E. Pomplun, J. Booz, and D. E. Charlton, A Monte Carlo Simulation of Auger Cascades, Radiation Research, vol.111, issue.3, pp.533-52, 1987.
DOI : 10.2307/3576938

F. Buchegger, F. Perillo-adamer, Y. M. Dupertuis, and A. B. Delaloye, Auger radiation targeted into DNA: a therapy perspective, European Journal of Nuclear Medicine and Molecular Imaging, vol.20, issue.1, pp.33-1352, 2006.
DOI : 10.1007/s00259-006-0187-2

R. W. Howell, Auger processes in the 21st century, International Journal of Radiation Biology, vol.49, issue.12, pp.959-75, 2008.
DOI : 10.1080/09553000802395527

A. I. Kassis, Radiotargeting agents for cancer therapy, Expert Opinion on Drug Delivery, vol.80, issue.1, pp.981-91, 2005.
DOI : 10.1080/028418600750063802

B. Cornelissen and K. A. Vallis, Targeting the Nucleus: An Overview of Auger-Electron Radionuclide Therapy, Current Drug Discovery Technologies, vol.7, issue.4, pp.263-79, 2010.
DOI : 10.2174/157016310793360657

E. Pomplun, Auger Electron Spectra - The Basic Data for Understanding the Auger Effect, Acta Oncologica, vol.10, issue.10, pp.673-682, 2000.
DOI : 10.1080/028418600750063712

L. S. Yasui, Molecular and cellular effects of Auger emitters: 2008???2011, International Journal of Radiation Biology, vol.52, issue.12, 2012.
DOI : 10.3109/09553002.2012.702296

L. E. Feinendegen, The Auger Effect in biology and medicine. Looking back, International Journal of Radiation Biology, vol.145, issue.12, pp.862-863, 2012.
DOI : 10.3109/09553002.2012.699696

L. Li, T. S. Quang, E. J. Gracely, J. H. Kim, J. G. Emrich et al., A Phase II study of anti???epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme, Journal of Neurosurgery, vol.113, issue.2, pp.192-200, 2010.
DOI : 10.3171/2010.2.JNS091211

T. S. Quang and L. W. Brady, Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas, International Journal of Radiation Oncology*Biology*Physics, vol.58, issue.3, pp.972-977, 2004.
DOI : 10.1016/j.ijrobp.2003.09.096

S. Welt, C. R. Divgi, F. X. Real, S. D. Yeh, P. Garin-chesa et al., Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33., Journal of Clinical Oncology, vol.8, issue.11, pp.1894-906, 1990.
DOI : 10.1200/JCO.1990.8.11.1894

S. Welt, A. M. Scott, C. R. Divgi, N. E. Kemeny, R. D. Finn et al., Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer., Journal of Clinical Oncology, vol.14, issue.6, pp.14-1787, 1996.
DOI : 10.1200/JCO.1996.14.6.1787

L. Santoro, S. Boutaleb, V. Garambois, C. Bascoul-mollevi, V. Boudousq et al., Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of smallvolume peritoneal carcinomatosis, J Nucl Med, issue.12, pp.50-2033, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00442929

V. Boudousq, S. Ricaud, V. Garambois, C. Bascoul-mollevi, S. Boutaleb et al., Brief Intraperitoneal Radioimmunotherapy of Small Peritoneal Carcinomatosis Using High Activities of Noninternalizing 125I-Labeled Monoclonal Antibodies, Journal of Nuclear Medicine, vol.51, issue.11, pp.51-1748, 2010.
DOI : 10.2967/jnumed.110.080226

URL : https://hal.archives-ouvertes.fr/inserm-00531603

T. M. Behr, M. Behe, M. Lohr, G. Sgouros, C. Angerstein et al., Therapeutic advantages of Auger electron-over beta-emitting radiometals or radioiodine when conjugated to internalizing antibodies, Eur J Nucl Med, issue.7, pp.27-753, 2000.

T. M. Behr, G. Sgouros, V. Vougiokas, S. Memtsoudis, S. Gratz et al., Therapeutic efficacy and dose???limiting toxicity of auger???electron vs. beta emitters in radioimmunotherapy with internalizing antibodies: Evaluation of 125I??? vs. 131I???labeled CO17???1A in a human colorectal cancer model, International Journal of Cancer, vol.76, issue.5, pp.76-738, 1998.
DOI : 10.1002/(SICI)1097-0215(19980529)76:5<738::AID-IJC20>3.3.CO;2-Q

R. B. Michel, M. W. Brechbiel, and M. J. Mattes, A comparison of 4 radionuclides conjugated to antibodies for single-cell kill, J Nucl Med, vol.44, issue.4, pp.632-672, 2003.

S. V. Govindan, D. M. Goldenberg, S. E. Elsamra, G. L. Griffiths, G. L. Ong et al., Radionuclides linked to a CD74 antibody as therapeutic agents for B-cell lymphoma: comparison of Auger electron emitters with beta-particle emitters, J Nucl Med, issue.12, pp.41-2089, 2000.

S. Paillas, V. Boudousq, B. Piron, N. Kersual, N. Chouin et al., Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane, Nuclear Medicine and Biology, vol.40, issue.4, pp.471-80, 2013.
DOI : 10.1016/j.nucmedbio.2013.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00815724

J. P. Pouget, L. Santoro, L. Raymond, N. Chouin, M. Bardies et al., Cell Membrane is a More Sensitive Target than Cytoplasm to Dense Ionization Produced by Auger Electrons, Radiation Research, vol.170, issue.2, pp.192-200, 2008.
DOI : 10.1667/RR1359.1

URL : https://hal.archives-ouvertes.fr/inserm-00311037

D. T. Goodhead, Initial Events in the Cellular Effects of Ionizing Radiations: Clustered Damage in DNA, International Journal of Radiation Biology, vol.115, issue.1, pp.7-17, 1994.
DOI : 10.1080/09553009414550021

D. T. Goodhead and H. Nikjoo, Track Structure Analysis of Ultrasoft X-rays Compared to High- and Low-LET Radiations, International Journal of Radiation Biology, vol.87, issue.4, pp.513-542, 1989.
DOI : 10.1080/09553008914550571

A. J. Levine and M. Oren, The first 30 years of p53: growing ever more complex, Nature Reviews Cancer, vol.67, issue.10, pp.749-58, 2009.
DOI : 10.1038/nrc2723

K. M. Prise, G. Schettino, M. Folkard, and K. D. Held, New insights on cell death from radiation exposure, The Lancet Oncology, vol.6, issue.7, pp.520-528, 2005.
DOI : 10.1016/S1470-2045(05)70246-1

O. Driscoll, M. , and P. A. Jeggo, The role of double-strand break repair ??? insights from human genetics, Nature Reviews Genetics, vol.21, issue.1, pp.45-54, 2006.
DOI : 10.1038/nrg1746

D. W. Meek, Tumour suppression by p53: a role for the DNA damage response?, Nature Reviews Cancer, vol.20, issue.910, pp.714-737, 2009.
DOI : 10.1038/nrc2716

S. J. Knox, M. L. Goris, and B. W. Wessels, Overview of animal studies comparing radioimmunotherapy with dose equivalent external beam irradiation, Radiotherapy and Oncology, vol.23, issue.2, pp.111-118, 1992.
DOI : 10.1016/0167-8140(92)90342-R

J. A. Williams, J. A. Edwards, and L. E. Dillehay, Quantitative comparison of radiolabeled antibody therapy and external beam radiotherapy in the treatment of human glioma xenografts, International Journal of Radiation Oncology*Biology*Physics, vol.24, issue.1, pp.111-118, 1992.
DOI : 10.1016/0360-3016(92)91029-M

S. M. Goddu, R. W. Howell, L. G. Bouchet, W. E. Bolch, D. V. Rao et al., Selfabsorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments: Society of Nuclear Medicine Voisin, Modulation of DNA damage by pentoxifylline and alphatocopherol in skin fibroblasts exposed to Gamma rays, Radiat Res, vol.164, issue.1, pp.63-72, 1997.

B. Marples and S. J. Collis, Low-Dose Hyper-Radiosensitivity: Past, Present, and Future, International Journal of Radiation Oncology*Biology*Physics, vol.70, issue.5, pp.1310-1318, 2008.
DOI : 10.1016/j.ijrobp.2007.11.071

M. C. Joiner and H. Johns, Renal Damage in the Mouse: The Response to Very Small Doses per Fraction, Radiation Research, vol.114, issue.2, pp.385-98, 1988.
DOI : 10.2307/3577233

B. Xu, S. T. Kim, D. S. Lim, and M. B. Kastan, Two Molecularly Distinct G2/M Checkpoints Are Induced by Ionizing Irradiation, Molecular and Cellular Biology, vol.22, issue.4, pp.1049-59, 2002.
DOI : 10.1128/MCB.22.4.1049-1059.2002

M. Lobrich, A. Shibata, A. Beucher, A. Fisher, M. Ensminger et al., gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization, Cell Cycle, issue.94, pp.662-671, 2010.

T. T. Puck, D. Morkovin, P. I. Marcus, and S. J. Cieciura, ACTION OF X-RAYS ON MAMMALIAN CELLS: II. SURVIVAL CURVES OF CELLS FROM NORMAL HUMAN TISSUES, Journal of Experimental Medicine, vol.106, issue.4, pp.485-500, 1957.
DOI : 10.1084/jem.106.4.485

E. I. Azzam, S. M. De-toledo, and J. B. Little, Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect, Oncogene, vol.22, issue.45, pp.22-7050, 2003.
DOI : 10.1038/sj.onc.1206961

S. Resat, M. B. , and W. F. Morgan, Radiation-induced genomic instability: a role for secreted soluble factors in communicating the radiation response to non-irradiated cells, J Cell Biochem, issue.5, pp.92-1013, 2004.

O. Mamlouk, P. Balagurumoorthy, K. Wang, and S. J. , Adelstein, and A.I. Kassis, Bystander Effect in Tumor Cells Produced By Iodine-125 Labeled Human Lymphocytes, Int J Radiat Biol, 2012.

K. M. Prise and J. M. Sullivan, Radiation-induced bystander signalling in cancer therapy, Nature Reviews Cancer, vol.66, issue.5, pp.351-60, 2009.
DOI : 10.1073/pnas.2235592100

M. Boyd, S. C. Ross, J. Dorrens, N. E. Fullerton, K. W. Tan et al., Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides, J Nucl Med, issue.6, pp.47-1007, 2006.

N. Chouin, K. Bernardeau, M. Bardies, A. Faivre-chauvet, M. Bourgeois et al., Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. II. Application of the microdosimetric model to experimental results Involvement of membrane signaling in the bystander effect in irradiated cells, Radiat Res Z. Fuks, and J.B. Little Cancer Res, vol.171, issue.69, pp.664-73, 2002.

C. Bousis, D. Emfietzoglou, P. Hadjidoukas, and H. Nikjoo, Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides, Physics in Medicine and Biology, vol.55, issue.9, pp.55-2555, 2010.
DOI : 10.1088/0031-9155/55/9/009