J. Han, Understanding biological functions through molecular networks, Cell Research, vol.18, issue.2, pp.224-237, 2008.
DOI : 10.1038/nbt0606-667

A. Ergun, C. Lawrence, M. Kohanski, T. Brennan, and C. J. , A network biology approach to prostate cancer. Molecular systems biology, p.82, 2007.

H. Chuang, E. Lee, Y. Liu, D. Lee, and T. Ideker, Network-based classification of breast cancer metastasis. Molecular systems biology, p.140, 2007.

B. Vogelstein and K. Kinzler, Cancer genes and the pathways they control, Nature Medicine, vol.1, issue.8, pp.789-799, 2004.
DOI : 10.1038/sj.onc.1207130

K. Mani, C. Lefebvre, K. Wang, W. Lim, K. Basso et al., A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas, Molecular Systems Biology, vol.3909, p.169, 2008.
DOI : 10.1073/pnas.0502330102

L. Li, K. Zhang, J. Lee, S. Cordes, D. Davis et al., Discovering cancer genes by integrating network and functional properties, BMC Medical Genomics, vol.68, issue.1, p.61, 2009.
DOI : 10.1158/0008-5472.CAN-07-3158

L. Wang, H. Tang, V. Thayanithy, S. Subramanian, A. Oberg et al., Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer research, p.699490, 2009.

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

M. Blinov, J. Faeder, B. Goldstein, and W. Hlavacek, BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains, Bioinformatics, vol.20, issue.17, pp.3289-3291, 2004.
DOI : 10.1093/bioinformatics/bth378

H. De-jong, J. Geiselmann, C. Hernandez, and M. Page, Genetic Network Analyzer: qualitative simulation of genetic regulatory networks, Bioinformatics, vol.19, issue.3, pp.336-344, 2003.
DOI : 10.1093/bioinformatics/btf851

URL : https://hal.archives-ouvertes.fr/inria-00072325

P. Bowers, S. Cokus, D. Eisenberg, and T. Yeates, Use of Logic Relationships to Decipher Protein Network Organization, Science, vol.306, issue.5705, pp.2246-2249, 2004.
DOI : 10.1126/science.1103330

J. Baumbach and L. Apeltsin, Linking Cytoscape and the corynebacterial reference database CoryneRegNet, BMC Genomics, vol.9, issue.1, p.184, 2008.
DOI : 10.1186/1471-2164-9-184

C. Guziolowski, A. Bourde, F. Moreews, and A. Siegel, BioQuali Cytoscape plugin: analysing the global consistency of regulatory networks, BMC Genomics, vol.10, issue.1, p.244, 2009.
DOI : 10.1186/1471-2164-10-244

URL : https://hal.archives-ouvertes.fr/inria-00429804

C. Guziolowski, C. Blachon, T. Baumuratova, G. Stoll, O. Radulescu et al., Designing Logical Rules to Model the Response of Biomolecular Networks with Complex Interactions: An Application to Cancer Modeling, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, issue.5
DOI : 10.1109/TCBB.2010.71

URL : https://hal.archives-ouvertes.fr/inria-00538134

J. Zucman, O. Delattre, C. Desmaze, B. Plougastel, I. Joubert et al., Cloning and characterization of the Ewing's sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints, Genes, Chromosomes and Cancer, vol.13, issue.4, pp.271-277, 1992.
DOI : 10.1002/gcc.2870050402

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, issue.6391, pp.162-165, 1992.
DOI : 10.1038/359162a0

W. May, M. Gishizky, S. Lessnick, L. Lunsford, B. Lewis et al., Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation., Proceedings of National Academy of Sciences, pp.5752-5756, 1993.
DOI : 10.1073/pnas.90.12.5752

K. Tanaka, T. Iwakuma, K. Harimaya, H. Sato, and Y. Iwamoto, EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells., Journal of Clinical Investigation, vol.99, issue.2, pp.239-247, 1997.
DOI : 10.1172/JCI119152

O. Delattre, J. Zucman, T. Melot, S. Gx, J. Zuker et al., The Ewing Family of Tumors -- A Subgroup of Small-Round-Cell Tumors Defined by Specific Chimeric Transcripts, New England Journal of Medicine, vol.331, issue.5, pp.331294-299, 1994.
DOI : 10.1056/NEJM199408043310503

P. Lin, R. Brody, A. Hamelin, J. Bradner, J. Healey et al., Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing's sarcoma, Cancer Research, vol.59, pp.1428-1432, 1999.

R. Smith, L. Owen, D. Trem, S. Wj, J. Whangbo et al., Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma, Cancer Cell, vol.9, issue.5, pp.405-416, 2006.
DOI : 10.1016/j.ccr.2006.04.004

M. Krull, S. Pistor, N. Voss, A. Kel, I. Reuter et al., TRANSPATH(R): an information resource for storing and visualizing signaling pathways and their pathological aberrations, Database, pp.34-546, 2006.
DOI : 10.1093/nar/gkj107

URL : https://hal.archives-ouvertes.fr/hal-00314881

O. Radulescu, S. Lagarrigue, A. Siegel, P. Veber, L. Borgne et al., Topology and static response of interaction networks in molecular biology, Journal of The Royal Society Interface, vol.84, issue.5, pp.185-96, 2006.
DOI : 10.1002/sim.1237

URL : https://hal.archives-ouvertes.fr/inria-00178842

L. Borgne and M. , Solving loosely coupled constraints, INRIA Research Report, vol.6958, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00397098

K. Hahm, K. Cho, C. Lee, Y. Im, J. Chang et al., Repression of the gene encoding the TGF-B type II receptor is a major target of the EWS-FLI1 oncoprotein, Nature Genetics, vol.23, pp.222-227, 1999.

S. Hu-lieskovan, J. Zhang, L. Wu, H. Shimada, D. Schofield et al., EWS-FLI1 Fusion Protein Up-regulates Critical Genes in Neural Crest Development and Is Responsible for the Observed Phenotype of Ewing's Family of Tumors, Cancer Research, vol.65, issue.11, pp.654633-4644, 2005.
DOI : 10.1158/0008-5472.CAN-04-2857

A. Prieur, F. Tirode, P. Cohen, and O. Delattre, EWS/FLI-1 Silencing and Gene Profiling of Ewing Cells Reveal Downstream Oncogenic Pathways and a Crucial Role for Repression of Insulin-Like Growth Factor Binding Protein 3, Molecular and Cellular Biology, vol.24, issue.16, pp.247275-7283, 2004.
DOI : 10.1128/MCB.24.16.7275-7283.2004

M. Kauer, J. Ban, R. Kofler, B. Walker, S. Davis et al., A Molecular Function Map of Ewing's Sarcoma, PLoS ONE, vol.22, issue.4, p.5415, 2009.
DOI : 10.1371/journal.pone.0005415.s006

L. Cironi, N. Riggi, P. Provero, N. Wolf, M. Suva et al., IGF1 Is a Common Target Gene of Ewing's Sarcoma Fusion Proteins in Mesenchymal Progenitor Cells, PLoS ONE, vol.22, issue.7, p.2634, 2008.
DOI : 10.1371/journal.pone.0002634.s005

D. Herrero-martin, D. Osuna, J. Ordonez, V. Sevillano, A. Martins et al., Stable interference of EWS???FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target, British Journal of Cancer, vol.55, issue.1, pp.80-90, 2009.
DOI : 10.1158/1078-0432.CCR-06-0410