J. Peiris, Y. Guan, and K. Yuen, Severe acute respiratory syndrome, Nature Medicine, vol.94, issue.12s, pp.88-97, 2004.
DOI : 10.1172/JCI200421328

URL : https://hal.archives-ouvertes.fr/inserm-00990078

A. , A. -. Ghafar, A. Chotpitayasunondh, T. Gao, Z. Hayden et al., Update on avian influenza A (H5N1) virus infection in humans, N Engl J Med, vol.358, pp.261-273, 2008.

M. Michaelis, H. Doerr, J. Cinatl, and . Jr, An influenza A H1N1 virus revival ??? pandemic H1N1/09 virus, Infection, vol.459, issue.5, pp.381-389, 2009.
DOI : 10.1007/s15010-009-9181-5

S. Van-boheemen, M. De-graaf, C. Lauber, T. Bestebroer, V. Raj et al., Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans, mBio, vol.3, issue.6, pp.473-485
DOI : 10.1128/mBio.00473-12

A. Zaki, S. Van-boheemen, T. Bestebroer, A. Osterhaus, and R. Fouchier, Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, New England Journal of Medicine, vol.367, issue.19, pp.1814-1820, 2012.
DOI : 10.1056/NEJMoa1211721

R. Gao, B. Cao, Y. Hu, Z. Feng, D. Wang et al., Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus, New England Journal of Medicine, vol.368, issue.20, pp.1888-1897, 2013.
DOI : 10.1056/NEJMoa1304459

URL : https://hal.archives-ouvertes.fr/pasteur-00823211

D. Liu, W. Shi, Y. Shi, D. Wang, H. Xiao et al., Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses, The Lancet, vol.381, issue.9881, pp.1926-1932, 2013.
DOI : 10.1016/S0140-6736(13)60938-1

J. Gu, E. Gong, B. Zhang, J. Zheng, Z. Gao et al., Multiple organ infection and the pathogenesis of SARS, The Journal of Experimental Medicine, vol.10, issue.3, pp.415-424, 2005.
DOI : 10.1038/sj.cr.7290158

L. Li, J. Wo, J. Shao, H. Zhu, N. Wu et al., SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients, Journal of Clinical Virology, vol.28, issue.3, pp.239-244, 2003.
DOI : 10.1016/S1386-6532(03)00195-1

M. Yilla, B. Harcourt, C. Hickman, M. Mcgrew, A. Tamin et al., SARS-coronavirus replication in human peripheral monocytes/macrophages, Virus Research, vol.107, issue.1, pp.93-101, 2005.
DOI : 10.1016/j.virusres.2004.09.004

I. Hamming, W. Timens, M. Bulthuis, A. Lely, G. Navis et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, The Journal of Pathology, vol.203, issue.2, pp.631-637, 2004.
DOI : 10.1002/path.1570

D. Harmer, M. Gilbert, R. Borman, and K. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Letters, vol.417, issue.1-2, pp.107-110, 2002.
DOI : 10.1016/S0014-5793(02)03640-2

S. Jeffers, S. Tusell, L. Gillim-ross, E. Hemmila, J. Achenbach et al., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.209-15748, 2004.
DOI : 10.1073/pnas.0403812101

Z. Yang, Y. Huang, L. Ganesh, K. Leung, W. Kong et al., pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN, Journal of Virology, vol.78, issue.11, pp.5642-5650, 2004.
DOI : 10.1128/JVI.78.11.5642-5650.2004

Y. Kam, F. Kien, A. Roberts, Y. Cheung, E. Lamirande et al., Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate Fc??RII-dependent entry into B cells in vitro, Vaccine, vol.25, issue.4, pp.729-740, 2007.
DOI : 10.1016/j.vaccine.2006.08.011

M. Jaume, M. Yip, C. Cheung, H. Leung, P. Li et al., Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent Fc??R Pathway, Journal of Virology, vol.85, issue.20, pp.10582-10597, 2011.
DOI : 10.1128/JVI.00671-11

Y. Kam, Y. Okumura, H. Kido, L. Ng, R. Bruzzone et al., Cleavage of the SARS Coronavirus Spike Glycoprotein by Airway Proteases Enhances Virus Entry into Human Bronchial Epithelial Cells In Vitro, PLoS ONE, vol.206, issue.11, p.7870, 2009.
DOI : 10.1371/journal.pone.0007870.g005

URL : https://hal.archives-ouvertes.fr/pasteur-00545811

C. Olsen, W. Corapi, C. Ngichabe, J. Baines, and F. Scott, Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages, J Virol, vol.66, pp.956-965, 1992.

P. Sauter and D. Hober, Mechanisms and results of the antibody-dependent enhancement of viral??infections and role in the pathogenesis of coxsackievirus B-induced??diseases, Microbes and Infection, vol.11, issue.4, pp.443-451, 2009.
DOI : 10.1016/j.micinf.2009.01.005

N. Sullivan, Antibody-Mediated Enhancement of Viral Disease, Curr Top Microbiol Immunol, vol.260, pp.145-169, 2001.
DOI : 10.1007/978-3-662-05783-4_8

A. Takada and Y. Kawaoka, Antibody-dependent enhancement of viral infection: molecular mechanisms andin vivo implications, Reviews in Medical Virology, vol.10, issue.6, pp.387-398, 2003.
DOI : 10.1002/rmv.405

F. Ierino, M. Hulett, I. Mckenzie, and P. Hogarth, Mapping epitopes of human Fc gamma RII (CDw32) with monoclonal antibodies and recombinant receptors, J Immunol, vol.150, pp.1794-1803, 1993.

J. Peiris, L. Poon, J. Nicholls, and Y. Guan, The role of influenza virus gene constellation and viral morphology on cytokine induction, pathogenesis, and viral virulence, Hong Kong Med J, vol.15, pp.21-23, 2009.

C. Cheung, L. Poon, I. Ng, W. Luk, S. Sia et al., Cytokine Responses in Severe Acute Respiratory Syndrome Coronavirus-Infected Macrophages In Vitro: Possible Relevance to Pathogenesis, Journal of Virology, vol.79, issue.12, pp.7819-7826, 2005.
DOI : 10.1128/JVI.79.12.7819-7826.2005

M. Ho, W. Chen, H. Chen, S. Lin, M. Wang et al., Neutralizing Antibody Response and SARS Severity, Emerging Infectious Diseases, vol.11, issue.11, pp.1730-1737, 2005.
DOI : 10.3201/eid1111.040659

URL : http://doi.org/10.3201/eid1111.040659

N. Lee, P. Chan, M. Ip, E. Wong, J. Ho et al., Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome, Journal of Clinical Virology, vol.35, issue.2, pp.179-184, 2006.
DOI : 10.1016/j.jcv.2005.07.005

L. Zhang, F. Zhang, W. Yu, T. He, Y. J. Yi et al., Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals, Journal of Medical Virology, vol.228, issue.1, pp.1-8, 2006.
DOI : 10.1002/jmv.20499

S. Halstead, S. Mahalingam, M. Marovich, S. Ubol, and D. Mosser, Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes, The Lancet Infectious Diseases, vol.10, issue.10, pp.712-722, 2010.
DOI : 10.1016/S1473-3099(10)70166-3

F. Nimmerjahn and J. Ravetch, Fc?? receptors as regulators of immune responses, Nature Reviews Immunology, vol.203, issue.1, pp.34-47, 2008.
DOI : 10.1038/nri2206

P. Bruhns, B. Iannascoli, P. England, D. Mancardi, N. Fernandez et al., Specificity and affinity of human Fc?? receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, issue.16, pp.3716-3725, 2009.
DOI : 10.1182/blood-2008-09-179754

URL : https://hal.archives-ouvertes.fr/pasteur-00363931

M. Daeron and E. Vivier, Biology of Immunoreceptor Tyrosine-based Inhibition Motif-Bearing Molecules, Curr Top Microbiol Immunol, vol.244, pp.1-12, 1999.
DOI : 10.1007/978-3-642-58537-1_1

C. Zhang and J. Booth, Differences in endocytosis mediated by Fc??RIIA and Fc??RIIB2, Molecular Immunology, vol.49, issue.1-2, pp.329-337, 2011.
DOI : 10.1016/j.molimm.2011.09.003

W. Rodrigo, J. X. Blackley, S. Rose, R. Schlesinger, and J. , Differential Enhancement of Dengue Virus Immune Complex Infectivity Mediated by Signaling-Competent and Signaling-Incompetent Human Fc??RIA (CD64) or Fc??RIIA (CD32), Journal of Virology, vol.80, issue.20, pp.10128-10138, 2006.
DOI : 10.1128/JVI.00792-06

L. Du, Y. He, Y. Zhou, S. Liu, B. Zheng et al., The spike protein of SARS-CoV ??? a target for vaccine and therapeutic development, Nature Reviews Microbiology, vol.193, issue.3, pp.226-236, 2009.
DOI : 10.1038/nrmicro2090

L. Enjuanes, M. Dediego, E. Alvarez, D. Deming, T. Sheahan et al., Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease, Virus Research, vol.133, issue.1, pp.45-62, 2008.
DOI : 10.1016/j.virusres.2007.01.021

H. Bisht, A. Roberts, L. Vogel, A. Bukreyev, P. Collins et al., Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice, Proceedings of the National Academy of Sciences, vol.101, issue.17, pp.6641-6646, 2004.
DOI : 10.1073/pnas.0401939101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC404098

U. Buchholz, A. Bukreyev, L. Yang, E. Lamirande, B. Murphy et al., Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity, Proceedings of the National Academy of Sciences, vol.101, issue.26, pp.9804-9809, 2004.
DOI : 10.1073/pnas.0403492101

W. Huisman, B. Martina, G. Rimmelzwaan, R. Gruters, and A. Osterhaus, Vaccine-induced enhancement of viral infections, Vaccine, vol.27, issue.4, pp.505-512, 2009.
DOI : 10.1016/j.vaccine.2008.10.087

L. Saif, Animal coronavirus vaccines: lessons for SARS, Dev Biol, vol.119, pp.129-140, 2004.

H. Vennema, R. De-groot, D. Harbour, M. Dalderup, T. Gruffydd-jones et al., Immunogenicity of Recombinant Feline Infectious Peritonitis Virus Spike Protein in Mice and Kittens, Adv Exp Med Biol, vol.276, pp.217-222, 1990.
DOI : 10.1007/978-1-4684-5823-7_30

S. Perlman, The middle East respiratory syndrome?how worried should we be? MBio, pp.531-544, 2013.

C. Cheung, L. Poon, A. Lau, W. Luk, Y. Lau et al., Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?, The Lancet, vol.360, issue.9348, pp.1831-1837, 2002.
DOI : 10.1016/S0140-6736(02)11772-7

J. Nicholls, J. Butany, L. Poon, K. Chan, S. Beh et al., Time Course and Cellular Localization of SARS-CoV Nucleoprotein and RNA in Lungs from Fatal Cases of SARS, PLoS Medicine, vol.136, issue.2, p.27, 2006.
DOI : 10.1371/journal.pmed.0030027.t001

C. Holness and D. Simmons, Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins, Blood, vol.81, pp.1607-1613, 1993.

J. Peiris, C. Chu, V. Cheng, K. Chan, I. Hung et al., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study, The Lancet, vol.361, issue.9371, pp.1767-1772, 2003.
DOI : 10.1016/S0140-6736(03)13412-5

L. Gillim-ross, J. Taylor, D. Scholl, J. Ridenour, P. Masters et al., Discovery of Novel Human and Animal Cells Infected by the Severe Acute Respiratory Syndrome Coronavirus by Replication-Specific Multiplex Reverse Transcription-PCR, Journal of Clinical Microbiology, vol.42, issue.7, pp.3196-3206, 2004.
DOI : 10.1128/JCM.42.7.3196-3206.2004

L. Poon, K. Chan, O. Wong, T. Cheung, I. Ng et al., Detection of SARS Coronavirus in Patients with Severe Acute Respiratory Syndrome by Conventional and Real-Time Quantitative Reverse Transcription-PCR Assays, Clinical Chemistry, vol.50, issue.1, pp.67-72, 2004.
DOI : 10.1373/clinchem.2003.023663