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his paper proposes a combined coarse-grained multifractal method to discriminate between distressed and normal foetuses. he
coarse-graining operation was performed by means of a coarse-grained procedure and the multifractal operation was based on a
structure function. he proposed method was evaluated by one hundred recordings including eighty normal foetuses and twenty
distressed foetuses.We found that it was possible to discriminate between distressed and normal foetuses using theHurst exponent,
singularity, and Holder spectra.

1. Introduction

Foetal distress is oten the result of reduction in respiratory
exchange between the mother and the foetus. In most cases,
foetal distress is strongly related to intrauterine growth retar-
dation [1]. Early identiication of distressed status from heart
rate variability is highly important since it can help the obste-
trician to decide on immediate delivery by caesarean section.

he value of analysis of heart rate variability (HRV) to
provide ameans of diagnosis and prognosis of heart disease is
now well established. HRV time series has now become the
elementary basis fromwhichmost analyses and processes are
operated.

Due to the nonstationary and nonlinear nature of HRV
time series, many recent studies have tried to take full advan-
tage of the nonlinear nature of heart rate variability by analys-
ing the complexity of time series. his complexity analysis of
the foetal heart rate (FHR) that has its roots in adult HRV
research can be conceived of in many ways. However, it was
probably the scale invariance properties observed through
power law spectral density [2] that was the triggering element
for several studies based on the multiscale analysis of HRV
[3, 4]. Among the overall complexity descriptors, entropy

descriptors [3, 5, 6] with fractal dimension estimators [7–10]
were probably the irst “nonconventional” tools used to study
FHR. Certain studies even used multifractal features of FHR.
he research studies by Ivanov et al. were probably the irst to
demonstrate multifractality in cardiac dynamics as well as in
physiologic dynamics in general [11–13]. hese seminal stud-
ies were then followed by researches such as [14–17], to name
but a few.

he starting point of the present study was based on two
approaches, the irst being that ofWang et al. [15] focusing on
the multifractal analysis of adult ECG signals with a coarse-
graining approach initially proposed by [18].

he second approach was based on the studies by [19, 20]
and more recently those of [16, 21, 22] that themselves used a
method based on a structure function [23] of a time series in
order to extract multifractal indicators.

In response to these two kinds of research, we investigated
a coarse-grained multifractal analysis of the foetal heart rate
in order to discriminate healthy from distressed foetuses.

Although the present study has certain similarities to
those proposed byWang et al. [15], our study was diferent in
twoways. First, unlike the study based on a partition function
proposed by [15], our studywas based on a structure function.
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he second diference was that our coarse-graining analysis
was performed on the foetal heart rate, whereas that proposed
by [15] was evaluated on adult electrocardiograms.

Our study aimed to improve the diferentiation between
normal and distressed foetuses by investigating the time scale
dependency of the multifractal features of the FHR in depth.
To do so we investigated the multifractal analysis originating
from a structure function from a coarse-graining point of
view.

To demonstrate the value of our approach, we tested the
proposed method on a dataset derived from normal and dis-
tressed foetuses.

2. Materials

Our system comprised a personal computer and a Doppler
ultrasound unit. he latter device contained three groups of
four transducers and a Doppler acquisition board.he trans-
ducers exploring the foetal heart were nonfocused andmono-
element. he transducers placed on the mother’s abdomen
were circular in shape, with a diameter of 13.5mm and an
acoustic power of 1mW/cm2. Each transducer transmitted a
sinusoidal pulse at 2.25MHz with a pulse repetition frequ-
ency of 1 kHz.hewave was propagated through themother’s
abdomen towards the foetal heart.

he backscattered signal was converted into an electrical
signal and ampliied to compensate for the attenuation of
1 dB/cm/MHz.he signal was then demodulated in phase (I)
and quadrature (Q).

he Doppler signals were acquired at CHRU “Breton-
neau”Tours, France.he consent of each patientwas obtained
and the study was approved by the Ethics Committee of the
Clinical Investigation Centre for Innovative Technology of
Tours (CIC-IT 806 CHRU of Tours). All patients were over
eighteen years of age and pregnancies were single. One hun-
dred examinations (eighty normal foetuses and twenty dis-
tressed foetuses) were recorded in this study. Gestational ages
of foetuses ranged from 25 to 39 weeks weremonitored for 30
minutes. FHR was evaluated as proposed by [24, 25], that is,
every 250ms, yielding 7200 samples for a recording of 30
minutes.

3. Methods

As previously reported, the foetal heart rate was estimated in
real time from ultrasound Doppler signals [24, 25] and then
recorded. he coarse-graining from HRV recordings proce-
dure was performed oline. hen segmentation was applied.
Scaling factors and multifractal spectra were subsequently
evaluated using the structure function (see the scheme in
Figure 2).

3.1. Coarse-Grained Analysis. Each time series �(�) com-
posed of� = 7200 points was analysed from FHR record-
ings.Multiscale analysis was introduced to capture the luctu-
ations present in the time series at diferent scales. his
method consisted of evaluating approximate versions of the
original time series from a local average of neighbouring
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Figure 1: Time and spectral representations of a Brownian motion.
(a) Original time series superimposed on the coarse-grained time
series (� = 8) and the resampled coarse-grained time series (� = 8).
(b) Spectrum of each time series depicted in (a).

points. his procedure is named “coarse-grained” [18]. he
new reduced time series composed of�/� samples at scale �
was written as

�� (�) = 1�
��
∑

�=(�−1)�+1
��, (1)

for 1 ≤ � ≤ �/�, �1(�) = �(�) being the original time series.
Figure 1 sets out the time and the spectral representations

of coarse-grained Brownianmotion time series used to calcu-
late one of the efects resulting from the coarse-grained
procedure. he time and the frequency were normalized.
Figure 1(a) shows the original time series superimposed on
the coarse-grained time series with � = 8 and the resampled
coarse-grained time series with � = 8. Note that a resampled
coarse-grained time series was an interpolated and iltered
time series by a factor �. he resampled coarse-grained times
series was composed of� samples.

Figures 1(a) and 1(b) show clearly that the coarse-grained
time series were iltered time series. It can be claimed from
these outcomes that the reducing duration of each coarse-
grained times series is a side efect that can be avoided by
resampling. In the following themultifractal descriptors were
evaluated from resampled coarse-grained time series.
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Figure 2: Scheme of diferent processes used to calculate coarse-grained multifractal descriptors.

As previously shown by [26], the more the fBm was il-
tered, the more the iltered fBm was regular: it can therefore
be claimed that the higher the scale factor �, the higher the
Hurst exponent�. In the study by [27], it was shown that the
coarse-graining afected the anticorrelated time series (� <
0.5) in amore pronouncedway than the correlated time series
(� > 0.5). By supposing the coarse-grained efect to be a low
pass iltering efect, we suggest that this can be understood in
the following way.

(i) For� < 0.5, fBmhas several high frequency compon-
ents that can be removed by the coarse-graining. Time
series before and ater iltering are quite diferent,
indicating that the coarse-graining has a nonnegligi-
ble efect on time series.

(ii) For� > 0.5, fBm has several low frequency compon-
ents that are slightly removed by the coarse-graining
efect. Time series before and ater iltering were fairly
similar, indicating that the coarse-graining has a neg-
ligible efect on time series.

Figure 3 represents diferent multifractal descriptors for
diferent fBm of Hurst exponents � = {0.1, 0.5, 1} with
diferent scale factors � = {1, 3, 6}. he fBm under considera-
tion was composed of 720 samples. he results derived from
Figure 3 showed that the anticorrelated fBm of Hurst expo-
nent� = 0.1 was more afected by the coarse-graining efect
than the correlated fBm of Hurst exponent � = 1. hese
results were compatible with those reported by [26, 27].

3.2. Multifractal Analysis. Due to the nonstationary nature of
the coarse-grained time series analysed, a short-term proce-
dure was performed. his procedure consisted of evaluating

multifractal descriptors from subsignals �(�)� (�) composed of
� = 720 points (3min).

Among all the existing methods supplying multifractal
descriptors, we used the structure function of order �.
Although it has been demonstrated theoretically that for cer-
tain types of signals the methods based on structure function
of order � have limitations for � < 0, we believe that this type
of approach is still worth using because of the following.

(i) he structure function is by far the simplestmethod to
implement compared to DFA, box counting, and
wavelet methods.

(ii) Using � < 0 is valuable for analysing very small varia-
tions in time series. However, as time series were
mostly corrupted by noise, it was impossible to probe
small variations in the time series clearly. he prac-
tical value of such a negative order � was strongly
limited by the presence of noise.

(iii) he real signals under consideration were not theo-
retical signals.his means that mathematical demon-
strations operating exclusively on theoretical signals
are not systematically applicable in practice.

(iv) Several multifractal analyses showed that it was more
possible to discriminate between normal and dis-
tressed subjects for � > 0 than for � < 0.his was par-
ticularly the case in (i) [13] where it was shown that
the diference between the scaling exponent �(�) ob-
tained for healthy and distressed subjects was greater
for � > 0 than for � < 0 and in (ii) [28, 29] where it
was clearly shown that for � > 0 it was possible to dis-
criminate patients better with atropine than with
placebo.

he structure function that we used in this study is
deined [23] for � > 0 as follows:

� (�, �) = (∫ ������(�)� (� + �) − �(�)� (�)
�����
���)
1/�
. (2)

his structure function is a length measurement [26] where

the term |�(�)� (� + �) − �(�)� (�)|� reveals a local behaviour while
the term (∫ ⋅ ⋅ ⋅ ��)1/� reveals a global behaviour.

If �(�, �) = ���(�), then the scaling exponent �(�) is
expressed (demonstration: log�/ log � = � − (log�/ log �)
and lim�→0(log�/ log �) = �) as

� (�) = lim
�→0

log (� (�, �))
log (�) . (3)

Note that for a fractional Brownianmotion ofHurst exponent
�, the scaling exponent is �(�) = �. From the previous equ-
ation, the singularity spectrum �(�) can be evaluated as
follows:

�(�) = �2 �� (�)�� + 1. (4)

he Holder spectrum is written as

ℎ (�) = ��� (�)�� + � (�) . (5)

Note that this singularity spectrum �(�) can be obtained
through a Legendre transform from �(�):

�(�) = ��� (�)�� − � (�) , (6)

where �(�) is another scaling exponent deined by

� (�) = �� (�) − 1. (7)
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Figure 3: Efects of coarse-graining on multifractal descriptors for diferent fBm of Hurst exponents � = {0.1, 0.5, 1} with diferent scale
factors � = {1, 3, 6}. (a) Singularity spectrum� versus �. (b) Singularity spectrum� versus Holder spectrum ℎ. (c) Scaling exponent � versus
�. (d) Holder spectrum.

In this case, the Holder spectrum is written as

ℎ (�) = �� (�)�� . (8)

he structure function �(�, �) and the scaling exponents
�(�) and �(�) for a normal foetus and a distressed foetus are
reported in Figure 4 as an illustration. Figure 4(a) shows that
the slopes of the curves obtained for diferent values of � de-
rived from the structure function�(�, �) were similar for the
normal foetus. Similar results were derived for a distressed

foetus. Figures 4(b) and 4(c) show that both scaling expo-
nents �(�) and �(�) were more nonlinear for the healthy
foetus than for the distressed foetus.

Other multifractal descriptors such as the singularity
spectrum�(�) and the Holder spectrum ℎ(�) are reported in
Figure 5. he results set out in Figure 5 were obtained from
four diferent signals: a signal from a distressed foetus of an
estimated Hurst exponent � = 0.07, a signal from a nor-
mal foetus of an estimated Hurst exponent � = 0.31, and
two fractional Brownianmotion (fBm) signals of Hurst expo-
nents � = 0.07 and � = 0.31. hese four signals were each
composed of 720 samples. Figure 5 shows that the magnitude
of the dynamics of the singularity spectrum �(�) and the
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Figure 4: Multifractal parameters for a normal foetus (in blue) and
a distressed foetus (in green). (a) Structure function �(�, �) versus
scale. (b) Scaling exponent � versus �. (c) Scaling exponent � versus
�. he two scaling exponents were more nonlinear for a healthy
foetus than for a distressed foetus.

Holder spectrum ℎ(�) was higher for the healthy foetus than
for the distressed foetus. Similarly, the magnitude of the dy-
namics of �(�) and ℎ(�) was higher for foetal signals than
for the fBm of the Hurst exponent, as for foetal signals. his
corroborates most of the studies based on the analysis of
multifractal HRV [12] where a more pronounced multifrac-
tal feature for healthy subjects was demonstrated than for
distressed subjects. he Holder spectrum for healthy and
distressed foetuses decreased with increasing values of �, thus
supporting the multifractal nature of FHR time series. Such
results are consistent with previous similar studies [12, 16].
Note that normal and distressed fetal heart rate time series
were reported in Figure 6 as an illustration.

Several measurements were performed in order to quan-
tify the diferent trends observed in the multifractal indica-
tors�(�) and ℎ(�) for diferent scales �.

(i) he relative error RE1 (in %) of the Hurst exponent is
deined as follows:

RE1 (�) =
������� (�) − �� (�)

�����
�� (�)

, (9)

where �(�) = � is the Hurst exponent for all �. Note
that� = �(1).�� was the mean Hurst exponent cor-
responding to the average value obtained for all nor-

mal foetuses and �� was the mean Hurst exponent
corresponding to the average value obtained for all
distressed foetuses.

(ii) he relative error RE2 (in%) of the dynamics of ℎ(�) is
deined as follows:

RE2 =
�����Δ ℎ� − Δ ℎ�

�����
Δ ℎ�

, (10)

whereΔ ℎ = max(ℎ)−min(ℎ) are the dynamics ofℎ(�),
Δ ℎ� being the mean dynamics corresponding to the
average value obtained for all normal foetuses and

Δ ℎ� the mean dynamics corresponding to the average
value obtained for all distressed foetuses.

(iii) he relative error RE3 (in %) is deined as follows:

RE3 =
������� − ��

�����
��
, (11)

where � = mean(�(�)) is the mean value of the sin-

gularity spectrum, �� being the mean value corre-
sponding to the average value obtained for all normal

foetuses and�� the mean value corresponding to the
average value obtained for all distressed foetuses.

(iv) he relative error RE4 (in %) is deined as follows:

RE4 =
�����Δ�� − Δ��

�����
Δ��

, (12)

where Δ� = max(�(�)) − min(�(�)) is the mean

value of the singularity spectrum, Δ�� being the
mean value corresponding to the average value ob-

tained for all normal foetuses andΔ�� themean value
corresponding to the average value obtained for all
distressed foetuses.

4. Results and Discussion

From our own dataset composed of one hundred recordings,
each time series of 7200 points was coarse-grained for 6 dif-
ferent scales. From each coarse-grained signal, subsignals
composed of 720 points and overlapping by 97% were anal-
ysed with multifractal tools.

Figure 7 shows a boxplot representation of the mean
Hurst exponent for diferent scale values ranging from 1 to 6.
Red boxplots correspond to distressed foetuses and blue box-
plots correspond to normal foetuses. Figure 7 shows that the
mean Hurst exponent for normal foetuses was higher than
that obtained for distressed foetuses. his meant that the sig-
natures of distressed foetuses were more irregular and com-
plex than those obtained for normal foetuses. Furthermore,
Figure 7 shows that therewas suicient deviation between the
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Figure 5: Multifractal parameters for a normal foetus (in blue) and a distressed foetus (in green). (a) Singularity spectrum � versus �. (b)
Singularity spectrum�(�) versus Holder spectrum ℎ(�). (c) Holder spectrum ℎ versus �.

mean Hurst exponent to discriminate between normal and
distressed foetuses. Figure 7 also shows that the higher the
scale, the more regular or iltered the signal (as shown in
Figure 1). his corroborated the results of [26], showing that
the more iltered the time series the higher the Hurst
exponent.

Figure 8 shows a boxplot representation ofΔ ℎ = max(ℎ)−
min(ℎ). hese dynamics are represented for diferent scale
values from 1 to 6. Red boxplots correspond to distressed foe-
tuses and blue boxplots to normal foetuses. Figure 8 shows
that the dynamics were higher for normal foetuses than
that obtained for distressed foetuses. his meant that the

signatures for normal foetuses were more multifractal than
those obtained for distressed foetuses. his has already been
reported in recent studies such as [12]. Furthermore, Figure 8
shows that there was suicient deviation between the dynam-
ics to distinguish normal from distressed foetuses.

Figure 9 shows a boxplot representation of the mean sin-

gularity spectrum � = �mean. his parameter was repre-
sented for diferent scale values ranging from 1 to 6. Red box-
plots correspond to distressed foetuses and blue boxplots to

normal foetuses. Figure 9 shows that � was higher for dis-
tressed foetuses than for normal foetuses.his meant that the
signatures of healthy foetuses were more regular than those
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Figure 6: FHR of a normal foetus and a distressed foetus.
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corresponding to distressed foetuses. Figure 9 also shows that
it was more diicult to discriminate between normal and dis-
tressed foetuses.his parameter did not seem to be very rele-
vant. Note also that the higher the scale, the lower the relative
error.

Figure 10 shows a boxplot representation of Δ�, that is,
the dynamics of�. his dynamics is represented for diferent
scale values from 1 to 6. Red boxplots correspond to distressed
foetuses and blue boxplots to normal foetuses. Figure 10
shows that Δ� was higher for normal foetuses than for dis-
tressed foetuses.hismeant that the signatures of healthy foe-
tuses were more multifractal than those for distressed foe-
tuses. Figure 10 also shows that there was suicient deviation
between the dynamics to distinguish normal from distressed
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Table 1: Relative errors of diferentmultifractal parameters between
the two groups of foetuses for diferent scales.

Scale 1 2 3 4 5 6

RE1 0.37 0.40 0.33 0.29 0.26 0.24

RE2 0.32 0.37 0.38 0.37 0.36 0.35

RE3 0.11 0.12 0.11 0.10 0.09 0.08

RE4 0.41 0.42 0.41 0.38 0.36 0.33

foetuses. Note also that the higher the scale, the lower the
relative error.

To conclude, Table 1 summarizes the relative errors of the
four previous parameters. he indings derived from Table 1
showed that the best parameter permitting discrimination
between foetuses was RE4, followed by RE1 and RE2. Indeed
the best diferentiation was obtained for a scale value of 2 for
RE4 and RE1 and a scale value of 3 for RE2. his conirms the
need to coarse-grain the FHR time series. It is obvious from
Table 1 that the higher the scale, the lower the relative error.
his requires choosing a maximum scale that is not too high:
a value set at 2 seems suicient whatever the relative error.
Furthermore, as the best parameter RE4 was sensitive to the
multifractal features of the time series analyzed for a scale
of 2, this inding conirms the need to analyze FHR from a
coarse-grained multifractal point of view. However, note also
that as the second discriminative parameter was RE1, sensi-
tive to monofractal features set at a scale of 2, then a coarse-
grained monofractal approach is also relevant.

Finally, although the present study was quite similar to
that presented in [15], our study was diferent in several ways.
First, our study was dedicated to foetuses, whereas [15] was
dedicated to adults. Second, our study was based on a much
simpler structure function than the other approach that was
based on a partition function.

Furthermore, although a large number of research studies
have mainly been based on the use of partition functions
(DFA, box-counting and wavelet approaches) on the pretext
that structure functions do not operate for negative orders, we
have shown here (i) that the use of such structure functions is
fully justiied due to the simplicity of implementation and (ii)
that structure functions completely fulil their role in distin-
guishing between healthy and distressed foetuses.

Note that, as our proposed methodology was that of
investigating oline, we plan to evaluate multifractal descrip-
tors one line in the near future.
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