N. Andrews, Forging a field: the golden age of iron biology, Blood, vol.112, issue.2, pp.219-230, 2008.
DOI : 10.1182/blood-2007-12-077388

G. Anderson, D. Darshan, S. Wilkins, and D. Frazer, Regulation of systemic iron homeostasis: how the body responds to changes in iron demand, BioMetals, vol.34, issue.3-4, pp.3-4665, 2007.
DOI : 10.1007/s10534-006-9030-2

T. Ganz and E. Nemeth, Hepcidin and iron homeostasis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.9, pp.1434-1443, 2012.
DOI : 10.1016/j.bbamcr.2012.01.014

E. Nemeth, M. Tuttle, and J. Powelson, Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization, Science, vol.306, issue.5704, pp.2090-2093, 2004.
DOI : 10.1126/science.1104742

P. Sharp, Intestinal Iron Absorption: Regulation by Dietary & Systemic Factors, International Journal for Vitamin and Nutrition Research, vol.80, issue.45, pp.4-5231, 2010.
DOI : 10.1024/0300-9831/a000029

A. Mckie, D. Barrow, and G. Latunde-dada, An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron, Science, vol.291, issue.5509, pp.1755-1759, 2001.
DOI : 10.1126/science.1057206

H. Gunshin, C. Starr, and C. Direnzo, Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice, Blood, vol.106, issue.8, pp.2879-2883, 2005.
DOI : 10.1182/blood-2005-02-0716

J. Choi, P. Masaratana, G. Latunde-dada, M. Arno, R. Simpson et al., Duodenal Reductase Activity and Spleen Iron Stores Are Reduced and Erythropoiesis Is Abnormal in Dcytb Knockout Mice Exposed to Hypoxic Conditions, Journal of Nutrition, vol.142, issue.11, pp.1929-1934, 2012.
DOI : 10.3945/jn.112.160358

M. Knutson, Steap Proteins: Implications for Iron and Copper Metabolism, Nutrition Reviews, vol.65, issue.7, pp.335-340, 2007.
DOI : 10.1111/j.1753-4887.2007.tb00311.x

H. Gunshin, B. Mackenzie, and U. Berger, Cloning and characterization of a mammalian proton-coupled metal-ion transporter, Nature, vol.388, issue.6641, pp.482-488, 1997.
DOI : 10.1038/41343

H. Gunshin, Y. Fujiwara, A. Custodio, C. Direnzo, S. Robine et al., Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver, Journal of Clinical Investigation, vol.115, issue.5, pp.1258-1266, 2005.
DOI : 10.1172/JCI24356

E. Blanco, C. Kannengiesser, B. Grandchamp, M. Tasso, and C. Beaumont, Not all DMT1 mutations lead to iron overload, Blood Cells, Molecules, and Diseases, vol.43, issue.2, pp.199-201, 2009.
DOI : 10.1016/j.bcmd.2009.05.003

A. Mckie, P. Marciani, and A. Rolfs, A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation, Molecular Cell, vol.5, issue.2, pp.299-309, 2000.
DOI : 10.1016/S1097-2765(00)80425-6

L. Vanoaica, D. Darshan, L. Richman, K. Schümannsch¨schümann, K. ¨. et al., Intestinal Ferritin H Is Required for an Accurate Control of Iron Absorption, Cell Metabolism, vol.12, issue.3, pp.273-282, 2010.
DOI : 10.1016/j.cmet.2010.08.003

A. Donovan, C. Lima, and J. Pinkus, The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis, Cell Metabolism, vol.1, issue.3, pp.191-200, 2005.
DOI : 10.1016/j.cmet.2005.01.003

K. Yeh, M. Yeh, L. Mims, and J. Glass, Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium, AJP: Gastrointestinal and Liver Physiology, vol.296, issue.1, pp.55-65, 2009.
DOI : 10.1152/ajpgi.90298.2008

H. Chen, G. Huang, and T. Su, Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency Pathways of iron absorption, J Nutr. Blood Cells Mol Dis, vol.13629, issue.203, pp.1236-1241, 2002.

A. Qiu, M. Jansen, and A. Sakaris, Identification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption, Cell, vol.127, issue.5, pp.917-928, 2006.
DOI : 10.1016/j.cell.2006.09.041

I. Yanatori, M. Tabuchi, Y. Kawai, Y. Yasui, R. Akagi et al., Heme and non-heme iron transporters in non-polarized and polarized cells, BMC Cell Biology, vol.11, issue.1, p.39, 2010.
DOI : 10.1186/1471-2121-11-39

C. White, X. Yuan, and P. Schmidt, HRG1 Is Essential for Heme Transport from the Phagolysosome of Macrophages during Erythrophagocytosis, Cell Metabolism, vol.17, issue.2, pp.261-270, 2013.
DOI : 10.1016/j.cmet.2013.01.005

J. Quigley, Z. Yang, and M. Worthington, Identification of a Human Heme Exporter that Is Essential for Erythropoiesis, Cell, vol.118, issue.6, pp.757-766, 2004.
DOI : 10.1016/j.cell.2004.08.014

J. Faura, J. Ramos, C. Reynafarje, E. English, P. Finne et al., Effect of altitude on erythropoiesis, Blood, vol.33, issue.5, pp.668-676, 1969.

G. Latunde-dada, C. Vulpe, G. Anderson, R. Simpson, and A. Mckie, Tissue-specific changes in iron metabolism genes in mice following phenylhydrazine-induced haemolysis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1690, issue.2, pp.169-176, 2004.
DOI : 10.1016/j.bbadis.2004.06.011

P. Leung, S. Srai, M. Mascarenhas, L. Churchill, and E. Debnam, Increased duodenal iron uptake and transfer in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression, Gut, vol.54, issue.10, pp.1391-1395, 2005.
DOI : 10.1136/gut.2004.062083

H. Zoller, I. Theurl, R. Koch, A. Kaser, and G. Weiss, Mechanisms of Iron Mediated Regulation of the Duodenal Iron Transporters Divalent Metal Transporter 1 and Ferroportin 1, Blood Cells, Molecules, and Diseases, vol.29, issue.3, pp.488-497, 2002.
DOI : 10.1006/bcmd.2002.0587

M. Taylor, A. Qu, and E. Anderson, Hypoxia-Inducible Factor-2?? Mediates the Adaptive Increase of Intestinal Ferroportin During Iron Deficiency in Mice, Gastroenterology, vol.140, issue.7, pp.2044-2055, 2011.
DOI : 10.1053/j.gastro.2011.03.007

J. Lesbordes-brion, L. Viatte, and M. Bennoun, Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis, Blood, vol.108, issue.4, pp.1402-1405, 2006.
DOI : 10.1182/blood-2006-02-003376

D. Frazer, S. Wilkins, and E. Becker, Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats, Gastroenterology, vol.123, issue.3, pp.835-844, 2002.
DOI : 10.1053/gast.2002.35353

L. Viatte, J. Lesbordes-brion, and D. Lou, Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice, Blood, vol.105, issue.12, pp.4861-4864, 2005.
DOI : 10.1182/blood-2004-12-4608

T. Chaston, B. Chung, and M. Mascarenhas, Evidence for differential effects of hepcidin in macrophages and intestinal epithelial cells, Gut, vol.57, issue.3, pp.374-382, 2008.
DOI : 10.1136/gut.2007.131722

N. Mena, A. Esparza, V. Tapia, P. Valdésvald´valdés, and N. , Hepcidin inhibits apical iron uptake in intestinal cells, AJP: Gastrointestinal and Liver Physiology, vol.294, issue.1, pp.192-198, 2008.
DOI : 10.1152/ajpgi.00122.2007

C. Brasse-lagnel, Z. Karim, P. Letteron, S. Bekri, A. Bado et al., Intestinal DMT1 Cotransporter Is Down-regulated by Hepcidin via Proteasome Internalization and Degradation, Gastroenterology, vol.140, issue.4, pp.1261-1271, 2011.
DOI : 10.1053/j.gastro.2010.12.037

N. Foot, H. Dalton, and L. Shearwin-whyatt, Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2, Blood, vol.112, issue.10, pp.4268-4275, 2008.
DOI : 10.1182/blood-2008-04-150953

M. Hathorn, The influence of hypoxia on iron absorption in the rat, Gastroenterology, vol.60, issue.1, pp.76-81, 1971.

K. Raja, R. Simpson, M. Pippard, and T. Peters, ) absorption, hypoxia and erythropoiesis in the mouse, British Journal of Haematology, vol.11, issue.3, pp.373-378, 1988.
DOI : 10.1002/cbf.290050109

G. Nicolas, C. Chauvet, and L. Viatte, The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation, Journal of Clinical Investigation, vol.110, issue.7
DOI : 10.1172/JCI0215686

A. Piperno, S. Galimberti, and R. Mariani, Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project, Blood, vol.117, issue.10, pp.2953-2959, 2011.
DOI : 10.1182/blood-2010-08-299859

N. Talbot, S. Lakhal, and T. Smith, Regulation of hepcidin expression at high altitude, Blood, vol.119, issue.3, pp.857-860, 2012.
DOI : 10.1182/blood-2011-03-341776

R. Simpson, Dietary iron levels and hypoxia independently affect iron absorption in mice

S. Srai, C. B. Marks, and J. , Erythropoietin regulates intestinal iron absorption in a rat model of chronic renal failure, Kidney International, vol.78, issue.7, pp.660-667, 2010.
DOI : 10.1038/ki.2010.217

D. Frazer, S. Wilkins, and E. Becker, A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption, Gut, vol.52, issue.3, pp.340-346, 2003.
DOI : 10.1136/gut.52.3.340

W. Kaelin, . Jr, and P. Ratcliffe, Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway, Molecular Cell, vol.30, issue.4, pp.393-402, 2008.
DOI : 10.1016/j.molcel.2008.04.009

C. Hu, A. Sataur, L. Wang, H. Chen, and M. Simon, The N-Terminal Transactivation Domain Confers Target Gene Specificity of Hypoxia-inducible Factors HIF-1?? and HIF-2??, Molecular Biology of the Cell, vol.18, issue.11, pp.4528-4542, 2007.
DOI : 10.1091/mbc.E06-05-0419

P. Matak, J. Deschemin, C. Peyssonnaux, and S. Vaulont, Lack of iron-related phenotype in Sp6 intestinal knockout mice, Blood Cells, Molecules, and Diseases, vol.47, issue.1, pp.46-49, 2011.
DOI : 10.1016/j.bcmd.2011.03.009

S. Parks, J. Chiche, and J. Pouyssegur, pH control mechanisms of tumor survival and growth, Journal of Cellular Physiology, vol.11, issue.2, pp.299-308, 2011.
DOI : 10.1002/jcp.22400

URL : https://hal.archives-ouvertes.fr/hal-00533764

E. Anderson, X. Xue, and Y. Shah, Intestinal Hypoxia-inducible Factor-2?? (HIF-2??) Is Critical for Efficient Erythropoiesis, Journal of Biological Chemistry, vol.286, issue.22, pp.19533-19540, 2011.
DOI : 10.1074/jbc.M111.238667

M. Wiesener, J. ¨. , J. Rosenberger, and C. , Widespread, hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs, The FASEB Journal, vol.17, issue.2, pp.271-273, 2003.
DOI : 10.1096/fj.02-0445fje

M. Hentze, M. Muckenthaler, B. Galy, and C. Camaschella, Two to Tango: Regulation of Mammalian Iron Metabolism, Cell, vol.142, issue.1, pp.24-38, 2010.
DOI : 10.1016/j.cell.2010.06.028

C. Anderson, M. Shen, R. Eisenstein, and E. Leibold, Mammalian iron metabolism and its control by iron regulatory proteins, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.9, pp.1468-1483, 2012.
DOI : 10.1016/j.bbamcr.2012.05.010

A. Vashisht, K. Zumbrennen, and X. Huang, Control of Iron Homeostasis by an Iron-Regulated Ubiquitin Ligase, Science, vol.326, issue.5953, pp.718-721, 2009.
DOI : 10.1126/science.1176333

D. Zhang, R. Hughes, H. Ollivierre-wilson, M. Ghosh, and T. Rouault, A Ferroportin Transcript that Lacks an Iron-Responsive Element Enables Duodenal and Erythroid Precursor Cells to Evade Translational Repression, Cell Metabolism, vol.9, issue.5, pp.461-473, 2009.
DOI : 10.1016/j.cmet.2009.03.006

B. Galy, D. Ferring-appel, S. Kaden, H. Grönegr¨gröne, and M. Hentze, Iron Regulatory Proteins Are Essential for Intestinal Function and Control Key Iron Absorption Molecules in the Duodenum, Cell Metabolism, vol.7, issue.1, pp.79-85, 2008.
DOI : 10.1016/j.cmet.2007.10.006

B. Galy, D. Ferring, and B. Minana, Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2), Blood, vol.106, issue.7
DOI : 10.1182/blood-2005-04-1365

D. Ferring-appel, M. Hentze, and B. Galy, Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism, Blood, vol.113, issue.3, pp.679-687, 2009.
DOI : 10.1182/blood-2008-05-155093

M. Sanchez, B. Galy, M. Muckenthaler, and M. Hentze, Iron-regulatory proteins limit hypoxia-inducible factor-2?? expression in iron deficiency, Nature Structural & Molecular Biology, vol.12, issue.5, pp.420-426, 2007.
DOI : 10.1007/s11010-006-9393-2

M. Davis, K. Shawron, and E. Rendina, Hypoxia Inducible Factor-2?? Is Translationally Repressed in Response to Dietary Iron Deficiency in Sprague-Dawley Rats, Journal of Nutrition, vol.141, issue.9, pp.1590-1596, 2011.
DOI : 10.3945/jn.111.144105

S. Anderson, C. Nizzi, and Y. Chang, The IRP1-HIF-2?? Axis Coordinates Iron and Oxygen Sensing with Erythropoiesis and Iron Absorption, Cell Metabolism, vol.17, issue.2, pp.282-290, 2013.
DOI : 10.1016/j.cmet.2013.01.007

M. Ghosh, D. Zhang, and S. Jeong, Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational Derepression of HIF2??, Cell Metabolism, vol.17, issue.2, pp.271-281, 2013.
DOI : 10.1016/j.cmet.2012.12.016

B. Galy, D. Ferring-appel, and C. Becker, Iron Regulatory Proteins Control a Mucosal Block to Intestinal Iron Absorption, Cell Reports, vol.3, issue.3, pp.844-857, 2013.
DOI : 10.1016/j.celrep.2013.02.026

S. Recalcati, A. Alberghini, and A. Campanella, Iron regulatory proteins 1 and 2 in human monocytes, macrophages and duodenum: expression and regulation in hereditary hemochromatosis and iron deficiency, Haematologica, vol.91, issue.3, pp.303-310, 2006.

Q. Luo, D. Wang, M. Yu, and L. Zhu, Effect of hypoxia on the expression of iron regulatory proteins 1 and the mechanisms involved, IUBMB Life, vol.36, issue.2, pp.120-128, 2011.
DOI : 10.1002/iub.419

P. Matak, S. Zumerle, and M. Mastrogiannaki, Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2?? and Altered Expression of Iron Absorption Genes in Mice, PLoS ONE, vol.63, issue.3, p.59538, 2013.
DOI : 10.1371/journal.pone.0059538.s004

G. Weiss, Iron metabolism in the anemia of chronic disease, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.7, pp.682-693, 2009.
DOI : 10.1016/j.bbagen.2008.08.006

E. Nemeth, S. Rivera, and V. Gabayan, IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, Journal of Clinical Investigation, vol.113, issue.9, pp.1271-1276, 2004.
DOI : 10.1172/JCI200420945

S. Rivera and T. Ganz, Animal Models of Anemia of Inflammation, Seminars in Hematology, vol.46, issue.4, pp.351-357, 2009.
DOI : 10.1053/j.seminhematol.2009.06.003

S. Rivera, L. Liu, E. Nemeth, V. Gabayan, O. Sorensen et al., Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia, Blood, vol.105, issue.4, pp.1797-1802, 2005.
DOI : 10.1182/blood-2004-08-3375

C. Roy, H. Mak, I. Akpan, G. Losyev, D. Zurakowski et al., Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation, Blood, vol.109, issue.9, pp.4038-4044, 2007.
DOI : 10.1182/blood-2006-10-051755

S. Rivera, E. Nemeth, V. Gabayan, M. Lopez, D. Farshidi et al., Synthetic hepcidin causes rapid dose-dependent hypoferremia and is concentrated in ferroportin-containing organs, Blood, vol.106, issue.6, pp.2196-2199, 2005.
DOI : 10.1182/blood-2005-04-1766

D. Johnson, H. Bayele, K. Johnston, J. Tennant, S. Srai et al., Tumour necrosis factor alpha regulates iron transport and transporter expression in human intestinal epithelial cells, FEBS Letters, vol.275, issue.1-3, pp.1-3195, 2004.
DOI : 10.1016/j.febslet.2004.07.081

A. Laftah, N. Sharma, and M. Brookes, Tumour necrosis factor alpha causes hypoferraemia and reduced intestinal iron absorption in mice
URL : https://hal.archives-ouvertes.fr/hal-00478530

T. Schubert, A. Bosserhoff, and C. Peyssonaux, Hypoferraemia during the early inflammatory response is dependent on tumour necrosis factor activity in a murine model of protracted peritonitis, Molecular Medicine Reports, vol.6, issue.4, pp.838-842, 2012.
DOI : 10.3892/mmr.2012.1004

C. Taylor and S. Colgan, Hypoxia and gastrointestinal disease, Journal of Molecular Medicine, vol.201, issue.12, pp.1295-1300, 2007.
DOI : 10.1007/s00109-007-0277-z

A. Sty´ssty´s, B. Galy, S. Starzy´nski, and R. , Iron Regulatory Protein 1 Outcompetes Iron Regulatory Protein 2 in Regulating Cellular Iron Homeostasis in Response to Nitric Oxide, Journal of Biological Chemistry, vol.286, issue.26, pp.22846-22854, 2011.
DOI : 10.1074/jbc.M111.231902

C. Reynafarje, R. Lozano, and J. Valdivieso, The polycythemia of high altitudes: iron metabolism and related aspects, Blood, vol.14, issue.4, pp.433-455, 1959.

C. Beall, G. Cavalleri, and L. Deng, Natural selection on EPAS1 (HIF2??) associated with low hemoglobin concentration in Tibetan highlanders, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11459-11464, 2010.
DOI : 10.1073/pnas.1002443107

T. Simonson, Y. Yang, and C. Huff, Genetic Evidence for High-Altitude Adaptation in Tibet, Science, vol.329, issue.5987, pp.72-75, 2010.
DOI : 10.1126/science.1189406

Y. Ginzburg and S. Rivella, ??-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism, Blood, vol.118, issue.16, pp.4321-4330, 2011.
DOI : 10.1182/blood-2011-03-283614

S. Gardenghi, M. Marongiu, and P. Ramos, Ineffective erythropoiesis in -thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin, Blood, vol.109, issue.11, pp.5027-5035, 2007.
DOI : 10.1182/blood-2006-09-048868

T. Tanno, N. Bhanu, and P. Oneal, High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin, Nature Medicine, vol.33, issue.9, pp.1096-1101, 2007.
DOI : 10.1038/nm1629

J. Babitt and H. Lin, The Molecular Pathogenesis of Hereditary Hemochromatosis, Seminars in Liver Disease, vol.31, issue.03, pp.280-292, 2011.
DOI : 10.1055/s-0031-1286059

D. Domenico, I. Ward, D. Nemeth, and E. , The molecular basis of ferroportin-linked hemochromatosis, Proceedings of the National Academy of Sciences, vol.102, issue.25, pp.8955-8960, 2005.
DOI : 10.1073/pnas.0503804102

E. Rankin, J. Rha, and M. Selak, Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism, Molecular and Cellular Biology, vol.29, issue.16, pp.4527-4538, 2009.
DOI : 10.1128/MCB.00200-09

J. Levy, L. Montross, and N. Andrews, Genes that modify the hemochromatosis phenotype in mice, Journal of Clinical Investigation, vol.105, issue.9
DOI : 10.1172/JCI9635

C. Constantine, G. Anderson, and C. Vulpe, hereditary haemochromatosis, British Journal of Haematology, vol.37, issue.1, pp.140-149, 2009.
DOI : 10.1111/j.1365-2141.2009.07843.x

M. Zimmer, B. Ebert, and C. Neil, Small-Molecule Inhibitors of HIF-2a Translation Link Its 5???UTR Iron-Responsive Element to Oxygen Sensing, Molecular Cell, vol.32, issue.6, pp.838-848, 2008.
DOI : 10.1016/j.molcel.2008.12.004

P. Vachal, S. Miao, and J. Pierce, 1,3,8-Triazaspiro[4.5]decane-2,4-diones as Efficacious Pan-Inhibitors of Hypoxia-Inducible Factor Prolyl Hydroxylase 1???3 (HIF PHD1???3) for the Treatment of Anemia, Journal of Medicinal Chemistry, vol.55, issue.7, pp.2945-2959, 2012.
DOI : 10.1021/jm201542d

W. Denny, Giving Anemia a Boost with Inhibitors of Prolyl Hydroxylase, Journal of Medicinal Chemistry, vol.55, issue.7, pp.2943-2944, 2012.
DOI : 10.1021/jm300314a

P. Kapitsinou, Q. Liu, and T. Unger, Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia, Blood, vol.116, issue.16, pp.3039-3048, 2010.
DOI : 10.1182/blood-2010-02-270322