pp.93-119, 2007.
DOI : 10.1016/S0091-679X(06)80004-X

L. Macmillan-crow and D. Cruthirds, Manganese superoxide dismutase in disease, Free Radical Research, vol.96, issue.8, pp.325-336, 2001.
DOI : 10.1002/(SICI)1097-0045(19980515)35:3<221::AID-PROS8>3.0.CO;2-J

R. Dagda, A. Gusdon, I. Pien, S. Strack, and S. Green, Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease, Cell Death and Differentiation, vol.254, issue.12, pp.1914-1923, 2011.
DOI : 10.1038/cdd.2011.74

D. Kubli, X. Zhang, Y. Lee, R. Hanna, and M. Quinsay, Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction, Journal of Biological Chemistry, vol.288, issue.2, pp.915-926, 2013.
DOI : 10.1074/jbc.M112.411363

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543040

D. Kubli, M. Quinsay, and A. Gustafsson, Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes, Communicative & Integrative Biology, vol.1, issue.4, p.24511, 2013.
DOI : 10.1002/mds.10695

D. Harman, The Biologic Clock: The Mitochondria?, Journal of the American Geriatrics Society, vol.12, issue.II, pp.145-147, 1972.
DOI : 10.1111/j.1532-5415.1972.tb00787.x

N. Moisoi, V. Fedele, J. Edwards, and L. Martins, Loss of PINK1 enhances neurodegeneration in a mouse model of??Parkinson's disease triggered by mitochondrial stress, Neuropharmacology, vol.77, pp.350-357, 2014.
DOI : 10.1016/j.neuropharm.2013.10.009