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A bs tr ac t

Background

Corticotropin-independent Cushing’s syndrome is caused by tumors or hyperplasia 

of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal 

adenomas is not well understood.

Methods

We performed exome sequencing of tumor-tissue specimens from 10 patients with 

cortisol-producing adrenal adenomas and evaluated recurrent mutations in candi-

date genes in an additional 171 patients with adrenocortical tumors. We also per-

formed genomewide copy-number analysis in 35 patients with cortisol-secreting 

bilateral adrenal hyperplasias. We studied the effects of these genetic defects both 

clinically and in vitro.

Results

Exome sequencing revealed somatic mutations in PRKACA, which encodes the cata-

lytic subunit of cyclic AMP–dependent protein kinase (protein kinase A [PKA]), in 

8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA so-

matic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients 

with overt Cushing’s syndrome; these mutations were not detectable in 40 patients 

with subclinical hypercortisolism or in 82 patients with other adrenal tumors. 

Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree 

relatives) carried a germline copy-number gain (duplication) of the genomic region on 

chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition 

of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells 

from patients with germline chromosomal gains showed increased protein levels of 

the PKA catalytic subunit; in both instances, basal PKA activity was increased.

Conclusions

Genetic alterations of the catalytic subunit of PKA were found to be associated with 

human disease. Germline duplications of this gene resulted in bilateral adrenal hyper-

plasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing 

adrenal adenomas. (Funded by the European Commission Seventh Framework 

Program and others.)
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E
ndogenous hypercortisolism, referred 

to as Cushing’s syndrome, is associated with 

substantial morbidity and mortality.1 When 

Cushing’s syndrome is severe, patients have cata-

bolic symptoms such as muscle weakness, skin 

fragility, osteoporosis, and severe metabolic se-

quelae.2 Hypersecretion of cortisol can be driven 

by an excess of pituitary or ectopic corticotropin 

or can be due to adrenocortical tumors or hyper-

plasias with corticotropin-independent cortisol 

production. Adrenal adenomas are common, with 

a prevalence of at least 3% among persons older 

than 50 years of age.3 Whereas only a subset of 

these tumors is associated with overt Cushing’s 

syndrome, some degree of cortisol excess is pres-

ent, depending on the diagnostic criteria applied,4 

in up to 47% of patients with adrenal adenomas 

and is associated with a range of phenotypes, 

from hypertension to the metabolic syndrome 

and osteoporosis.5

The molecular pathogenesis of cortisol- producing 

adrenal adenomas is not well understood. Whereas 

somatic mutations in the gene encoding beta-

catenin (CTNNB1) have been found primarily in 

nonsecreting adrenocortical adenomas,6 there is 

some evidence that increased endocrine activity 

may be linked to aberrant cyclic AMP (cAMP) 

signaling.7,8 For instance, ectopic expression of 

G-protein–coupled receptors for neuroendocrine 

hormones or neurotransmitters that mediate 

their effects through cAMP has been implicated 

in syndromes such as food-dependent hypercor-

tisolism and related conditions9,10 that are caused 

by cortisol-producing adenomas or bilateral hyper-

plasias of the adrenal cortex. Moreover, somatic 

mutations in the gene encoding the α subunit of 

the stimulatory G protein (GNAS1) cause adenomas 

or hyperplasias leading to Cushing’s syndrome in 

patients with McCune–Albright syndrome11 or 

macronodular hyperplasia.12,13 Finally, mutations 

in the genes encoding the cAMP-degrading phos-

phodiesterase 11A (PDE11A)14 and phosphodiester-

ase 8B (PDE8B)15 and in the gene encoding the 

regulatory subunit of the cAMP-dependent pro-

tein kinase (protein kinase A [PKA]) (PRKAR1A)16,17 

have been identified in patients with Cushing’s 

syndrome due to primary pigmented nodular 

adrenocortical disease and in a small number of 

cortisol-producing adrenal adenomas. These ge-

netic alterations, however, explain only a small 

fraction of cases. The observation that a subset 

of adrenal adenomas is characterized by abnor-

mal PKA activity, despite the absence of muta-

tions in these candidate genes,18 suggests yet un-

known alterations in the cAMP–PKA signaling 

cascade in these tumors.

Me thods

Study Patients and DNA Extraction

Patients were recruited at three centers that par-

ticipate in the European Network for the Study 

of Adrenal Tumors and at the U.S. National Insti-

tutes of Health. We evaluated 139 patients with 

adrenal adenoma, 42 patients with adrenocortical 

carcinoma, and 35 patients with corticotropin-

independent bilateral adrenal hyperplasia who 

did not have germline mutations in PRKAR1A, 

PDE11A, or PDE8B or somatic GNAS mutations 

(33 with micronodular hyperplasia [31 with pri-

mary pigmented nodular adrenocortical disease 

and 2 with isolated micronodular adrenocortical 

disease] and 2 with macronodular hyperplasia) 

(Fig. S1 and Table S1 in the Supplementary Ap pen-

dix, available with the full text of this article at 

NEJM.org). In all cases, the diagnosis was histo-

logically confirmed after surgical resection. All 

the patients gave written informed consent, and 

the study was approved by the ethics committee 

at each participating institution.

The diagnosis of corticotropin-independent 

Cushing’s syndrome was based on a combination 

of biochemical hallmarks of hypercortisolism — 

elevated urinary excretion of free cortisol, increased 

late-night salivary or serum cortisol levels, sup-

pressed plasma corticotropin levels (<10 pg per 

milliliter [<2.2 pmol per liter]), and nonsuppress-

ible serum cortisol levels (>5 µg per deciliter 

[>138 nmol per liter]) after the administration of 

1 mg of dexamethasone — as well as on the 

presence of catabolic signs of hypercortisolism. 

Patients were classified as having overt Cushing’s 

syndrome if they had at least three abnormal 

biochemical test results or if they had typical 

catabolic features (i.e., muscle weakness, skin fra-

gility, and osteoporosis) plus at least two abnormal 

biochemical test results. Patients were considered 

to have endocrine-inactive adrenal lesions if they 

had normal biochemical test results and no cata-

bolic signs. All patients who had no catabolic 

signs but had at least one abnormal result in the 

abovementioned tests were classified as having 

subclinical Cushing’s syndrome.

DNA was extracted as described previously19-21 

from unilateral adrenocortical tumors in 181 

patients and from corresponding normal tissue 
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in 26 of these patients. Furthermore, germline 

DNA was available for all 35 patients with bi-

lateral hyperplasia, and DNA from adrenal-tissue 

samples obtained during surgery was available 

for 10 of these 35 patients.

Exome and PRKACA Sequencing

Exomes were enriched in solution and indexed 

with the use of the SureSelect XT Human All 

Exon 50Mb kit, version 4 (Agilent Technologies). 

Sequencing was performed as paired-end reads 

of 100 bp on HiSeq2000 systems (Illumina). 

Pools of 12 indexed libraries were sequenced on 

four lanes. Image analysis and base calling were 

performed with the use of Real-Time Analysis 

software (Illumina). Methods of variant detec-

tion and PRKACA sequencing are described in the 

Supplementary Appendix.

Comparative Genomic Hybridization

Array-based comparative genomic hybridization 

analysis was performed with the use of commer-

cial arrays (Agilent Technologies), according to 

the manufacturer’s instructions and as described 

previously.22 Technical details are provided in the 

Supplementary Appendix.

In Silico Analysis of Human Mutations

Structural images were prepared with the use of 

PyMOL software (www.pymol.org). The structure 

of the mouse full-length tetrameric RIIβ(2):Cα(2) 

holoenzyme23 (Protein Data Bank entry 3TNP) 

was used to display the structures of the PKA cat-

alytic subunit (Cα) and regulatory subunit (RIIβ).

DNA Constructs and Site-Directed Mutagenesis

Plasmids encoding nonmutant human RIIβ or Cα 

subunits were purchased from OriGene Tech nolo-

gies. The PRKACA-containing plasmid was used for 

site-directed mutagenesis, with the c.617A→C and 

the c.595_596insCAC mutation introduced with 

the use of the QuikChange II Site-Directed Muta-

genesis Kit (Agilent Technologies), according to 

the manufacturer’s protocol. The mutation was 

confirmed by means of sequencing.

Quantification of PKA Activity in Intact Cells

Human embryonic kidney 293 cells were trans-

fected with the AKAR4-NES (a protein activity 

reporter 4 with a nuclear export signal) sensor24 

so that PKA activity could be monitored by means 

of fluorescence resonance energy transfer (FRET) 

imaging. Transfection and FRET imaging were 

performed as described previously.25 Equimolar 

concentrations of a cell-permeable pair of synergis-

tic cAMP analogues were used to activate PKA II.26

Quantification of PRKACA Protein  

and PKA Enzymatic Activity

Whole-cell or tissue lysates were studied for PKA 

Cα subunit expression by means of Western blot-

ting with the use of a specific antibody (sc-903, 

Santa Cruz Biotechnology). COS-7 cells were trans-

fected with the use of the X-tremeGENE HP DNA 

Transfection Reagent (Roche) and 500 ng of plas-

mid DNA per well for 24 hours. For transfections 

including both PKA Cα (nonmutant or Leu206Arg 

variant) and RIIβ subunits, a molar ratio of 1:8 

was used. In lysed cells from the transfection ex-

periments or patient-derived cells, PKA activity 

was determined by means of an enzymatic assay 

(Enzo Life Sciences).

Gene-Expression Microarray Analysis and Real-

Time Polymerase-Chain-Reaction (PCR) Analysis

An earlier microarray analysis of 22 adenomas27 

was expanded to include 39 adenomas in the cur-

rent study (see Table S1 in the Supplementary 

Appendix). For quantification of PRKACA expres-

sion, real-time quantitative PCR analysis was used. 

Details of the microarray experiments and real-

time PCR analysis are provided in the Supple-

men tary Appendix.

Statistical Analysis

Data were compared between two groups with 

the use of the Mann–Whitney U test and among 

three groups with the use of the Kruskal–Wallis 

test. All comparisons were two-sided, and P values 

of less than 0.05 were considered to indicate sta-

tistical significance. The analyses were performed 

with the use of SPSS software, version 20 (IBM).

R esult s

Somatic PRKACA Mutations and Germline 

Duplications in Cortisol-Producing Lesions

Exome sequencing was performed in samples 

from 10 patients with unilateral cortisol-producing 

adenomas and overt Cushing’s syndrome (Table S2 

in the Supplementary Appendix) and revealed a 

low number of somatic mutations per adenoma 

(median, 5; range, 1 to 14) (Table S3 in the Sup-

ple men tary Appendix). Within this small set of 

genetic alterations, somatic variants in PRKACA, 

encoding the PKA Cα subunit, were found in 
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8 of 10 tumors (c.617A→C, p.Leu206Arg in 7 and 

c.595_596insCAC, Leu199_Cys200insTrp in 1). The 

affected amino acids were highly conserved 

across a variety of species (Fig. S2 in the Sup ple-

mentary Appendix).

On the basis of these initial results, PRKACA was 

sequenced in 129 additional adenomas (including 

89 cortisol-producing, 20 aldosterone-producing, 

and 20 inactive adenomas). In 33 of these sam-

ples, the entire coding sequence was investigated, 

and in the remaining 96 samples, sequencing of 

hot-spot regions was performed. The Leu206Arg 

variant was identified in 14 of these 129 adeno-

mas, and all 14 patients with this variant also had 

overt Cushing’s syndrome, according to the pre-

defined criteria. Whole-exome and targeted se-

quencing indicated that both the nonmutated 

and mutated alleles were present in tumor tis-

sue, consistent with a heterozygous state of 

PRKACA mutations (Fig. 1A and 1B, and Fig. S3 

in the Supplementary Appendix). In the affected 

patients, there were no PRKACA mutations in 

DNA derived from leukocytes (19 patients) or fat 

tissue (1 patient) or in adjacent normal adrenal 

tissue (6 patients).

Comparative genomic hybridization of sam-

ples from 35 patients with cortisol-secreting bi-

lateral adrenal hyperplasias and overt Cushing’s 

syndrome identified 5 patients (4 kindreds) with 

copy-number gains (duplications) of the genomic 

region on chromosome 19p that includes PRKACA 

(Fig. 1C, and Table S4 in the Supplementary Ap-

pendix). In one case, the defect was inherited: 

a mother and son, both carriers of the same 

PRKACA duplication, were affected by bilateral 

macronodular hyperplasia. In another case, that 

of a 3-year-old boy with Cushing’s syndrome due 

to bilateral micronodular hyperplasia, the defect 

was de novo, because neither parent carried the 

PRKACA duplication. No amplification of PRKACA 

was found in 24 cortisol-producing adrenal ade-

nomas analyzed by means of single-nucleotide 

polymorphism array profiling.28

No PRKACA mutations were detected in 1600 

in-house exomes or in the 1000 Genomes Project 

data set (version 0.0.14). Although PRKACA dupli-

cations are reported in public databases of copy-

number variants in at least six instances (occurring 

in patients referred for genetic testing because of 

developmental delay), no PRKACA whole-gene du-

plications are included in the Database of Genomic 

Variants, which is based on the general population. 

Moreover, no PRKACA duplications were found in 

2000 persons with intellectual disability, congeni-

tal malformations, or both in an internal database.

PRKACA Mutations and Regulation  

of Catalytic Subunits by Regulatory Subunits

Analysis of the mouse full-length tetrameric 

RIIβ(2):Cα(2) holoenzyme structure23 revealed that 

this mutation is located in the highly conserved core 

of the interaction between the regulatory (RIIβ) 

and catalytic (Cα) subunits of PKA — a finding that 

supports a functional relevance of the Leu206Arg 

variant. Leu206 is part of the active-site cleft of the 

catalytic subunit to which the inhibitory sequence 

of the regulatory subunit binds, mimicking a sub-

strate for the catalytic subunit. This interaction 

keeps the catalytic subunit inactive in the absence 

of cAMP. Exchanging Leu206 with the bulky and 

positively charged amino acid Arg in silico yields 

steric hindrance between the side chain of the 

mutated Arg206 in the Cα subunit and Val115 

and Tyr228 in the RIIβ subunit (Fig. 2A and 2B).29

The functional consequences of the two detected 

variants (Leu206Arg and Leu199_Cys200insTrp) 

were investigated in intact cells by means of FRET 

microscopy with the use of a sensor for PKA 

activity (AKAR4-NES).24 The PKA activity in cells 

transfected only with either nonmutant Cα or the 

variants was high and was not further stimulated 

by cAMP analogues, indicating preservation of 

the catalytic activity in the mutants (Fig. 2C, and 

Fig. S4A and S4C in the Supplementary Ap pen-

dix). However, after cotransfection with excess 

nonmutant RIIβ, basal PKA activity was de-

creased in cells transfected with nonmutant Cα 

and became responsive to cAMP analogues, 

whereas PKA activity in the cells transfected 

with the mutants remained high and was not re-

sponsive to cAMP analogues (Fig. 2C, and Fig. S4B 

and S4D in the Supplementary Appendix). This 

finding indicates that the mutations made the 

catalytic subunit resistant to the physiologic sup-

pression by the regulatory subunit. The lack of 

suppression remained when an equal amount of 

nonmutant Cα was cotransfected, indicating a 

dominant effect of the mutations (Fig. 2D).

Similarly, transfection of the mutant Cα 

Leu206Arg variant caused a profound increase in 

PKA activity under basal conditions so that PKA 

activity was in the same range as that in cells 
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transfected with the nonmutant Cα on cAMP 

stimulation, and this activity was not suppressed 

by cotransfection with RIIβ, indicating again a 

lack of suppression of the activity of the mutant 

catalytic subunit by the regulatory subunit (Fig. 2E). 

Consistent with these findings, basal PKA activ-

ity in tumor tissue was found to be higher in 

adenoma samples with PRKACA mutations than 

in those without such mutations (Fig. S5 in the 

Supplementary Appendix). Taken together, these 

data indicate that the Leu206Arg mutant protein 

is constitutively active and is not suppressed by 

the regulatory subunit.

association of Germline Duplication of PRKACA 

with Increased Protein Levels and PKA Activity

As compared with tumor-tissue samples from 

patients without any known genetic defects, tumor-

tissue samples from patients with duplications of 

PRKACA had higher PKA Cα messenger RNA and 

protein levels (Fig. S6A and S6B, respectively, in the 

Supplementary Appendix). Immuno histo chem-

ical experiments confirmed higher expression of 

the PKA Cα subunit in adrenal tissue from these 

patients (Fig. S6C in the Supplementary Ap pen-

dix). The higher expression of the PKA Cα subunit 

was associated with higher basal and cAMP-

C
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Figure 1. Identification of Somatic PRKACA Mutation and Germline Genetic Duplications.

Panel A shows a sequence chromatogram of normal adrenal tissue, and Panel B a chromatogram of a cortisol- 
producing adrenal adenoma. A somatic mutation in PRKACA (c.617A→C) was identified in the cortisol-producing 
adenoma, resulting in a Leu206Arg substitution that is not present in the adjacent normal tissue. Panel C shows an 
ideogram of chromosome 19 (top) with the genes included in the p13.2–p13.12 band (GRCh37/h19). The black 
blocks (bottom) represent the size and position of the duplications. The gray blocks represent the genes included 
only in the shared region of duplication. The red block represents PRKACA.
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stimulated PKA activity (Fig. S6D in the Supple-

mentary Appendix).

Clinical Phenotypes and PRKACA Mutation Status

Whereas 22 of 59 patients (37%) with overt Cush-

ing’s syndrome due to a unilateral adenoma har-

bored a PRKACA mutation, this alteration was not 

present in any adenoma associated with subclini-

cal Cushing’s syndrome (40 patients), nor was it 

present in inactive adrenal adenomas (20 patients), 

aldosterone-producing adrenal adenomas (20 pa-

tients), or adrenocortical carcinomas (42 patients) 

or in adrenal tissue (10 patients) or lymphocytic 

DNA (35 patients) from patients with corticotropin-

independent adrenal hyperplasia (35 patients). 

Furthermore, in the group of patients with overt 

Cushing’s syndrome, the presence of PRKACA mu-

tations was associated with a more severe pheno-

type (Table 1). Accordingly, expression levels of a 

variety of steroidogenic enzymes in mutant ade-
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noma tissues were higher in the presence of a 

PRKACA mutation (Table S5 in the Supplementary 

Appendix).

There were no obvious phenotypic differences 

between patients with germline PRKACA duplica-

tions and those without duplications, although 

the number of patients with duplications was 

small. The affected mother and son had mild 

Cushing’s syndrome of insidious onset, caused 

by bilateral macronodular hyperplasia manifest-

ing in the third and fourth decade of life. The 

three young boys presenting with Cushing’s 

syndrome due to bilateral hyperplasia (two with 

micronodular disease and one with macronodular 

disease) (Table S4 in the Supplementary Appen-

dix) had severe disease similar to that of patients 

with somatic PRKACA mutations. One patient 

with PRKACA duplication had a paradoxical in-

crease in cortisol secretion after administration 

of dexamethasone,30 whereas the other four pa-

tients did not undergo a long-term dexamethasone 

suppression test (Liddle’s test) before surgery.

Discussion

Despite evidence that enhanced cAMP signaling 

is the culprit in many benign adrenal lesions 

leading to Cushing’s syndrome,8,18 the search for 

tumorigenic mutations in adrenal adenomas 

with the use of a candidate-gene approach has 

revealed only very rare mutations in a distinct 

subgroup of patients.12,13,17,31 The current study 

suggests that more than one third of cortisol-

producing adenomas associated with overt Cush-

ing’s syndrome have unique somatic mutations 

in PRKACA (which encodes the main catalytic 

subunit of PKA), resulting in constitutive PKA ac-

tivation. Although the mutation is present only in 

tumor cells in these patients, germline duplication 

of PRKACA was identified in a group of patients 

with bilateral adrenal hyperplasias. Consistent with 

the hypothesis that the resulting increased PKA 

activity is responsible for adrenocortical tumor 

formation, patients with somatic defects had 

single adenomas, whereas patients with germ-

line duplications presented with bilateral adrenal 

hyperplasias. All the patients with PRKACA de-

fects, whether germline or somatic, had overt 

Cushing’s syndrome, and none of the patients 

with subclinical Cushing’s syndrome or other ad-

renal tumors had genetic PRKACA alterations.

Thus, our findings provide evidence that 

PRKACA activation leads to marked excess of cor-

tisol, as one would expect from constitutive activa-

tion of the enzymes that mediate corticotropin-

dependent effects on adrenal steroidogenesis. The 

findings also indicate that subclinical Cushing’s 

syndrome is not an early form of overt disease 

but a pathophysiologically distinct entity. Because 

PRKACA mediates most of the effects of inacti-

vating PRKAR1A mutations32 and because muta-

tions of PRKAR1A are associated with a variety of 

tumors in humans and mice,33,34 we would specu-

late that somatic PRKACA defects might also play 

a role in other forms of endocrine and nonendo-

crine tumors.

PKA, a cAMP-dependent serine–threonine ki-

nase, is perhaps the best characterized protein 

Figure 2 (facing page). Functional Characterization  

of PRKACA Variants.

Panel A shows the structure derived from the protein 
kinase A (PKA) tetramer, with the nonmutant catalytic 
subunit (Cα) depicted in green and the regulatory sub-
unit (RIIβ) depicted in red. A zoomed view into the re-
gion of Leu206 in the Cα subunit is shown. Leu206 is 
depicted as a space-filling representation; the two resi-
dues in close proximity (Val115 and Tyr228) and addi-
tional residues from the inhibitory site (Arg111–Ser114, 
marked with an asterisk) of the regulatory subunit are 
depicted as sticks. Panel B shows the same region of 
the PKA tetramer, with Leu206 in the Cα subunit re-
placed by Arg206, also depicted as a space-filling rep-
resentation. Panel C shows PKA activity of nonmutant 
and mutant PKA Cα subunits transfected in human 
embryonic kidney 293 cells, as determined by means of 
fluorescence resonance energy transfer (FRET) assay 
with a PKA reporter (for details, see Fig. S4 in the Sup-
plementary Appendix). The results indicate that the mu-
tant variants are constitutively active. Asterisks indicate 
P<0.05 for the comparison with Cαnonmutant + RIIβ. 
AKAR4-NES denotes a protein activity reporter 4 with 
a nuclear export signal. Panel D shows that high con-
stitutive PKA activity was maintained when either mu-
tant was cotransfected with an equal amount of non-
mutant Cα subunit. Asterisks indicate P<0.05 for the 
comparison with Cαnonmutant + RIIβ. The data in Panels 
C and D were compared by means of a two-way analy-
sis of variance followed by Bonferroni’s test. Panel E 
shows the quantification of enzymatic PKA activity; 
COS-7 cells were transfected with Cα (nonmutant or 
mutant) and RIIβ, with or without the addition of cyclic 
AMP (cAMP). Asterisks indicate P<0.05 for the com-
parison between samples with and those without the 
addition of cAMP. The hatch mark indicates P<0.05 for 
the comparison between samples transfected with 
nonmutant Cα subunit and those transfected with mu-
tant Cα subunit without the addition of cAMP. In Pan-
els C, D, and E, the I bars represent the standard error.

The New England Journal of Medicine 
Downloaded from nejm.org on September 24, 2014. For personal use only. No other uses without permission. 

 Copyright © 2014 Massachusetts Medical Society. All rights reserved. 



T
h

e n
e

w
 e

n
g

l
a

n
d

 j
o

u
r

n
a

l
 o

f m
e

d
i

c
i

n
e

n
 e

n
g

l
 j m

e
d

 3
7
0

;1
1
 

n
e
jm

.o
r

g
 

m
a

r
c

h
 1

3
, 2

0
1
4

1
0

2
6 Table 1. Clinical Characteristics of Patients with Adrenal Adenomas in Relation to PRKACA Mutational Status.*

Characteristic

Endocrine-Inactive 
Adenoma
(N = 20)

Subclinical Cushing’s 
Syndrome

(N = 40)
Overt Cushing’s Syndrome  

(N = 59) P Value

Total
No PRKACA 

Mutation
PRKACA 
Mutation

Comparison of Endocrine-
Inactive Adenoma,   Subclinical 

Cushing’s Syndrome, and 
Overt Cushing’s Syndrome†

Comparison of Overt 
Cushing’s Syndrome  

with and without  
PRKACA Mutation‡

Age at diagnosis (yr)

Median 49.5 54.0 41.0 41.0 41.0 <0.001 0.37

Interquartile range 39.3–59.0 48.3–66.0 34.0–49.0 35.0–50.0 33.0–47.3

Adenoma size (mm)§

Median 43.0 40.0 30.0 30.0 30.0 <0.001 0.86

Interquartile range 33.0–50.0 30.0–50.0 30.0–36.0 29.5–40.0 30.0–35.5

Corticotropin (pg/ml)¶

Median 14.0 6.0 2.5 2.3 2.5 <0.001 0.69

Interquartile range 11.0–18.0 5.0–12.9 1.0–5.0 1.0–5.0 1.0–6.0

Serum cortisol after 1 mg of 
dexamethasone (µg/dl)‖

Median 1.2 2.9 15.9 15.0 22.0 <0.001 0.005

Interquartile range 1.0–1.7 2.3–7.5 13.3–23.0 9.4–19.5 16.5–27.7

Urinary cortisol ÷ ULN**

Median 0.62 0.46 3.67 3.14 5.33 <0.001 0.03

Interquartile range 0.38–0.72 0.26–0.99 1.88–6.01 1.53–5.23 2.46–9.08

Midnight cortisol ÷ ULN††

Median 0.6 1.6 3.9 3.6 4.3 <0.001 0.02

Interquartile range 0.4–1.0 0.8–2.6 2.8–4.6 2.3–4.5 3.9–5.9

* For reference ranges of the endocrine characteristics, see the Methods section in the Supplementary Appendix. ULN denotes upper limit of the normal range.
† Values were compared with the use of the Kruskal–Wallis test.
‡ Values were compared with the use of the Mann–Whitney U test.
§ Data were not available for 1 patient with endocrine-inactive adenoma, 2 patients with subclinical Cushing’s syndrome, and 4 patients with overt Cushing’s syndrome (3 with no 

PRKACA mutation and 1 with PRKACA mutation).
¶ Data were not available for 9 patients with endocrine-inactive adenoma, 9 patients with subclinical Cushing’s syndrome, and 12 patients with overt Cushing’s syndrome (9 with no 

PRKACA mutation and 3 with PRKACA mutation). To convert values for corticotropin to picomoles per liter, multiply by 0.22.
‖ Data were not available for 12 patients with endocrine-inactive adenoma, 11 patients with subclinical Cushing’s syndrome, and 22 patients with overt Cushing’s syndrome (14 with no 

PRKACA mutation and 8 with PRKACA mutation). To convert values for serum cortisol to nanomoles per liter, multiply by 27.6.
** Values are based on 24-hour urine samples. Data were not available for 3 patients with endocrine-inactive adenoma, 11 patients with subclinical Cushing’s syndrome, and 6 patients 

with overt Cushing’s syndrome (3 with no PRKACA mutation and 3 with PRKACA mutation).
†† Values are based on midnight salivary or serum cortisol levels. Data were not available for 12 patients with endocrine-inactive adenoma, 21 patients with subclinical Cushing’s syn-

drome, and 23 patients with overt Cushing’s syndrome (15 with no PRKACA mutation and 8 with PRKACA mutation).
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kinase and provides a clear example of allosteric 

regulation.35 In its inactive state, it is a tetra-

meric holoenzyme consisting of a dimer of two 

regulatory and two catalytic subunits; under 

physiologic conditions, PKA activity is induced by 

G-protein–coupled receptors through increased 

levels of cAMP.23,35 On binding of cAMP, the 

regulatory subunits dissociate from the catalytic 

subunits, allowing the enzyme to become ac-

tive.35 Although some randomly introduced mu-

tations in PRKACA have been shown to result in 

unopposed catalytic activation in vitro,36 such 

alterations have not been linked to human dis-

ease. The only naturally found gain-of-function 

PRKACA mutations are those described in the 

Cos1(A1) drosophila mutant.37 The two PRKACA 

mutants identified in the current study alter the 

structure of the catalytic subunit at a site that is 

essential for interaction with the regulatory sub-

unit, thus maintaining high activity of the cata-

lytic subunit in the absence of cAMP.23,35 The 

critical position of the Leu206Arg mutation at 

the core of the interaction between the catalytic 

subunit and the inhibitory site of the regulatory 

subunit, combined with the steric hindrance 

involving Val115 and Tyr228 in the regulatory 

subunit, may explain the high grade of specific-

ity of this particular mutation.

In conclusion, the current study links genetic 

variants of the main catalytic subunit of PKA 

with both hyperplasias and adenomas of the 

adrenal cortex leading to corticotropin-indepen-

dent Cushing’s syndrome. These observations 

are consistent with the known role of the cAMP 

signaling pathway in adrenal lesions that have 

been associated with Cushing’s syndrome.
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