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This paper addresses the numerical stability issue on the Channelized Hotelling Observer (CHO).
The CHO is a well-known approach in the medical image quality assessment domain. Many re-
searchers have found that the detection performance of the CHO does not increase with the number
of channels, contrary to expectation. And to our knowledge, nobody in this domain has found the
reason. We illustrated that this is due to the ill-posed problem of the scatter matrix and proposed
a solution based on Tikhonov regularization. Although Tikhonov regularization has been used in
many other domains, we show in this paper another important application of Tikhonov regulariza-
tion. This is very important for researchers to continue the CHO (and other channelized model
observer) investigation with a reliable detection performance calculation.

I. INTRODUCTION

The necessity and the importance of objective image
quality measurement has long been acknowledged in the
medical imaging community [1–4]. To this end, numerical
observers are used [5–7] to predict the outcome of a hu-
man observer performing certain diagnostic tasks (e.g.,
detection, localization). Their usefulness relies on the
approximation to the performances achieved by human
observers and in particular by clinical experts. Studies of
numerical observers are largely motivated by their being
less expensive and cumbersome than human observers.

The detection task is a binary classification with two
underlying hypotheses (presence or absence of a signal in
the image). The ideal observer (IO) was firstly proposed
for the optimization of the binary classification problem,
by choosing the hypothesis resulting in the greatest like-
lihood of the image data. The IO achieves the maximum
AUC (area under the Receiver Operating Characteris-
tic curve) among the observers, but the computation of
likelihoods are tractable only for simplified cases. The
Hotelling Observer (HO, aka Optimum Linear Discrimi-
nant) on the other hand maximizes the SNR among all
linear observers while using only the first and second-
order statistics of the image data, i.e., the mean and
the covariance matrix of the vectorized image data. The
inversion of the (large) covariance matrix and its accu-
rate estimate are the main difficulties in practical appli-
cations. To avoid the inversion problem of big matrix,
data reduction method based on Channelized Hotelling
Observers (CHO) was proposed to approach the SNR
performance of the HO under sufficient statistics con-
ditions [8]. The channel design is also a mathematical
model (based on filter banks [9, 10] ) to approach the
human perceptual and cognitive behaviors.

Despite its simplicity in numerical implementation and
flexibility in channel design to incorporate human per-
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ception models, the CHO yields counter intuitive results
when it is implemented blindly. Increasing the number of
channels could worsen the detection performance, mak-
ing it difficult to choose the optimal channel number with
respect to human experts’ diagnoses. since the stable rela-

tionship is a prerequisite in making such decisions. In the present
study, we investigate the cause of the numerical instabil-
ity and find that it is due to the direct inversion method
applied to ill-conditioned scatter matrices. We propose
a regularization method well established in the world of
linear algebra for the CHO implementation and its per-
formances are shown to be more stable while increasing
channel numbers. To illustrate the numerical instability
and the efficiency of our proposed regularization method,
simulation tests are performed on signal known exactly
(SKE) detection task in which all the signal attributes
(e.g. intensity amplitude, size, shape, orientation and
location) are known and do not vary throughout the ex-
periment.

II. PROBLEM FORMULATION

We describe briefly here the CHO in the SKE detection
task and the derivation of its scalar test statistic. Specific
attentions are given to the problem of performance insta-
bility w.r.t. increasing channel numbers. The detection
problem is considered as the validation of one of the two
exclusive hypotheses : H0 (signal absent) and H1 (signal
present). The observed image data g is given by:

Hh : g = hx+ b, h = 0, 1 (1)

where the known signal is denoted by x, the background
by b, and the absence or the presence of the signal is con-
trolled by the binary variable h. In the following, a 2D
image (test image data, signal or background) is repre-
sented by a column vector using vertical concatenation.
Let the observed image have

√
M ×

√
M pixels, its vec-

torized version g is then a M × 1 vector.
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A. Signal model and CHO

The current work considers the basic detection task of
a rotationally symmetric nodule signal profile in image
quality assessment and the image generation process fol-
lows [6]. The background correlation structure and the
imaging system are both rotationally symmetric.

We use the 2D Gaussian signal model proposed in [11,
12] :

[x]
p
= a exp

(
−1

2
(p− q)t D−1 (p− q)

)
(2)

where both p and q are 2-dimensional column vectors
containing the sampling grid index. [x]

p
denotes the sig-

nal intensity at p. The signal intensity attenuation is
hereby modeled by a Gaussian function of peak ampli-
tude a, centered at q. The diagonal matrix D such that
diag(D) = [bσ2, σ2]t specifies the ellipse’s scale σ and
shape b (b = 1 in the spheric case). Note that when
all signal parameters are known exactly in advance by
observers, the detection task is said to be a SKE task.

Four artificial background models are mostly used in
the literature: white Gaussian background, correlated
Gaussian background, lumpy background [13], and clus-
tered lumpy background [14]. Note that all of these
backgrounds are rotationally symmetric in the statisti-
cal sense. The superposition of the signal and the back-
ground yields simulated test images, presented in Fig. 1.
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FIG. 1. Simulated test images (128 × 128) with gaussian le-
sion profile in the center of different backgrounds: (a) White
Gaussian, (b) Correlated Gaussian, (c) Lumpy, (d) Clustered
lumpy.

The CHO pre-processes an image by channelization
(dimension reduction by matrix multiplication):

g′ = U
tg (3)

for which UM×p contains p channel (p ≪ M) responses
in each column. All calculations afterwards are per-

formed on the channelized data, denoted by (·)′ in the
following.

In practice, the SKE CHO can be implemented by a
training stage and a test stage. In the training stage, two
sets of image are considered : signal absent and signal
present. The output template writes :

wCHO = Ŝ′
−1

x̂′ (4)

using channelized signal and scatter matrix estimate (x̂′

and Ŝ′ respectively) :

x̂′ = ḡ1
′ − ḡ0

′, (5)

Ŝ′ =
1

2
(Var(g′

1) + Var(g′
0)) (6)

The empirical means and covariances are noted as ·̄ and
Var(·) respectively while the subscript ·0 and ·1 denote
the signal class of the input signal. An inversion of the

p× p matrix Ŝ′ in Eq. (4) is needed.

In the test stage, the above-trained template wCHO is
used to calculate a test statistic λCHO linearly w.r.t. g′:

λCHO = wt
CHOg

′ (7)

A figure of merit can be calculated in order to character-
ize the CHO detection performance, such as :

SNR =
(λ̄0 − λ̄1)

2

(Var(λ0) + Var(λ1))/2
(8)

where test statistics are obtained for both classes (λ0 and
λ1 respectively). Another widely used figure of merit for
binary classifier (AUC) can be obtained by summing the
area under the ROC (receiver operating characteristic)
curve. In the following, we choose to show graphically
the performance vs number of channels using the SNR
measure since it is more capable of quantifying the sep-
aration of the two classes if the measure of the AUC is
sufficiently close to unity, as argued in [15]. Note the two
measures are equivalent if the test statistics follow the
independent and identically distributed (i.i.d.) Gaus-
sian distributions [3]. Gallas et al. [8] has shown that
the CHO maximizes the SNR among all linear observers
with reduced dimensions under the sufficient statistics
conditions, i.e., channels should be chosen to effectively
represent the HO template.

B. CHO simulation results

Gallas et al. [8] has proposed the Laguerre-Gauss (LG)
channels to adapt to the rotational symmetric properties
of the signal and background model. The LG functions
are the product of Laguerre polynomials and Gaussian
(exponential) weightings. By combining the Gaussian
decay, the LG functions in polar coordinates writes:

un(r | aU ) =
√
2

aU
exp

(
−πr2

a2U

)
Ln

(
2πr2

a2U

)
(9)
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where r ∈ R+ is the radial distance variable and au the
spread parameter of the LG channel. These functions are
then sampled and vectorized to form the column vectors
Un of U in Eq. (3). It is argued in [8] that an optimal
choice of the parameter aU is related to the spread of
the signal and the correlation length of the lumpy back-
ground. 2-D LG functions in Eq. (9) are calculated with
different values of aU for a 128×128 image and are shown
in Fig. 2. L-G channels having smaller aU tend to have
more local effects.

FIG. 2. LG functions for aU = 5, 10, 20, 40 (column) and the
order of channel = 0, 3, 9, 17 (line). The grayscale is normal-

ized by the factor of
√
2

aU
for each column.

Performances of CHO detection using direct inverse
of the scatter matrix (cf Eq. (4)) are shown in Fig. 3.
L-G channel numbers vary from 2 to 40 while ranges
of the spread parameter au are adjusted to include the
optimal value in each case. Two Gaussian signal profiles
(with σ = 2 and σ = 5 respectively) are tested over the
four backgrounds in Fig. 1. In all cases, 2000 training
images and another 2000 testing images are generated in
simulation. forming a sufficient database to accurately estimate

the inverse covariance matrix considering the learning curve by

Chan Based upon this simple simulation dataset, we show
the difficulties in explaining test results of classical CHO
implementations if the number of channels increases.

While the white Gaussian background allows relative
performance stability for all L-G channels, the detection
performances do not necessarily improve by increasing
the channel numbers for the other background sets. On
the contrary, important downgrades are frequently ob-
served in Fig. 3 (2)-(4) and this is a general result since no
particular channel numbers do worse than others. How-
ever it is expected that by increasing the channel numbers
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FIG. 3. L-G CHO detection performances (SNR) using dif-
ferent L-G channel numbers with direct inverse (by Gaussian

elimination) of the scatter covariance matrix Ŝ′. Four back-
grounds are tested, each with 2000 training image inputs and
2000 testing image. L-G spread parameters au (c.f. Eq. (9))
and the y-axis ranges are adjusted for each case. The Channel
numbers all range from 2 to 40.

an asymptote in the figure of merit should correspond to
the performance of the ideal linear observer, i.e., without
any dimension reduction [8]. The problem is that the in-

verse of the covariance matrix Ŝ′
−1

in Eq. (6) is not accu-
rately estimated since more channels require more cases,
as was demonstrated by Chan et al.[16] and in some cases
it may not even be invertible (see discussion on au in the
next section). While L-G channels with bigger au tend to
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yield more stable performances in general, in some cases
such as Fig. 3 (2) smaller au could have interesting po-
tentials if it were not for the stability issue. Note the
zoom-in effect of the y-axis for each scenario in Fig. 3.

This result is particularly frustrating since the L-G
channels are chosen because continuous L-G functions
form a basis on the space of rotationally symmetric
square-integrable functions in R2 : any rotational sym-
metric function y(r) can be exactly expanded by :

y(r) =

∞∑

n=0

αnun(r | aU ),

with αn the inner product defined by :

αn =
aU√
2

∫
y(r)un(r | aU )dr.

It is expected that the more channels are applied, the
better detection performance should be achieved.

We investigate in the following the numerical cause and
propose a method accordingly. Recall that the CHO as well

as any model observers are developed to be comparable to human

observers and not to surpass them in performances. It is worth
noting that the motivation of this study is the maximiza-
tion of the detection performance of the L-G CHO, and
by doing so achieve a stabilized relationship w.r.t. the
channel numbers so that the choice of parameters like
{p, aU} based on the comparison with human observers’
performances is unbiased.

III. MATRIX CONDITION AND INVERSION

To our knowledge, no previous study has been made to
achieve reasonable detection performances w.r.t. increas-
ing channel numbers even though it is necessary priorly
to the determination of optimal channel parameter. In-

deed, the inversion of the covariance matrix (Ŝ′) becomes
more sensitive to the spread parameter and finite sample
size if more channels are added (curse of dimensionality).
Chan et al. [16] studied the effect of finite sample size on
classifier designs for computer-aided diagnosis (CAD) al-
gorithms and showed empirically the linear dependences
between the AUC and the reciprocal of the number of
training samples. Generally speaking, the sample size
available for classifier design is limited and thus intro-
duces variance and bias into the detection performance.
In the current study, we show that the "dimension curse"
is arriving more rapidly than expected with small spread
parameters (cf Fig. 4), such that increasing the number
of training images to achieve better estimate of the in-
verse covariance matrix is no longer an option : either
unrealistic in the case of medical imaging or too much
time consuming in simulation tests.

Apart from the sample number issue, the real covariance
matrix itself could not be invertible (ill-posed). The L-
G channels are not a basis on a sampled grid. What is
worse, these channels become almost linearly dependent
when the au parameter is pushed to smaller values due

to the sampling grid effect (see the aliasing for the case
au = 5, p = 17 in Fig. 2). This is typically what’s hap-
pening in Fig. 4 with au ≤ 1 : the condition numbers
of the covariance matrix (the ratio between the biggest
eigenvalue in absolute value and that of the smallest)
start with high levels and are extremely fast growing af-
terwards. We also observe that :

1. the condition numbers grow exponentially by in-
creasing p of L-G channels for all spread parame-
ters;

2. they run quickly out of the dynamic range (1020)
given the float point precision ǫ = 10−16 of the
simulation settings, making them extremely ill-
conditioned matrices (cond(·) ≫ ǫ−1);

3. larger aU yields slower increase but remains expo-
nential. However, smaller aU might have better
performances in some cases (cf Fig. 3) if stabilized,
which makes the regularized solution inevitable if
we aim to optimize the CHO performances;

4. the other backgrounds yield similar results as that
of the lumpy background case in Fig. 4.
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FIG. 4. Example of the condition number of the matrix Ŝ′

with increasing dimension p for the five classes of L-G chan-
nels (au = [1 5 10 20 40]). The test is realized on a lumpy
background identical to the lower panel (signal profile σ = 5)
of Fig. 3(3)

Higher order L-G channels are thus penalized by the
fast growing condition number of the covariance matrix
estimate in CHO applications. It is also interesting to
note that without further adaptations, it is reasonable to
privilege L-G channels with higher values for the spread
parameter aU because of their numerical stability of the

inverse covariance matrix Ŝ′. However, as shown in Fig. 3
and argued in [8] its optimal value is dependent on the
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spread of the known signal s and background correlation
properties. This is also the reason why this numerical
instability issue should be addressed so that the choice
of the optimal aU and the performances vs channel num-
ber curves are unbiased. In the following, we propose a
numerical fix to achieve a more meaningful curve for the
figure of merit, the latter being the prerequisite to find-
ing the optimal CHO model w.r.t. the human perceptual
and cognitive tasks [9].

IV. REGULARIZED INVERSION

The empirical estimate matrix Ŝ′ is by construction (cf
Eq. (6)) non-negative definite and allows the following
SVD decomposition :

Ŝ′ = VDV
t, (10)

where V is an orthonormal matrix containing normal-
ized eigenvectors (VV

t = I), and D = diag(d1, . . . , dp) is
a diagonal matrix whose main diagonal values are eigen-
values in the descending order d1 ≥ . . . ≥ dp > 0. We
recall that the condition number is the ratio d1/dp. The

direct inverse writes Ŝ′
−1

= VD
−1

V
t.

The Tikhonov regularization is particularly adapted to
the evaluation of moderate dimension and ill-conditioned
problems such as Eq. (4) and provides a direct closed-
form solution. Instead of calculating Eq. (4) by direct
inverse as the solution of a linear problem :

Ŝ′ ·w = x̂′, (11)

a bias is introduced deliberately by considering the fol-
lowing problem :

min

{
1

2
‖Ŝ′ ·w − x̂′‖2 + 1

2
η‖w‖2

}
, η > 0 (12)

for which the positive coefficient η controls the regular-
ization level of the solution. From the SVD point of view,

the regularization method can be applied to replace Ŝ′
−1

in Eq. (4) with w
†
CHO = S

†x̂′ where

S
† =

(
Ŝ′

t

Ŝ′ + ηI
)−1

Ŝ′
t

= V




d1

η+d2

1

. . .
dp

η+d2
p


V

t

and η is chosen such that d21 ≫ η ≫ d2p for the extremely

ill-conditioned cases. We note that for Ŝ′ with relatively
small condition numbers, the regularization has negligi-
ble effects by imposing d21 ≫ η : S

† is close to the direct

inverse of Ŝ′ and thus the detection performances do not
change significantly. On the contrary, for extremely ill-
conditioned cases the presence of η avoids the division
by zero. Indeed, the regularization technique attempts
to achieve numerical stability by penalizing the template
norm ‖wCHO‖2 so that the latter would not grow out of
control as in the case of the direct inverse by Eq. (4).
Evidently, bigger η values could further regularize the

template solution norm, at the cost of a more important
bias.

We present in Fig. 5 the figure of merit (SNR) for the
detection performances on the simulated data used in
Fig. 3. Detection performances are more smoothly in-
creasing if not strictly monotonic. Most importantly,
the regularized inversion method stabilizes L-G chan-
nels with relatively small spread parameters that in some
cases are the optimal L-G CHO (cf the lower panel of
Fig. 5(2) and the upper panel of Fig. 5(3)).
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FIG. 5. SNR with proposed Tikhonov regularization for all
backgrounds with simulation data identical to Fig. 3. The
y-axis ranges are adjusted for each case given specific back-
grounds and signal sizes.
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V. CONCLUSION

We presented in the current study the idea of us-
ing Tikhonov regularization method to address the ex-
tremely ill-conditioned scatter matrix inversion problem,
the main cause of the numerical instability observed in
the SKE detection tasks. Rotationally symmetric back-
grounds and signals are chosen together with adapted
L-G channels to illustrate the principle. It is indeed a

generic problem : other channels such as the DoG chan-
nels and the Gabor channels that have shown capable of
closely tracking human performances are equally subject
to the phenomenon. Our goal is to achieve stable perfor-
mance results with respect to the channel numbers for a
given dataset such that the choice of optimal parameters
should not be influenced. In that sense, the Tikhonov
regularization method achieves that goal by obtaining a
stable performance asymptote that characterizes the up-
per limit of linear observers.
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