Longitudinal Intensity Normalization in Multiple Sclerosis Patients

Yogesh Karpate 1 Olivier Commowick 1 Christian Barillot 1 Gilles Edan 1
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : In recent years, there have been many Multiple Sclerosis (MS) studies using longitudinal MR images to study and characterize the MS lesion patterns. The intensity of similar anatomical tissues in MR images is often different because of the variability of the acquisition process and different scanners. This paper proposes a novel methodol-ogy for a longitudinal lesion analysis based on intensity standardization to minimize the inter-scan intensity difference. The intensity normaliza-tion maps parameters obtained using a robust Gaussian Mixture Model (GMM) estimation not affected by the presence of MS lesions. Experi-mental results demonstrate that our technique accurately performs the task of intensity standardization. We show consequently how the same technique can improve the results of longitudinal MS lesion detection.
Type de document :
Communication dans un congrès
MICCAI Workshop on Clinical Image-based Procedures, Sep 2014, Boston, United States. pp.1-8, 2014
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-01074699
Contributeur : Olivier Commowick <>
Soumis le : mercredi 15 octobre 2014 - 11:20:55
Dernière modification le : mercredi 2 août 2017 - 10:06:08
Document(s) archivé(s) le : vendredi 16 janvier 2015 - 10:15:54

Fichier

Yogesh_Camera_Ready_CLIP_2014....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inserm-01074699, version 1

Citation

Yogesh Karpate, Olivier Commowick, Christian Barillot, Gilles Edan. Longitudinal Intensity Normalization in Multiple Sclerosis Patients. MICCAI Workshop on Clinical Image-based Procedures, Sep 2014, Boston, United States. pp.1-8, 2014. 〈inserm-01074699〉

Partager

Métriques

Consultations de
la notice

301

Téléchargements du document

290