N. Chiorazzi, K. R. Rai, and M. Ferrarini, Chronic lymphocytic leukemia, New England Journal of Medicine, vol.352, issue.8, pp.80-815, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01375537

M. Hallek, B. D. Cheson, and D. Catovsky, Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines, Blood, vol.111, issue.12, pp.5556-556, 2008.
DOI : 10.1182/blood-2007-06-093906

L. Z. Rassenti, L. Huynh, and T. L. Toy, ZAP-70 Compared with Immunoglobulin Heavy-Chain Gene Mutation Status as a Predictor of Disease Progression in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.351, issue.9, pp.893-901
DOI : 10.1056/NEJMoa040857

L. Z. Rassenti, S. Jain, and M. J. Keatingetal, Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia, Blood, vol.112, issue.5, pp.1923-1930, 2008.
DOI : 10.1182/blood-2007-05-092882

J. R. M-e-a-d and S. A. , I rv i n e ,a n dD .P .R a m j i , " L i p o p r o t e i nl i p a s e : structure, function, regulation, and role in disease, Journal of Molecular Medicine, vol.80, issue.12, pp.753-769, 2002.

J. A. Orchard, R. E. Ibbotson, and Z. Davisetal, ZAP-70 expression and prognosis in chronic lymphocytic leukaemia, The Lancet, vol.363, issue.9403, pp.105-111
DOI : 10.1016/S0140-6736(03)15260-9

P. Josefsson, C. H. Geisler, and H. Lefers, CLLU1 expression analysis adds prognostic information to risk prediction in chronic lymphocytic leukemia, Blood, vol.109, issue.11, pp.973-979, 2007.
DOI : 10.1182/blood-2006-11-054916

M. Herling, K. A. Patel, and N. , HighTCL1levelsarea marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia, Blood, vol.11, issue.21, pp.675-686, 2009.

B. Stamatopoulos, N. Meuleman, and B. Haibe-kains, microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification, Blood, vol.113, issue.21, pp.5237-5225, 2009.
DOI : 10.1182/blood-2008-11-189407

A. Zucchetto, R. Bomben, and M. Bo, A scoring system based on the expression of six surface molecules allows the identiication of three prognostic risk groups in B-cell chronic lymphocytic leukemia, Journal of Cellular Physiology, vol.207, issue.2, pp.35-363, 2006.

A. Rodríguez, R. Villuendas, L. Yáñez, M. E. Gómez, R. Díaz et al., Molecular heterogeneity in chronic lymphocytic leukemia is dependent on BCR signaling: clinical correlation, Leukemia, vol.93, issue.9, pp.198-1991, 2007.
DOI : 10.1182/blood-2002-06-1683

D. Kienle, A. Benner, C. Läule, D. Winkler, C. Schneider et al., Gene expression factors as predictors of genetic risk and survival in chronic lymphocytic leukemia, Haematologica, vol.95, issue.1, pp.102-109, 2010.
DOI : 10.3324/haematol.2009.010298

B. Stamatopoulos, N. Meuleman, and C. , Amolecu l a rs c o r eb yq u a n t i t a t i v eP C Ra san e wp r o g n o s t i ct o o la t diagnosis for chronic lymphocytic leukemia patients, PLoS ONE, vol.5, issue.9, pp.1-12, 2010.

T. Herold, V. Jurinovic, and K. H. Metzeler, An eight-gene expression signature for the prediction of survival and time to treatment in chronic lymphocytic leukemia, Leukemia, vol.25, issue.10, pp.1639-165, 2011.
DOI : 10.1016/j.immuni.2010.11.013

H. Chuang, L. Rassenti, M. Salcedo, K. Licon, A. Kohlmann et al., Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression, Blood, vol.120, issue.13, pp.2639-269, 2012.
DOI : 10.1182/blood-2012-03-416461

T. Herold, V. Jurinovic, and M. Mulaw, Expression analysis of genes located in the minimally deleted regions of 13q1 and 11q22-23 in chronic lymphocytic leukemia-unexpected expression pattern of the RHO GTPase activator ARHGAP20, Genes Chromosomes and Cancer, vol.50, issue.7, pp.56-558, 2011.

A. Kassambara, D. Hose, and J. Moreauxetal, Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma, Haematologica, vol.97, issue.4, pp.622-630, 2012.
DOI : 10.3324/haematol.2011.046821

URL : https://hal.archives-ouvertes.fr/inserm-00727008

A. Subramanian, P. Tamayo, and V. K. Mootha, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.102, issue.43, pp.1555-15550, 2005.
DOI : 10.1073/pnas.0506580102

C. Bret, B. Klein, and . Moreaux, Gene expression-based risk score in diffuse large B-cell lymphoma, Oncotarget, vol.3, issue.12, pp.1700-1710, 2013.
DOI : 10.18632/oncotarget.807

URL : https://hal.archives-ouvertes.fr/inserm-00802570

R. Rosenquist, D. Cortese, S. Bhoi, L. Mansouri, and R. Gunnarsson, Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand?, Leukemia & Lymphoma, vol.49, issue.1, pp.2351-236, 2013.
DOI : 10.3324/haematol.10720

M. B. Van-'tv-eer, A. M. Brooijmans, and A. W. , he predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia, Haematologica, vol.91, issue.1, pp.56-63, 2006.

J. , J. H. Teel, M. R. , O. Oduwole, A. et al., he transcriptional co-factor RIP10 regulates mammary gland development by promoting the generation of key mitogenic signals, 2013.

T. Reya, M. O-'riordan, and R. Okamuraetal, Wnt Signaling Regulates B Lymphocyte Proliferation through a LEF-1 Dependent Mechanism, Immunity, vol.13, issue.1, pp.15-17, 2000.
DOI : 10.1016/S1074-7613(00)00004-2

URL : http://doi.org/10.1016/s1074-7613(00)00004-2

E. A. Ranheim, H. C. Kwan, T. Reya, Y. Wang, I. L. Weissman et al., Frizzled 9 knock-out mice have abnormal B-cell development, Blood, vol.105, issue.6, pp.287-229, 2005.
DOI : 10.1182/blood-2004-06-2334

J. Roose, G. Huls, and M. Van-beest, Synergy Between Tumor Suppressor APC and the -Catenin-Tcf4 Target Tcf1, Science, vol.285, issue.5435, pp.1923-1926, 1999.
DOI : 10.1126/science.285.5435.1923

G. H-u-l-s and J. , C l e v e r s ,G .d eH a a n ,a n dR .v a nO s , " Loss of Tcf7 diminishes hematopoietic stem/progenitor cell function, Leukemia, vol.7, pp.1613-161, 2013.

T. Zenz, A. Kröber, and K. Scherer, Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up, Blood, vol.112, issue.8, pp.3322-3329, 2008.
DOI : 10.1182/blood-2008-04-154070

E. Bou-samra, B. Klein, T. Commes, and J. Moreaux, Development of gene expression-based risk score in cytogenetically BioMed Research International normal acute myeloid leukemia patients, Oncotarget, vol.3, pp.82-832, 2012.

J. Moreaux, B. Klein, and R. Bataille, A high-risk signature for patients with multiple myeloma established from the molecular classiication of human myeloma cell lines, Haematologica, vol.96, pp.57-582, 2011.

M. Sevov, R. Rosenquist, and L. Mansouri, RNA-based markers as prognostic factors in chronic lymphocytic leukemia, Expert Review of Hematology, vol.5, issue.1, pp.69-79, 2012.
DOI : 10.1586/ehm.11.80

V. Darbon and . Cavailì-es, he transcriptional coregulator RIP10 represses E2F1 activity and discriminates breast cancer subtypes, Clinical Cancer Research, vol.61, issue.1, pp.2-9, 2010.

A. Docquier, P. Augereau, M. Lapierre, P. Harmand, E. Badia et al., he RIP10 gene is a transcriptional target of E2F1, PLoS ONE, vol.7, 2012.

C. D. Baldus, S. Liyanarachchi, and K. Mrózek, Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes, Proceedings of the National Academy of Sciences, vol.101, issue.11, pp.3915-3920
DOI : 10.1073/pnas.0400272101

C. Haslinger, N. Schweifer, and S. Stilgenbauer, Mutation Status, Journal of Clinical Oncology, vol.22, issue.19, pp.3937-399
DOI : 10.1200/JCO.2004.12.133

J. Q. Wu, M. Seay, and V. P. Schulz, Tcf7 is an important regulator of the switch of self-renewal and diferentiation in a multipotential hematopoietic cell line, PLoS Genetics, vol.8, issue.3, 2012.

C. Y. Logan and R. Nusse, THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.781-810
DOI : 10.1146/annurev.cellbio.20.010403.113126

D. Lu, Y. Zhao, and R. Tawataoetal, Activation of the Wnt signaling pathway in chronic lymphocytic leukemia, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.3118-3123
DOI : 10.1073/pnas.0308648100

P. F. Etet, L. Vecchio, and A. H. Nwabo-kamdje, Interactions between bone marrow stromal microenvironment and Bchronic lymphocytic leukemia cells: any role for Notch, Wnt andHhsignalingpathways?, Cellular Signalling, vol.2, issue.7, pp.133-146, 2012.

X. Ge and X. Wang, Role of Wnt canonical pathway in hematological malignancies, Journal of Hematology & Oncology, vol.3, issue.1, 2010.
DOI : 10.1186/1756-8722-3-33

B. L. Abbott, Chronic Lymphocytic Leukemia: Recent Advances in Diagnosis and Treatment, The Oncologist, vol.11, issue.1, pp.21-30, 2006.
DOI : 10.1634/theoncologist.11-1-21

G. Weeda, I. Donker, and J. De-wit, Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence, Current Biology, vol.7, issue.6, pp.27-39, 1997.
DOI : 10.1016/S0960-9822(06)00190-4

R. Geleziunas, A. Mcquillan, and A. Malapetsa, Increased DNA Synthesis and Repair-Enzyme Expression in Lymphocytes From Patients With Chronic Lymphocytic Leukemia Resistant to Nitrogen Mustards, JNCI Journal of the National Cancer Institute, vol.83, issue.8, pp.557-56, 1991.
DOI : 10.1093/jnci/83.8.557

P. H. Clingen, I. U. De-silva, and P. J. Mchugh, he XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo, Nucleic Acids Research, vol.21133, issue.13610, pp.3283-3291, 2005.

C. Pepper, H. Lowe, and C. Fegan, Fludarabine-mediated suppression of the excision repair enzyme ERCC1 contributes to the cytotoxic synergy with the DNA minor groove crosslinking agent SJG-136 (NSC 694501) in chronic lymphocytic leukaemia cells, British Journal of Cancer, vol.45, issue.2, pp.253-259, 2007.
DOI : 10.1006/abio.1999.4085

J. M. Barret, M. Cadou, and B. T. Hill, Inhibition of nucleotide excision repair and sensitisation of cells to DNA cross-linking anticancer drugs by F 11782, a novel luorinated epipodophylloid, Biochemical Pharmacology, vol.3, issue.2, pp.2-5, 2002.

B. S. King, K. L. Cooper, K. J. Liu, and . Hudson, Poly(ADPribose ) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair, Journal of Biological Chemistry, vol.287, pp.3982-39833, 2012.

L. Michaux, I. Wlodarska, and K. Rack, Translocation t(1;6)(p35.3;p25.2): a new recurrent aberration in ???unmutated??? B-CLL, Leukemia, vol.19, issue.1, pp.77-82, 2005.
DOI : 10.1038/sj.leu.2403543

J. A. Burger, M. J. Burger, and . Kipps, Chroniclymphocytic leukemia B cells express functional CXCRR chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells, Blood, vol.9, issue.11, pp.3658-3667, 1999.

J. A. Burger, N. Tsukada, M. Burger, N. J. Zvailer, M. Dell-'aquila et al., Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1, Blood, vol.96, issue.8, pp.2655-2663, 2000.

A. M. Mccaig, E. Cosimo, M. T. Leach, and A. M. Michie, Dasatinib inhibits CXCRR signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12, PLoS ONE, vol.7, 2012.

M. Sivina, E. Hartmann, and T. J. Kipps, CCL3 (MIP-1í»¼) plasma levels and the risk for disease progression in chronic lymphocytic leukemia, Bloodwww.hindawi.com Stem Cells International, vol.117, issue.5, pp.1662-1669, 2011.