R. Billingham and T. Boswell, Studies on the Problem of Corneal Homografts, Proceedings of the Royal Society B: Biological Sciences, vol.141, issue.904, pp.392-406, 1953.
DOI : 10.1098/rspb.1953.0049

P. Medawar, Immunity to homologous grafted skin, Brit J Exp Path, vol.29, pp.58-69, 1948.

Y. Shirai, On the transplantation of the rat sarcoma in adult hetergenous animals, Jap Med World, vol.1, pp.14-15, 1921.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, and P. See, Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages, Science, vol.330, issue.6005, pp.841-845, 2010.
DOI : 10.1126/science.1194637

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo, Science, vol.308, issue.5726, pp.1314-1318, 2005.
DOI : 10.1126/science.1110647

D. Davalos, J. Grutzendler, G. Yang, J. Kim, and Y. Zuo, ATP mediates rapid microglial response to local brain injury in vivo, Nature Neuroscience, vol.19, issue.6, pp.752-758, 2005.
DOI : 10.1523/JNEUROSCI.2294-04.2004

S. Haynes, G. Hollopeter, G. Yang, D. Kurpius, and M. Dailey, The P2Y12 receptor regulates microglial activation by extracellular nucleotides, Nature Neuroscience, vol.6, issue.12, pp.1512-1519, 2006.
DOI : 10.1101/gad.1297105

R. Ransohoff and M. Brown, Innate immunity in the central nervous system, Journal of Clinical Investigation, vol.122, issue.4, pp.1164-1171, 2012.
DOI : 10.1172/JCI58644

B. Becher, I. Bechmann, and M. Greter, Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain, Journal of Molecular Medicine, vol.30, issue.Pt 3, pp.532-543, 2006.
DOI : 10.1007/s00109-006-0065-1

G. Martin-blondel, P. Delobel, A. Blancher, P. Massip, and B. Marchou, Pathogenesis of the immune reconstitution inflammatory syndrome affecting the central nervous system in patients infected with HIV, Brain, vol.134, issue.4, pp.928-946, 2011.
DOI : 10.1093/brain/awq365

D. Mcgavern and S. Kang, Illuminating viral infections in the nervous system, Nature Reviews Immunology, vol.74, issue.5, pp.318-329, 2011.
DOI : 10.1038/nri2971

A. Fontana, W. Fierz, and H. Wekerle, Astrocytes present myelin basic protein to encephalitogenic T-cell lines, Nature, vol.85, issue.5948, pp.273-276, 1984.
DOI : 10.1038/307273a0

W. Hickey and H. Kimura, Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo, Science, vol.239, issue.4837, pp.290-292, 1988.
DOI : 10.1126/science.3276004

C. Barcia, K. Wawrowsky, R. Barrett, C. Liu, and M. Castro, In Vivo Polarization of IFN-?? at Kupfer and Non-Kupfer Immunological Synapses during the Clearance of Virally Infected Brain Cells, The Journal of Immunology, vol.180, issue.3, pp.1344-1352, 2008.
DOI : 10.4049/jimmunol.180.3.1344

G. Chevalier, E. Suberbielle, C. Monnet, V. Duplan, and G. Martin-blondel, Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection, PLoS Pathogens, vol.22, issue.11, p.1002393, 2011.
DOI : 10.1371/journal.ppat.1002393.s012

R. Liblau, D. Gonzalez-dunia, H. Wiendl, and F. Zipp, Neurons as targets for T cells in the nervous system, Trends in Neurosciences, vol.36, issue.6, pp.315-324, 2013.
DOI : 10.1016/j.tins.2013.01.008

A. Saxena, J. Bauer, T. Scheikl, J. Zappulla, and M. Audebert, Cutting Edge: Multiple Sclerosis-Like Lesions Induced by Effector CD8 T Cells Recognizing a Sequestered Antigen on Oligodendrocytes, The Journal of Immunology, vol.181, issue.3, pp.1617-1621, 2008.
DOI : 10.4049/jimmunol.181.3.1617

A. Bendelac, P. Savage, and L. Teyton, The Biology of NKT Cells, Annual Review of Immunology, vol.25, issue.1, pp.297-336, 2007.
DOI : 10.1146/annurev.immunol.25.022106.141711

S. Porubsky, A. Speak, B. Luckow, V. Cerundolo, and F. Platt, Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency, Proceedings of the National Academy of Sciences, vol.104, issue.14, pp.5977-5982, 2007.
DOI : 10.1073/pnas.0611139104

A. Speak, M. Salio, D. Neville, J. Fontaine, and D. Priestman, Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals, Proceedings of the National Academy of Sciences, vol.104, issue.14, pp.5971-5976, 2007.
DOI : 10.1073/pnas.0607285104

D. Zhou, J. Mattner, C. Cantu, N. Schrantz, and N. Yin, Lysosomal Glycosphingolipid Recognition by NKT Cells, Science, vol.306, issue.5702, pp.1786-1789, 1711.
DOI : 10.1126/science.1103440

M. Brigl and M. Brenner, CD1: Antigen Presentation and T Cell Function, Annual Review of Immunology, vol.22, issue.1, pp.817-890, 2004.
DOI : 10.1146/annurev.immunol.22.012703.104608

Y. Chang, H. Kim, L. Albacker, H. Lee, and N. Baumgarth, Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity, Journal of Clinical Investigation, vol.121, issue.1, pp.57-69, 2011.
DOI : 10.1172/JCI44845DS1

Y. Kinjo, E. Tupin, D. Wu, M. Fujio, and R. Garcia-navarro, Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria, Nature Immunology, vol.53, issue.9, pp.978-986, 2006.
DOI : 10.1038/ni1380

Y. Kinjo, D. Wu, G. Kim, G. Xing, and M. Poles, Recognition of bacterial glycosphingolipids by natural killer T cells, Nature, vol.170, issue.7032, pp.520-525, 2005.
DOI : 10.1073/pnas.1332805100

J. Mattner, K. Debord, N. Ismail, R. Goff, and C. Cantu, Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections, Nature, vol.172, issue.7032, pp.525-529, 2005.
DOI : 10.1084/jem.184.4.1285

V. Sriram, W. Du, J. Gervay-hague, and R. Brutkiewicz, Cell wall glycosphingolipids ofSphingomonas paucimobilisare CD1d-specific ligands for NKT cells, European Journal of Immunology, vol.75, issue.6, pp.1692-1701, 2005.
DOI : 10.1002/eji.200526157

G. Wingender, P. Rogers, G. Batzer, M. Lee, and D. Bai, Invariant NKT cells are required for airway inflammation induced by environmental antigens, The Journal of Experimental Medicine, vol.30, issue.6, 2011.
DOI : 10.1126/science.1087262

P. Brennan, M. Brigl, and M. Brenner, Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions, Nature Reviews Immunology, vol.181, issue.2, pp.101-117, 2013.
DOI : 10.1038/nri3369

F. Facciotti, G. Ramanjaneyulu, M. Lepore, S. Sansano, and M. Cavallari, Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus, Nature Immunology, vol.41, issue.5, pp.474-480, 2012.
DOI : 10.1002/eji.201040619

L. Fox, D. Cox, J. Lockridge, X. Wang, and X. Chen, Recognition of Lyso-Phospholipids by Human Natural Killer T Lymphocytes, PLoS Biology, vol.170, issue.10, p.1000228, 2009.
DOI : 10.1371/journal.pbio.1000228.s001

C. Paget, T. Mallevaey, A. Speak, D. Torres, and J. Fontaine, Activation of Invariant NKT Cells by Toll-like Receptor 9-Stimulated Dendritic Cells Requires Type I Interferon and Charged Glycosphingolipids, Immunity, vol.27, issue.4, pp.597-609, 2007.
DOI : 10.1016/j.immuni.2007.08.017

URL : https://hal.archives-ouvertes.fr/hal-00317178

S. Zeissig, K. Murata, L. Sweet, J. Publicover, and Z. Hu, Hepatitis B virus???induced lipid alterations contribute to natural killer T cell???dependent protective immunity, Nature Medicine, vol.226, issue.7, pp.1060-1068, 2012.
DOI : 10.1083/jcb.15.3.541

L. Mars, J. Novak, R. Liblau, and A. Lehuen, Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks, Trends in Immunology, vol.25, issue.9, pp.471-476, 2004.
DOI : 10.1016/j.it.2004.07.001

R. Furlan, A. Bergami, D. Cantarella, E. Brambilla, and M. Taniguchi, Activation of invariant NKT cells by ??GalCer administration protects mice from MOG35???55-induced EAE: critical roles for administration route and IFN-?????, European Journal of Immunology, vol.33, issue.7, pp.1830-1838, 2003.
DOI : 10.1002/eji.200323885

A. Jahng, I. Maricic, B. Pedersen, N. Burdin, and O. Naidenko, Activation of Natural Killer T Cells Potentiates or Prevents Experimental Autoimmune Encephalomyelitis, The Journal of Experimental Medicine, vol.69, issue.12, pp.1789-1799, 2001.
DOI : 10.1038/35097097

L. Mars, L. Araujo, P. Kerschen, S. Diem, and E. Bourgeois, Invariant NKT cells inhibit development of the Th17 lineage, Proceedings of the National Academy of Sciences, vol.106, issue.15, pp.6238-6243, 2009.
DOI : 10.1073/pnas.0809317106

L. Mars, V. Laloux, K. Goude, S. Desbois, and A. Saoudi, Cutting Edge: V??14-J??281 NKT Cells Naturally Regulate Experimental Autoimmune Encephalomyelitis in Nonobese Diabetic Mice, The Journal of Immunology, vol.168, issue.12, pp.6007-6011, 2002.
DOI : 10.4049/jimmunol.168.12.6007

K. Miyamoto, S. Miyake, and T. Yamamura, A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells, Nature, vol.5, issue.6855, pp.531-534, 2001.
DOI : 10.1038/35097097

A. Singh, M. Wilson, S. Hong, D. Olivares-villagomez, and C. Du, Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis, The Journal of Experimental Medicine, vol.162, issue.12, pp.1801-1811, 2001.
DOI : 10.1038/35097097

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193577/pdf

M. Brahic, Theiler's Virus Infection of the Mouse, or: Of the Importance of Studying Animal Models, Virology, vol.301, issue.1, pp.1-5, 2002.
DOI : 10.1006/viro.2002.1607

M. Brahic, J. Bureau, and T. Michiels, THE GENETICS OF THE PERSISTENT INFECTION AND DEMYELINATING DISEASE CAUSED BY THEILER'S VIRUS, Annual Review of Microbiology, vol.59, issue.1, pp.279-298, 2005.
DOI : 10.1146/annurev.micro.59.030804.121242

H. Lipton, Theiler's virus infection in mice: an unusual biphasic disease process leading to demyelination, Infect Immun, vol.11, pp.1147-1155, 1975.

J. Cui, T. Shin, T. Kawano, H. Sato, and E. Kondo, Requirement for V14 NKT Cells in IL-12-Mediated Rejection of Tumors, Science, vol.278, issue.5343, pp.1623-1626, 1997.
DOI : 10.1126/science.278.5343.1623

A. Lehuen, O. Lantz, L. Beaudoin, V. Laloux, and C. Carnaud, Overexpression of Natural Killer T Cells Protects V??14-J??281 Transgenic Nonobese Diabetic Mice against Diabetes, The Journal of Experimental Medicine, vol.110, issue.10, pp.1831-1839, 1998.
DOI : 10.1126/science.274.5284.50

A. Mcallister, F. Tangy, C. Aubert, and M. Brahic, Molecular cloning of the complete genome of Theiler's virus, strain DA, and production of infectious transcripts, Microbial Pathogenesis, vol.7, issue.5, pp.381-388, 1989.
DOI : 10.1016/0882-4010(89)90041-7

T. Michiels, V. Dejong, R. Rodrigus, and C. Shaw-jackson, Protein 2A is not required for Theiler's virus replication, J Virol, vol.71, pp.9549-9556, 1997.

L. Mars, J. Bauer, D. Gross, F. Bucciarelli, and H. Firat, CD8 T Cell Responses to Myelin Oligodendrocyte Glycoprotein-Derived Peptides in Humanized HLA-A*0201-Transgenic Mice, The Journal of Immunology, vol.179, issue.8, pp.5090-5098, 2007.
DOI : 10.4049/jimmunol.179.8.5090

F. Levillayer, M. Mas, F. Levi-acobas, M. Brahic, and J. Bureau, Interleukin 22 Is a Candidate Gene for Tmevp3, a Locus Controlling Theiler's Virus-Induced Neurological Diseases, Genetics, vol.176, issue.3, pp.1835-1844, 1834.
DOI : 10.1534/genetics.107.073536

K. Benlagha, A. Weiss, A. Beavis, L. Teyton, and A. Bendelac, In Vivo Identification of Glycolipid Antigen???Specific T Cells Using Fluorescent Cd1d Tetramers, The Journal of Experimental Medicine, vol.158, issue.11, pp.1895-1903, 2000.
DOI : 10.1126/science.283.5399.225

J. Bauer, C. Elger, V. Hans, J. Schramm, and H. Urbach, Astrocytes are a specific immunological target in Rasmussen's encephalitis, Annals of Neurology, vol.2, issue.1, pp.67-80, 2007.
DOI : 10.1002/ana.21148

M. Brahic, A. Haase, and E. Cash, Simultaneous in situ detection of viral RNA and antigens., Proceedings of the National Academy of Sciences, vol.81, issue.17, pp.5445-5448, 1984.
DOI : 10.1073/pnas.81.17.5445

C. Kim, B. Johnston, and E. Butcher, Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among Valpha 24+Vbeta 11+ NKT cell subsets with distinct cytokine-producing capacity, Blood, vol.100, issue.1, pp.11-16, 2002.
DOI : 10.1182/blood-2001-12-0196

S. Mueller, T. Gebhardt, F. Carbone, and W. Heath, Memory T Cell Subsets, Migration Patterns, and Tissue Residence, Annual Review of Immunology, vol.31, issue.1, pp.137-161, 2013.
DOI : 10.1146/annurev-immunol-032712-095954

S. Thomas, R. Hou, J. Boyson, T. Means, and C. Hess, CD1d-Restricted NKT Cells Express a Chemokine Receptor Profile Indicative of Th1-Type Inflammatory Homing Cells, The Journal of Immunology, vol.171, issue.5, pp.2571-2580, 2003.
DOI : 10.4049/jimmunol.171.5.2571

L. Mars, A. Gautron, J. Novak, L. Beaudoin, and J. Diana, Invariant NKT Cells Regulate Experimental Autoimmune Encephalomyelitis and Infiltrate the Central Nervous System in a CD1d-Independent Manner, The Journal of Immunology, vol.181, issue.4, pp.2321-2329, 2008.
DOI : 10.4049/jimmunol.181.4.2321

J. Sun, R. Madan, C. Karp, and T. Braciale, Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10, Nature Medicine, vol.178, issue.3, pp.277-284, 2009.
DOI : 10.1016/j.jim.2004.08.008

R. Hoftberger, F. Aboul-enein, W. Brueck, C. Lucchinetti, and M. Rodriguez, Expression of Major Histocompatibility Complex class l Molecules on the Different Cell Types in Multiple Sclerosis Lesions, Brain Pathology, vol.74, issue.1, pp.43-50, 2004.
DOI : 10.1111/j.1750-3639.2004.tb00496.x

D. Wu, N. Segal, S. Sidobre, M. Kronenberg, and P. Chapman, Cross-presentation of Disialoganglioside GD3 to Natural Killer T Cells, The Journal of Experimental Medicine, vol.157, issue.1, pp.173-181, 2003.
DOI : 10.1084/jem.20021616

P. Kivisakk, D. Mahad, M. Callahan, C. Trebst, and B. Tucky, Human cerebrospinal fluid central memory CD4+ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8389-8394, 2003.
DOI : 10.1073/pnas.1433000100

P. Kivisakk, T. B. Wei, T. Campbell, J. Ransohoff, and R. , Human cerebrospinal fluid contains CD4+ memory T cells expressing gut-or skinspecific trafficking determinants: relevance for immunotherapy, BMC Immunology, vol.7, issue.1, p.14, 2006.
DOI : 10.1186/1471-2172-7-14

A. Reboldi, C. Coisne, D. Baumjohann, F. Benvenuto, and D. Bottinelli, C-C chemokine receptor 6???regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE, Nature Immunology, vol.181, issue.5, pp.514-523, 2009.
DOI : 10.1002/glia.1101

A. Azoulay-cayla, S. Dethlefs, B. Perarnau, E. Larsson-sciard, and F. Lemonnier, H-2Db-/- Mice Are Susceptible to Persistent Infection by Theiler's Virus, Journal of Virology, vol.74, issue.12, pp.5470-5476, 2000.
DOI : 10.1128/JVI.74.12.5470-5476.2000

A. Azoulay-cayla, S. Syan, M. Brahic, and J. Bureau, Roles of the H-2D b and H-K b genes in resistance to persistent Theiler???s murine encephalomyelitis virus infection of the central nervous system, Journal of General Virology, vol.82, issue.5, pp.1043-1047, 2001.
DOI : 10.1099/0022-1317-82-5-1043

L. Fiette, C. Aubert, M. Brahic, and C. Rossi, Theiler's virus infection of beta 2- microglobulin-deficient mice, J Virol, vol.67, pp.589-592, 1993.

M. Rodriguez, A. Dunkel, R. Thiemann, J. Leibowitz, and M. Zijlstra, Abrogation of resistance to Theiler's virus-induced demyelination in H-2b mice deficient in beta 2-microglobulin, J Immunol, vol.151, pp.266-276, 1993.