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OPEN

ORIGINAL ARTICLE

Transition from metabolic adaptation to maladaptation of the
heart in obesity: role of apelin
C Alfarano1,2, C Foussal1,2, O Lairez1, D Calise2,3, C Attané1,2, R Anesia1,2, D Daviaud1,2, E Wanecq1,2, A Parini1,2, P Valet1,2 and
O Kunduzova1,2

BACKGROUND/OBJECTIVES: Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The
adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to
the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from
metabolic adaptation to maladaptation of the heart in obese state.
METHODS: Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce
heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA)
oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of
pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses.
RESULTS: In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA
utilization (Po0.05), accelerated glucose oxidation (Po0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin
for 4 weeks prevented pressure overload-induced decline in FA metabolism (Po0.05) and mitochondrial defects. Furthermore,
apelin treatment lowered fasting plasma glucose (Po0.01), improved glucose tolerance (Po0.05) and preserved cardiac function
(Po0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is
associated with reduced FA oxidation (Po0.001) and increased glucose oxidation (Po0.05). In isolated cardiomyocytes, apelin
stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown.
CONCLUSIONS: These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy
metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent
myocardial metabolic abnormalities in heart failure paired with obesity.

International Journal of Obesity advance online publication, 12 August 2014; doi:10.1038/ijo.2014.122

INTRODUCTION
Cardiac metabolic reprogramming is a defining characteristic of
obesity and cardiovascular diseases. In obesity, the heart displays
an impaired metabolic phenotype, characterized by the dysregu-
lation of energy substrate utilization in the myocardium.1 The
alterations in myocardial energy metabolism are indicative of
metabolic reprogramming, a change in how energy is generated
and how fuel is utilized. In the healthy adult heart, fatty acid (FA)
oxidation contributes up to 70% of the total energy production,
while much of the rest is generated from carbohydrates via
glucose oxidation.2–4 In disease states such as ischemia and
hypertrophy, the balance between FA oxidation and glucose
oxidation is perturbed and the heart becomes more glucose-
dependent.5–7 This initial adaptive response is beneficial, in that it
maintains adenosine triphosphate (ATP) levels in the face of
diminished mitochondrial oxidative phosphorylation.8 Recent
studies linking specific metabolic alterations to cardiac perfor-
mance have strengthened the concept that altered energy
metabolism is more than a primary effect of cardiac remodeling,
but may in fact be a powerful driver of cardiac dysfunction.9–12

Adipose tissue is a highly active metabolic and endocrine organ
and has a substantial role in the pathogenesis of obesity-related
cardiovascular complications.13 Altered levels of adipocyte-derived

factors, termed adipokines, may be particularly related with
heart diseases and metabolic disorders.14,15 Among novel
adipokines, apelin has emerged as an important regulator of
cardiovascular and metabolic homeostasis. Apelin, an endogenous
ligand for the G-protein-coupled receptor APJ (angiotensin
receptor-like 1), exerts strong inotropic actions and increases
coronary blood flow by vascular dilation.16 In response to
pathological stress, apelin-APJ axis regulates cardiac hypertrophy,
myocardial remodeling and heart contractility.17 Apelin-deficient
mice demonstrate age-related progressive cardiac dysfunction,
which is prevented by apelin infusion,18 suggesting an essential
role of apelinergic system in maintaining cardiac performance.
In humans, circulating and cardiac levels of apelin are reduced
in patients with chronic heart failure indicating a potential role
for diminished apelinergic system in the pathophysiology of
heart failure. On the other hand, plasma apelin concentrations are
increased in obese subjects 19 and apelin treatment in obese
conditions stimulates glucose utilization in adipose tissue
and skeletal muscle leading to increasing insulin sensitivity.20

Moreover, our recent study suggests that apelin enhances muscle
mitochondrial biogenesis and citrate synthase activity, a marker of
mitochondria content, culminating in amelioration of both lipid
and glucose metabolism in insulin-resistant mice.21 More recently,
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it has been reported that apelin ameliorates diabetic cardiomyo-
pathy via stimulation of sirtuin 3, a mitochondrial sirtuin
deacetylase.22 Altogether, these studies suggest that apelinergic
system may have a role in obesity-related mitochondrial
abnormalities and cardiometabolic manifestations. However, the
role of apelin in myocardial metabolic adaptation or maladapta-
tion of the heart in obese state remains to be determined.

Herein we report that transition from hypertrophy to heart
failure in obese conditions is characterized by defective myocar-
dial FA utilization and mitochondrial defects. Furthermore, we
demonstrate that apelin regulates metabolic reprogramming and
preserves mitochondrial integrity in heart failure paired with
increased adiposity.

MATERIALS AND METHODS
Animals
The investigation conforms to the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of Health (NIH
Publication No. 85-23, revised 1985) and was performed in accordance
with the recommendations of the French Accreditation of the Laboratory
Animal Care (approved by the local Centre National de la Recherche
Scientifique ethics committee). At 12 weeks, C57BL/6J mice were fed a
high-fat diet (HFD, 45% fat) for 18 weeks or a normal diet (ND, 4% fat) and
then subjected to aortic banding (AB) for 4 weeks as previously
described.17 Sham-operated animals underwent a similar procedure
without AB.

Experimental protocols
After 18 weeks of HFD, mice were randomly divided into four groups: (1)
sham vehicle, (2) AB vehicle, (3) sham apelin and (4) AB apelin. Mice
received apelin (0.1 μmol kg–1 day–1) or vehicle (phosphate-buffered
saline) intraperitoneally 10 min before AB and then every 24 h for 4 weeks.

Body fat mass composition
To determine total body fat and lean mass, mice were placed in a plastic
holder inserted into the EchoMRI-3-in-1 system from Echo Medical Systems
(Houston, TX, USA).

Apelin KO mice
Apelin knock-out (KO) mice were generated by homologous recombina-
tion of a targeting vector in embryonic stem cells (Genoway, Lyon, France).
Recombined embryonic stem cell clones were injected into C57BL/6J
derived blastocysts to generate chimeric mice. Constitutive KO hetero-
zygous females and homozygous males were characterized by PCR and
Southern blot. As cardiac phenotype in 3-month-old apelin KO mice
appeared normal,18 we examined cardiometabolic phenotype of these
animals after 18 weeks of HFD.

Glucose tolerance test and plasma measures
Mice were fasted for 6 h and then were injected with glucose (1 g kg–1,
intraperitoneally). Blood glucose levels from the tail vein were monitored
over time using a glucometer as previously described.20 Insulinemia
(Mercodia, Uppsala, Sweden) and glycemia (Accu-check, Roche Diagnostics,
Boulogne-Billancourt, France) were measured in fasted state.

Echocardiographic studies
Echocardiography was performed in isoflurane anesthetized mice using a
Vivid7 imaging system (General Electric Healthcare, Toulouse, France)
equipped with a 14-MHz sectorial probe. Two-dimensional images were
recorded in parasternal long- and short-axis projections, with guided
M-mode recordings at the midventricular level in both views. Left
ventricular (LV) dimensions and wall thickness were measured in at least
five beats from each projection and averaged. Interventricular septum (IVS)
and posterior wall (PW) thickness and internal dimensions at diastole and
systole (LVIDd and LVIDs, respectively) were measured. Fractional short-
ening and ejection fraction were calculated from the two-dimensional
images.

Primary cultures of cardiomyocytes and transfection
Primary cultures of cardiomyocytes were prepared from heart ventricles of
C57BL/6J mice exposed to a HFD for 18 weeks as described previously.23

Briefly, mice were intraperitoneally heparinized with 200 U heparin and
pentobarbital sodium (100 mg kg–1, intraperitoneal). The heart was quickly
removed, cannulated via the aorta and perfused at constant pressure
(100 cm H2O) at 37 °C for ∼ 3 min with a Ca2+-free bicarbonate-based
buffer. The enzymatic digestion was initiated by adding collagenase type B
(0.5 mg ml–1; Boehringer, Mannheim, Germany), collagenase type D
(0.5 mg ml–1; Boehringer), and protease type XIV (0.02 mg ml–1; Sigma,
Saint-Quentin Fallavier, France) to the perfusion solution. When the heart
became swollen after ∼ 3 min of digestion, 50 μM Ca2+ was added to the
enzyme solution. After 6–7 min, LV was removed, cut into several chunks
and digested for 10 min at 37 °C in the same enzyme solution. The
supernatant containing the dispersed myocytes was filtered. The cell pellet
was resuspended in Ca solution I (125 μM Ca2+). After the myocytes were
pelleted by gravity for ∼ 10 min, the supernatant was aspirated and the
myocytes were resuspended in Ca solution II (250 μM Ca2+). The final cell
pellet was suspended in Ca solution III (500 μM Ca2+). The isolated cells
were stored in HEPES-buffered solution consisting of (in mM) 1 CaCl2, 137
NaCl, 5.4 KCl, 15 dextrose, 1.3 MgSO4, 1.2 NaH2PO4 and 20 HEPES, adjusted
to pH 7.4 with NaOH.

Freshly isolated cardiomyocytes were suspended in minimal essential
medium (Sigma M1018) containing 1.2 mM Ca2+, 2.5% fetal bovine serum
and 1% penicillin–streptomycin. The myocytes were then plated at 1 × 104

cells cm–2 and substrate oxidations were measured after 24 h of cell
culture. For small interfering RNA (siRNA) transfection, after 1 h of culture,
cardiomyocytes were treated with siRNA negative control (Scramble) or
siRNAs to sirtuin 3 (Sirt3) according to the manufacturer’s recommenda-
tions (Thermoscientific, Illkirch, France). Following 24 h of siRNA incubation,
cardiomyocytes were treated with apelin (10 − 7 M) for 1 h for FA oxidation
measurements. The effects of siRNAs were evaluated at 24 and 48 h after
transfection by reverse transcriptase-PCR analysis for Sirt3 mRNA
expression.

Measurements of FA and glucose oxidation
FA oxidation was measured using [1-14C]-palmitate in heart tissue and
isolated cardiomyocytes as previously described.21 The heart tissue
samples were incubated in modified Krebs–Henseleit buffer containing
1.5% FA-free bovine serum albumin, 5 mmol l–1 glucose, 1 mmol l–1

palmitate and 0.5 μCi ml–1 [14C]palmitate (Perkin Elmer, Courtaboeuf,
France) for 60 min. Isolated cardiomyocytes were incubated in the same
modified Krebs–Henseleit buffer, but without glucose. After incubation,
tissues were homogenized in 800 μl lysis buffer. Complete oxidation was
determined by acidifying the incubation buffer with 1 ml of 1 mol l–1

H2SO4, and the 14CO2 was trapped by benzethonium hydroxide (Sigma)
placed in a 0.5 ml microtube. After 120 min, the radioactivity was counted
(Cytoscint; MP Biomedicals, Strasbourg, France). Similarly, glucose oxida-
tion was assessed by measuring the [14C]-glucose oxidation in cardiac
tissue as previously described. Sample incubation for 1 h was performed
using a modified Krebs–Henseleit buffer containing 0.2% bovine serum
albumin, 20 mM Hepes, 10 mM glucose, 0.8 μCi ml–1 [14C]glucose (Perkin
Elmer). Results were normalized for mg of proteins.

Electron microscopy
Briefly, excised hearts were fixed in 2.5% glutaraldehyde/1% paraformal-
dehyde, post-fixed in 2% osmium tetroxide, embedded in resin and
sectioned. Cardiac mitochondrial number relative to the section area was
determined from electron micrographs as described previously.21

Mitochondrial DNA analysis
Total DNA was extracted from heart tissue using a commercial kit (DNeasy;
Qiagen, Marseille, France). The content of mitochondrial (mt)DNA was
calculated using real-time quantitative PCR by measuring the threshold
cycle ratio of a mitochondrial encoded gene (COX1) and a nuclear-
encoded gene (cyclophilin A) as previously described.21

Real-time PCR
Total RNAs were isolated from heart mouse and isolated cardiomyocytes
using the RNeasy mini kit (Qiagen). Total RNAs (500 ng) were reverse
transcribed using random hexamers and Superscript II reverse transcrip-
tase (Invitrogen, Paisley, UK). Real-time PCR was performed as previously
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described.21 Analysis of the 18S ribosomal RNA was performed using the
ribosomal RNA control Taqman Assay Kit (Applied Biosystems, Saint Aubin,
France) to normalize gene expression. The sequences of the primers are
listed in Supplementary Table S1 in the Data Supplement.

Citrate synthase assay
Citrate synthase activity was measured in heart homogenates by
quantification of oxaloacetate utilization as previously described.24 In
brief, heart tissue was homogenized (10 mg tissue per 500 μl buffer) on ice
in buffer containing 0.1 mol l–1 KH2PO4 and 0.05% bovine serum albumin.
Results were expressed as μmol min–1 per mg proteins.

Protein assay
Protein amount of samples was determined using the DC protein assay kit
(Bio-Rad, Marnes-la-Coquette, France) according to the manufacturer’s
instructions.

Western blot analysis
Isolated cardiomyocytes were treated with apelin (10 − 7 M) for 24 h and
then lysed and loaded (40 μg of protein) on a 10% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis gel and transferred to poly-
vinylidene fluoride membrane. Antibodies against SIRT3 and GAPDH were
purchased from Cell Signaling Technology (Lyon, France).

Statistical analysis
Data are expressed as mean ± s.e.m. Comparison of multiple groups was
performed by two-way analysis of variance followed by a Bonferroni’s post
hoc test for in vivo studies using GraphPad Prism version 4.00 for Windows
(Pully, Switzerland). All other statistical analyses were performed by one-
way analysis of variance followed by the Bonferroni post hoc test. Statistical
significance was defined as Po0.05.

RESULTS
Cardiometabolic adaptation to HFD-induced obesity
To determine the consequences of obesity on cardiac function
and metabolism, male C57BL/6J mice were fed a ND (4% fat) or
HFD (45% fat) for 18 weeks. As shown in Table 1, in comparison
with ND-fed mice, HFD-fed animals had increased body weight, fat
mass, plasma glucose and insulin levels. Moreover, HFD-fed mice
exhibited impaired glucose tolerance (Figure 1a). Subsequent
echocardiographic analysis revealed increased LV posterior wall
thickness and interventricular septum thickness in HFD-fed mice
as compared with ND-fed animals (Figures 1b and c) without
significant changes in fractional shortening and ejection fraction
(Figures 1d and e) between groups suggesting cardiac adaptation
to HFD. In agreement with echocardiographic data, the expression
levels of two well-known marker genes for impaired LV function,
atrial natriuretic peptide and brain natriuretic peptide, were
unchanged in HFD-fed mice (Figure 1f). As shown in Figures 1g
and h, obesity-related cardiac hypertrophy was accompanied by
increased FA oxidation and by reduced glucose oxidation.

Cardiometabolic reprogramming in a murine model combining
obesity and heart failure: effects of apelin
In order to study obesity-related transition from compensated
hypertrophy to heart failure, mice were fed a HFD for 18 weeks
and then subjected to chronic pressure overload generated by AB.
Echocardiographic analyses revealed a significant increase in
interventricular septum thickness and LV posterior wall thickness
after 4 weeks of AB in HFD-fed mice compared with sham-
operated mice (Figures 2a and b). Importantly, cardiac contractile
function was severely impaired in HFD-fed AB mice as measured
by the decrease in fractional shortening and ejection fraction
compared with sham-operated HFD-fed mice (Figures 2a and b).
In HFD-fed AB mice, cardiac dysfunction was accompanied by
concomitant increase in atrial natriuretic peptide and brain
natriuretic peptide expression levels (Figure 2f). In contrast, daily
treatment of HFD-fed AB mice with apelin for 4 weeks reversed
cardiac hypertrophy (Figure 2a and c) and contractile dysfunction
(Figures 2d and e) as compared with vehicle-treated HFD-fed AB
mice. In addition, AB-induced increase in atrial natriuretic peptide
and brain natriuretic peptide expression levels was significantly
reduced by apelin treatment (Figure 2c). At the metabolic level,
apelin treatment prevented AB-induced reduction in myocardial
FA utilization (Figure 2d) and an increase in glucose oxidation
(Figure 2e). In addition, apelin treatment attenuated the increase
in fasting plasma glucose levels (Figure 2f) and improved glucose
tolerance as compared with vehicle-treated HFD-fed AB mice
(Figure 2g).

Mitochondrial abnormalities in obesity-related heart failure: effects
of apelin
To study mitochondrial changes in obesity-related heart failure,
we examined mitochondrial ultrastructure, density, mtDNA con-
tent and expression of key regulators of mitochondrial biogenesis
in HFD-fed mice subjected to AB. Electron microscopic examina-
tion revealed mitochondrial damage including swelling and
structural disruption in HFD-fed mice after 4 weeks of AB as
compared with sham mice (Figure 3a). As shown in Figure 3b,
tissue sections from AB hearts exhibited a 41% decrease in
mitochondrial density as compared with sham mice. In addition,
the ratio of mtDNA to nuclear DNA in the left ventricles was lower
in HFD-fed AB mice than in the sham mice (Figure 3c). Consistent
with a decline in cardiac mtDNA content, myocardial activity of
the mitochondrial enzyme citrate synthase was markedly
decreased in hearts from HFD-fed mice after 4 weeks of AB as
compared with sham mice (Figure 3d). Importantly, myocardial
expression of mitochondrial biogenesis regulatory factors includ-
ing peroxisome proliferator-activated receptor-γ coactivator-1α
(PGC-1α), nuclear respiratory factor-1 (NRF-1), mitochondrial
transcription factor A (TFAM) was markedly reduced in HFD-fed
AB mice as compared with sham mice (Figures 3e and g).
Quantitative real-time PCR (Figure 3i, Po0.05) and western blot
(Figure 3k) analysis showed higher Sirt3 mRNA expression in HFD-
fed AB mice as compared with sham mice. Importantly, treatment
with apelin attenuated AB-induced changes in mitochondrial
ultrastructure and density (Figures 3a and b), mtDNA (Figure 3c),
activity of citrate synthase (Figure 3d) and expression of PGC-1α,
NRF-1, TFAM (Figures 3e and g). As shown in Figure 3i, abundant
Sirt3 mRNA expression was observed in apelin-treated sham or AB
mice as compared with vehicle-treated sham or AB mice,
respectively. Immunoblot analysis confirmed increased Sirt3
expression in apelin-treated AB mice as compared with vehicle-
treated AB mice (Figure 3k).

Cardiometabolic phenotype of HFD-fed apelin KO mice
We next investigated the cardiometabolic profile of apelin KO
and wild-type (WT) mice exposed to a HFD for 18 weeks.

Table 1. Metabolic parameters in mice under ND and HFD feeding

ND HFD

Body weight (g) 31.5 ± 1.1 44.8 ± 0.7***
Fat mass (%) 14.1 ± 0.9 38.8 ± 1.2***
Glucose (mM) 7.9 ± 0.2 10.3 ± 0.8*
Insulin (pg ml–1) 1364.7 ± 51.0 3753.3 ± 54.8**

Abbreviations: HFD, high-fat diet; ND, normal diet. Male C57BL/6J mice
were fed ND or HFD for 18 weeks. Body weight, fat mass and plasma
parameters were measured at the end of week 4. Data are means ± s.e.m.;
n = 8 per group. *Po0.05 vs ND-fed group; **Po0.01 vs ND-fed group;
***Po0.001 vs ND-fed group.
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Echocardiographic assessment of LV function revealed that HFD
resulted in an increased nterventricular septum thickness and LV
posterior wall thickness and significantly reduced fractional
shortening and ejection fraction, suggesting impaired cardiac
function, as compared with WT mice (Figures 4a and d). Analysis of
myocardial metabolic changes in HFD-fed apelin KO mice revealed
decreased FA oxidation and increased glucose oxidation com-
pared with HFD-fed WT mice (Figures 4e and f). As shown in
Figures 5a and c, downregulation of FA metabolism in HFD-fed
apelin KO mice was associated with a reduction in expression of
PGC-1α, NRF-1 and TFAM. Importantly, myocardial expression of
CPT1, a key enzyme of mitochondrial FA uptake in mitochondria,
was significantly decreased in HFD-fed apelin KO mice as
compared with in HFD-fed WT mice (Figure 5d). In contrast to
HFD-fed WT animals, HFD-fed apelin KO mice exhibited lower Sirt3
mRNA expression (Figure 5e) and Sirt3 protein level (Figure 5f).

Apelin-induced stimulation of FA oxidation via Sirt3 activation in
cardiomyocytes
To further explore the mechanism by which apelin regulates
energy metabolism in obese conditions, we examined whether
Sirt3 knockdown affects apelin-dependent stimulation of FA
oxidation in cardiomyocytes isolated from HFD-fed mice. In
agreement with in vivo results, treatment of cardiomyocytes with
increasing apelin concentrations (10 − 6–10 − 9M) resulted in
stimulation of FA oxidation (Figure 6a). We further showed that
apelin treatment significantly increased Sirt3 mRNA expression in
a dose-dependent manner (Figure 6b) and Sirt3 protein level

(Figure 6c). As shown in Figures 6d and e, knockdown of Sirt3 by
siRNA abolished apelin-mediated FA oxidation in cardiomyocytes.
Consistent with the in vivo results, we also observed increased
expression of PGC-1α, TFAM and NRF-1 in cardiomyocytes after
24 h of apelin (10 − 7M) treatment (Figures 6f and h).

DISCUSSION
This study demonstrates that transition from cardiometabolic
adaptation to maladaptation in obese state is associated with
reprogrammed myocardial energy metabolism and impaired
mitochondrial integrity. Furthermore, our study provides a novel
insight into the role of apelin in the regulation of cardiac energy
metabolism during the transition from hypertrophy to heart
failure in obesity. Using mouse model combining obesity and
heart failure, we show that apelin treatment promotes myocardial
FA oxidation, reduces glucose utilization and improves glucose
tolerance. In addition, apelin treatment prevents mitochondrial
damage and cardiac dysfunction in obesity-related heart failure.
Finally, we show that apelin-dependent regulation of cardiomyo-
cyte FA oxidation involves Sirt3 activation.

Impaired energy metabolism is the defining characteristic of
acute or chronic cardiac events.10–12 Although the adult heart uses
FA for 470% of its energy supply, the cardiac metabolic
machinery is highly flexible, allowing rapid switch of substrate
utilization in response to a variety of stresses.11,12,25 It has been
shown that a shift toward glucose preference is favorable for
sustaining energy production in acute ischemic conditions.9,26

Indeed, in terms of oxygen requirement, myocardial ATP
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production from glucose is less oxygen consuming than from
FA.23 This initial adaptive response is beneficial for maintaining
ATP levels in the face of diminished mitochondrial oxidative
phosphorylation.24,27 However, the role of metabolic reprogram-
ming as an adaptive versus a maladaptive response in obesity-
related heart failure remains obscure. This study shows that
transition from hypertrophy to heart failure is associated with
changes in energy substrate utilization. We found that mice
exposed to a HFD for 18 weeks exhibit cardiac hypertrophy with
preserved contractile function suggesting cardiac adaptation to
increased adiposity. In these conditions, FA is a major substrate for

energy homeostasis. However, pressure overload-induced cardiac
dysfunction leads to decreased capacity for FA oxidation and
accelerated glucose metabolism in HFD-fed mice. Our results
suggest that increased glucose metabolism was unable to
maintain cardiac function in response to chronic pressure over-
load in obese state. These data are consistent with the general
concept that downregulation of FA oxidation pathway is linked
to decline in cardiac performance in the advanced heart
failure.25,28,29 Importantly, we demonstrate that apelin has a key
role in the maladaptive cardiac and metabolic responses. Indeed,
chronic treatment with apelin stimulates FA utilization and
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decreases glucose oxidation in concert with preservation of
cardiac contractile function in HFD-fed mice subjected to pressure
overload. In contrast, cardiac dysfunction in apelin KO obese mice
is associated with decreased myocardial FA utilization and
increased glucose oxidation. Recent studies have reported that
apelinergic system contributes to maintaining contractile function
in failing heart. Apelin-deficient mice develop severe heart failure
in response to pressure overload and manifest progressive cardiac
dysfunction with ageing.18 We also found that apelin treatment
reduces fasting plasma glucose and improves glucose intolerance
in obese heart failure mice. These data suggest that in pathologic
conditions combining heart failure and increased adiposity, the
promotion of FA oxidation is able to maintain contractile function
and metabolic homeostasis. This notion is compatible with
previous data demonstrating that prolonged decrease in FA
utilization and accelerated glucose oxidation is associated with
deleterious cardiac remodeling and function.29 Interestingly,
Iwanaga et al.30 reported unchanged apelin expression in the
compensatory hypertrophy; however, both apelin and APJ were
decreased in the progression of cardiac dysfunction. Recently,
Koguchi et al.31 also reported downregulation of apelin/APJ
expression in end-stage of heart failure. Moreover, exogenous
apelin ameliorates cardiac dysfunction and myocardial remodeling
and restores apelin/APJ expression in chronic heart failure.31

Similarly, in apelin KO mice, a continuous infusion of apelin
reversed pressure overload-induced decreased contractility18

suggesting that beneficial effects of apelin may at least in part
be explained by restoration of apelin/APJ signaling pathways. In a
recent important report, Japp et al.32 demonstrated that short-
term apelin infusion caused peripheral and coronary vasodilata-
tion, reduced cardiac preload and afterload, and increased cardiac

output in humans. These hemodynamic effects appeared to be
preserved in patients with heart failure. They concluded that APJ
agonism may have potential therapeutic benefits in patients with
heart failure. However, recently Scimia et al.33 have reported that
APJ may act as a dual receptor in failing heart. Genetic loss of APJ
confers resistance to chronic pressure overload by markedly
reducing hypertrophy and heart failure. In contrast, mice lacking
apelin remain sensitive, suggesting an apelin-independent func-
tion of APJ. Thus, the beneficial effect may be obtained not by
general apelin receptor agonism, but rather by selective inhibiting
the ability of APJ to respond to mechanical stretch or by blocking
its interaction with molecules that initiate pathological signaling
cascades.33 Further studies are required to determine whether the
downregulation of APJ expression selectively in cardiomyocytes
could contribute to myocardial energy metabolism.

The mechanisms underlying the development of obesity-
related heart failure are complex, and not well understood.
Several studies have provided convincing evidence that mito-
chondrial dysfunction may be an important event in the
development of heart failure.34,35 Our data show that transition
from hypertrophy to heart failure is associated with mitochondrial
damage and reduced expression of the key regulators of
mitochondrial biogenesis including PGC-1α, NRF-1 and TFAM. As
a consequence, these mitochondrial defects could lead to
impaired ATP production and contractile dysfunction. One
important determinant of the capacity to oxidize energy
substrates is the ability to utilize oxygen in failing heart. The
maximal capacity to utilize oxygen is determined by the mass of
mitochondria and by their intrinsic activity. Our study shows that
apelin treatment for 4 weeks markedly increases mtDNA content
and citrate synthase activity, an enzyme marker of mitochondrial
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mass. In addition, apelin treatment prevents pressure overload-
induced mitochondrial damage and decreases in PGC-1α, NRF-1
and TFAM mRNA expression levels in HFD-fed mice, suggesting an
important role of apelin in the mitochondrial integrity in heart
failure paired with obesity. Recent study has demonstrated that
treatment of rats with apelin for 2 weeks increases mitochondrial
content through PGC-1β activation, but not PGC-1α in skeletal
muscle.36 It should be noted, however, that this study evaluated
the effects of apelin in rats in physiological conditions. Our study
show that in pathological situations apelin regulates cardiac
metabolism via SIRT3-dependent mechanism. Among seven
members of the sirtuin family, Sirt3 is of particular interest with
regard to mitochondrial function because it is localized primarily
in mitochondria.37 In HFD-fed mice subjected to pressure over-
load, treatment with apelin increases mitochondrial SIRT3 expres-
sion. In contrast, apelin KO mice exhibited lower Sirt3 mRNA and
protein levels as compared with WT mice. Sirt3 has been shown to
regulate multiple metabolic processes, including FA oxidation and
ATP production.38 Importantly, we show that knockdown of Sirt3
by siRNA abolishes apelin-mediated FA oxidation in isolated
cardiomyocytes suggesting that apelin regulates cellular metabo-
lism via SIRT3-dependent pathway. These data are in line with a
recent study demonstrating apelin-dependent amelioration of
diabetic cardiomyopathy via Sirt3 signaling pathways.22 Activation
of Sirt3 pathways may be particularly important in the context
of obesity-related cardiac remodeling, as transition to heart
failure in overweight is associated with profound metabolic
alterations. In conclusion, our studies highlight the importance
of cardiac energy metabolism in the transition from hypertrophy
to heart failure in obese state and suggest that apelin may
represent a potential therapeutic target for obesity-related
cardiometabolic complications.
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