
HAL Id: inserm-00981321
http://www.hal.inserm.fr/inserm-00981321

Submitted on 22 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Body adiposity dictates different mechanisms of
increased coronary reactivity related to improved in vivo

cardiac function.
Evangelia Mourmoura, Valérie Chaté, Karine Couturier, Brigitte Laillet,

Guillaume Vial, Jean-Paul Rigaudière, Béatrice Morio, Corinne
Malpuech-Brugère, Kasra Azarnoush, Luc Demaison

To cite this version:
Evangelia Mourmoura, Valérie Chaté, Karine Couturier, Brigitte Laillet, Guillaume Vial, et al.. Body
adiposity dictates different mechanisms of increased coronary reactivity related to improved in vivo
cardiac function.. Cardiovascular Diabetology, BioMed Central, 2014, 13 (1), pp.54. <10.1186/1475-
2840-13-54>. <inserm-00981321>

http://www.hal.inserm.fr/inserm-00981321
https://hal.archives-ouvertes.fr


ORIGINAL INVESTIGATION Open Access

Body adiposity dictates different mechanisms of
increased coronary reactivity related to improved
in vivo cardiac function
Evangelia Mourmoura1,2, Valérie Chaté1,2, Karine Couturier1,2, Brigitte Laillet3,4, Guillaume Vial5,

Jean-Paul Rigaudiere3,4, Béatrice Morio5, Corinne Malpuech-Brugère3,4, Kasra Azarnoush6 and Luc Demaison1,2,3,4*

Abstract

Background: Saturated fatty acid-rich high fat (HF) diets trigger abdominal adiposity, insulin resistance, type 2

diabetes and cardiac dysfunction. This study was aimed at evaluating the effects of nascent obesity on the cardiac

function of animals fed a high-fat diet and at analyzing the mechanisms by which these alterations occurred at the

level of coronary reserve.

Materials and methods: Rats were fed a control (C) or a HF diet containing high proportions of saturated fatty acids

for 3 months. Thereafter, their cardiac function was evaluated in vivo using a pressure probe inserted into the cavity of

the left ventricle. Their heart was isolated, perfused iso-volumetrically according to the Langendorff mode and the

coronary reserve was evaluated by determining the endothelial-dependent (EDV) and endothelial-independent (EIV)

vasodilatations in the absence and presence of endothelial nitric oxide synthase and cyclooxygenase inhibitors

(L-NAME and indomethacin). The fatty acid composition of cardiac phospholipids was then evaluated.

Results: Although all the HF-fed rats increased their abdominal adiposity, some of them did not gain body weight

(HF- group) compared to the C group whereas other ones had a higher body weight (HF+). All HF rats displayed a

higher in vivo cardiac activity associated with an increased EDV. In the HF- group, the improved EDV was due to an

increase in the endothelial cell vasodilatation activity whereas in the HF+ group, the enhanced EDV resulted from an

improved sensitivity of coronary smooth muscle cells to nitric oxide. Furthermore, in the HF- group the main pathway

implicated in the EDV was the NOS pathway while in the HF+ group the COX pathway.

Conclusions: Nascent obesity-induced improvement of cardiac function may be supported by an enhanced coronary

reserve occurring via different mechanisms. These mechanisms implicate either the endothelial cells activity or the

smooth muscle cells sensitivity depending on the body adiposity of the animals.
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Background
High-fat (HF) diets are now common in the Western so-

cieties and may induce insulin resistance (IR) when the

absorbed lipids are rich in saturated fatty acids (SFAs)

and poor in n-3 polyunsaturated fatty acids (PUFAs) [1].

IR, often associated with hyperglycemia, abdominal

obesity, hypercholesterolemia, hypertriglyceridemia and

hypertension, constitutes one of the major causes of the

metabolic syndrome. This last pathology predisposes pa-

tients to numerous chronic diseases such as type 2 dia-

betes, atherosclerosis, myocardial infarction, stroke and

renal disease [2,3].

Abdominal obesity could be the main catalyst of IR and

associated detrimental events [4] and could have a potent

effect on myocardial function. In the long term, this ab-

normality is known to depress cardiac function and induce

severe cardiomyopathy [5]. The reduced cardiac function

has already been observed in vivo and in vitro in several

animal models of obesity including the Zucker Diabetic
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Fatty rat (ZDF) [6], post-natal over nutrition-related rat

[7,8] and HF-fed rat [9]. However, as exemplified by post-

natal over nutrition-induced obesity, the in vivo ejection

fraction increases firstly until the third month of age and

decreases only after a longer period of obesity [8]. The ini-

tial increase in cardiac output is a normal adaptation de-

signed to compensate for the increased body weight and

related energy expenditures. It could be due to the aug-

mentation of blood and left ventricle telediastolic vol-

umes encountered in those situations [8] which would

contribute to increase myocardial contractility through

the Frank Starling’s relationship. However, that im-

provement is only transitory and could be responsible

for the later cardiomyopathy.

Associated with the improved cardiac output of the early

phase of obesity an increased coronary flow and reserve

could occur. Yet, all studies concerning this last parameter

showed either an upholding [7,10-12] or a depression of

the coronary reserve [13-18]. There is only one study per-

formed on the isolated coronary arteriole [11] mentioning

an obesity-related enhancement of the sensitivity of the

coronary smooth muscle cells (SMCs) to nitric oxide

(NO), which was however not associated with an improved

endothelial-dependent vasodilatation (EDV).

The present study was aimed at evaluating the effects of

the precocious development of obesity induced by a HF

diet on the in vivo cardiac function and the ex vivo coron-

ary reserve and at analyzing the mechanisms by which

these alterations occurred. For that purpose, male Wistar

rats were fed for 3 months with a diet high in saturated

and monounsaturated fatty acids (MUFAs). All HF-fed an-

imals gained abdominal adiposity compared to the control

group, but only some of them gained body weight. This

allowed the estimation of the effects of normal weight

(gain in abdominal obesity, but no gain in body weight)

and moderate (gain in abdominal adiposity and body

weight) obesity on the cardiac mechanical function and

coronary reserve. In order to explain the observed phe-

nomena, the sensitivity to NO of SMCs (endothelial-in-

dependent vasodilatation or EIV) and endothelial cell

vasodilatation activity (ECVA) were determined. The in-

fluence of nitric oxide synthase (NOS) and cyclooxygenase

(COX) inhibitors on the EDV was also estimated. Further-

more, in order to investigate the molecular mechanism of

each effect, the fatty acid composition of cardiac phospho-

lipids was evaluated.

Methods
Ethical approval

All experiments followed the European Union recom-

mendations concerning the care and use of laboratory

animals for experimental and scientific purposes. All ani-

mal work was approved by the local board of ethics for

animal experimentation (Cometh) and notified to the

research animal facility of our laboratory (authorization

n° 152_LBFA-U1055-LD-03).

Experimental animals and diet

Ninety male Wistar rats from an inbred colony were

housed two per cage in our animal facility at 3 months

of age. Forty-five of them were randomly assigned to be

maintained on standard carbohydrate (C) (16.1% pro-

teins, 3.1% lipids, 60% cellulose; A04, Safe, France) diet

and the fifty-one others were fed a high-fat (HF) (31.5%

proteins, 54% lipids (50% lard, 4% soya-bean oil w/w),

7% cellulose) diet over a twelve-week period. The en-

ergy from fat in this diet typically represents more than

50% of total calories [19,20] as in an average Western

diet. After analysis of the fatty acid composition of the

diets chosen we found that the standard diet contained

approximately 24% of SFAs, 23% of MUFAs, 48% of n-6

PUFAs and 4.5% of n-3 PUFAs while the HF diet con-

tained 37% of SFAs, 46% of MUFAs, 15% of n-6 PUFAs

and 1.2% of n-3 PUFAs. All groups were fed ad libitum

with free access to water and their body weight and food

intake were recorded twice weekly. It should be noted

that the protein content of the HF diet was 2-fold

higher because of the lower food intake (g/day) in these

rats due to the higher energy density. This allowed a

similar daily protein intake in all rat groups.

In a first set of experiments, eight rats fed with either

the control or the HF diet were used to determine car-

diac function in the in vivo situation.

In a second series of experiments, six rats were fed

with the control diet and twelve animals with the HF

diet. These animals were used to evaluate the effect of

the diet on the body and blood compositions, ex vivo

cardiac mechanical function and coronary reactivity, ac-

tivities of the respiratory chain complexes and fatty acid

composition of cardiac phospholipids. On the day of the

experiment, the rats were weighed and heparinized

(1,000 I.U./kg) via the saphenous vein before their sacri-

fice. The rats were allowed to eat up to the beginning of

the experiment. Blood samples were collected for fur-

ther biochemical analysis and their visceral (VAT) and

peri-renal (PRAT) adipose tissue was weighed. Abdom-

inal adipose tissue (AAT) weight was the sum of VAT

and PRAT weights.

In a third set of experiments, twenty-four rats were

fed with the control diet and thirty-two with HF one.

The rats of each dietary group were further divided in

four subgroups (n = 6 per group for the control rats and

n = 4 for the HF-fed rats) in order to evaluate the effect

of the diet on the ex vivo coronary reactivity in the ab-

sence of inhibitors, in the presence of L-NAME (a NOS

inhibitor), in the presence of indomethacin (a COX in-

hibitor) and in the presence of both inhibitors.
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Oral glucose tolerance test (OGTT)

An OGTT was performed 2 weeks before the sacrifice.

Food was removed from rats 18 h before they were given

orally a glucose dose (1 g glucose/kg body weight, between

08.00 and 10.00 am). Blood samples were collected from

the tail vein in heparinized tubes immediately before glu-

cose administration to determine the basal glucose and in-

sulin values and 5, 25, 40, 60 and 180 min after. Glucose

values were determined with a glucose analyzer (ACCU-

CHECK Active, Softclix). After centrifugation (3000 × g,

7 min, 4°C) plasma samples were stored at −20°C until

insulin determination using a radioimmunoassay kit

(SRI-13 K, Millipore, Molheim, France). The total area

under the curve (AUC) for glucose was then calculated

in order to evaluate the glucose tolerance as previously

used by Cortez et al. [21].

In vivo cardiac function

After deep anesthesia with sodium pentobarbital (40 mg/kg),

the animal throat was dissected in order to isolate the

right carotid artery. That artery was clamped at the

proximal level in order to stop the blood flow arriving

from the heart and a pressure gauge (Millar Instruments

Inc., Houston, Texas) related to an amplifier (Gould)

was introduced downstream through a small incision in

the vessel. The clamp was removed and the gauge was

progressively introduced in the aorta and then in the left

ventricle cavity. The left ventricle pressure was then moni-

tored after a 10 min-period of stabilization. The heart rate,

systolic, diastolic, developed pressures, dP/dt max and dP/

dt min were determined from the recordings.

Ex vivo cardiac function

For the ex vivo Langendorff assessment of the cardiac func-

tion, a rapid thoracotomy was performed on the rats and

the heart was immediately collected in Krebs-Heinselet so-

lution maintained at 4°C. It was then rapidly (less than 1 -

minute from the chest opening to avoid problem of cellular

damages and preconditioning) perfused at constant

pressure according to the Langendorff mode with a

Krebs–Heinselet buffer containing (in mM) NaCl 119,

MgSO4 1.2, KCl 4.8, NaHCO3 25, KH2PO4 1.2, CaCl2
1.2 and glucose 11 mM as sole energy substrate. The

buffer was maintained at 37°C and continuously oxy-

genated with carbogen (95% O2/5% CO2). A latex bal-

loon connected to a pressure probe was inserted into

the left ventricle and filled until the diastolic pressure

reached a value of 7–8 mmHg. This allowed the moni-

toring of heart rate, systolic, diastolic and left ventricle

developed pressures throughout the perfusion protocol.

A pressure gauge inserted into the perfusion circuit just

upstream the aortic cannula allowed the evaluation of

the coronary pressure. The heart was perfused at con-

stant pressure of 59 mmHg for 30 minutes and the

coronary flow for each heart was evaluated by weight

determination of 1-min collected samples at the 25th

min of perfusion. After this period, the heart was per-

fused at constant flow conditions, for which the flow

rate was adjusted in order to obtain the same coronary

flow as in the preparation at constant pressure. The sys-

tolic, diastolic and left ventricle developed pressures as

well as the heart rates were determined after 10 min of

perfusion at forced flow in order to allow a satisfying

stabilization of the heart. The left ventricle developed

pressure (LVDP) was calculated by substracting the dia-

stolic pressure to the systolic pressure. The rate-pressure

product (RPP) was defined as the product of left ventricle

developed pressure and heart rate. All the parameters

were recorded and analyzed with a computer using the

HSE IsoHeart software (Hugo Sachs Elektronik, March-

Hugstetten, Germany).

Ex vivo coronary reactivity

After the evaluation of the cardiac function at constant

flow, we assessed the effects of the HF diet on the cor-

onary reactivity. After the 10-min equilibration period at

constant flow, the coronary tone was raised by using the

thromboxane analog U46619 (30nM), which was con-

stantly infused into the perfusion system near the aortic

cannula at a rate never exceeding 1.5% of the coronary

flow. This allowed the obtainment of a coronary pres-

sure between 90 and 110 mmHg. In our model of perfu-

sion at forced flow, the aortic pressure equaled the

coronary pressure and changes in the coronary tone trig-

gered modifications of the aortic pressure. Changes in

aortic perfusion pressure were thus used to monitor

changes in coronary tone. Furthermore, this experimen-

tal model permitted the evaluation of the coronary mi-

crovasculature reactivity since in the rat the overall

coronary pressure is determined mainly by the coronary

resistance vessels. Relaxation responses to acetylcholine

(Ach, 4, 10, 20, 40, 60, 80 and 100 pmoles) and sodium

nitroprusside (SNP, 100, 200, 400, 600, 800 and 1000

pmoles) injections were determined reflecting the EDV

and EIV respectively.

The choice of these ACh doses was made in order to

avoid the ACh-induced negative inotropic effect, which

decreases the EDV. This dose was never reached in our

study, since the cardiac mechanical function was never

impaired by the ACh injection. From the obtained dose re-

sponse curves, it is obvious that the ACh-induced vaso-

dilatation was saturated for the highest tested doses.

Consequently, the maximal ACh-induced vasodilation was

reached and the coronary reserve measured amongst the

ACh doses used in our study.

The dilatation amplitude was calculated as the ratio be-

tween the maximal decrease in the coronary pressure and

the coronary pressure just before the injection of the
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dilatation agents. Since the heart weight and coronary vol-

ume were subjected to intra- and inter-group variations, a

correction was performed to normalise the input-function

of the vasodilatation agents according to the coronary

flow. The dose–response curve between the amount of

vasodilatation agent injected and the maximal vasodilata-

tion was then fitted to a logarithm function for each

heart, which allowed the fulfillment of statistical ana-

lyses. Moreover, the vasodilatation activity of the endo-

thelial cells (ECs) was also estimated from the corrected

EDV and EIV curves. For each heart and each injected

ACh dose, the amount of SNP (reflecting the amount of

vasodilator agents) necessary to obtain the same per-

centage of ACh-induced vasodilatation was extracted

from the EIV curve according to the formula: ECVA = e
[(% ACh-induced dilatation - b) / a], where a and b are the coef-

ficients of the theoretical EIV curve. The results were

expressed in pmole equivalents of nitroprusside. At the

end of the perfusion protocol, the hearts were freeze-

clamped and stored at −80°C until the biochemical ana-

lyses were performed.

In another set of coronary reactivity experiments, the

hearts of the control and HF groups were perfused as

already described and the EDV was evaluated in presence

of a NOS inhibitor (L-NAME 0.1 mM) or a COX inhibitor

(indomethacin 2.5 μM). Finally, hearts were perfused in

the simultaneous presence of L-NAME (0.1 mM) and

indomethacin (2.5 μM).

Enzymatic determinations

Activities of the respiratory chain complexes I, II, III and

IV were determined as previously described [22]. Citrate

synthase activity was evaluated according to Faloona and

Sreere [23].

Fatty acid composition of cardiac phospholipids

The phospholipid fatty acid composition was determined

in cardiac homogenates as previously described [24]. The

lipids were extracted according to Folch et al. [25]. The

phospholipids were separated from non-phosphorus lipids

using a Sep-pack cartridge [26]. After trans methylation,

the fatty acid methyl esters were separated and analyzed

by gas chromatography.

Other biochemical determinations

All biochemical measurements (total cholesterol, triglycer-

ides, glucose) were done in plasma samples by using an

automated analyzer (HITACHI 912, Roche Diagnostics).

Chemicals were obtained from Roche (Meylan, France).

Proteins were measured using the bicinchoninic acid

method with a commercially available kit (Thermo Scien-

tific, Rockford, IL).

Statistical analysis

Results are presented as mean ± S.E.M. Animal weight,

metabolic parameters and data describing the cardiac

mechanical and vascular function (left ventricular devel-

oped pressure, heart rate, rate pressure product, coronary

pressure, and coronary flow) were contrasted across the

two groups by one-way analysis of variance (ANOVA).

Measures related to the action of the vasodilatation agents

were treated with repeated-measures ANOVA to test the

effect of the group (external factor), that of the amount of

dilatation agent (internal factor) and their interactions.

When required, group means were contrasted with a

Fisher’s LSD test. A probability (p) less than 0.05 was

considered significant. Statistical analysis was per-

formed using the NCSS 2007 software.

Results
General data

During the experiments, analysis of the animal weight

indicated that six rats of the HF-fed group did not gain

weight compared to the control group during the 3-

month dietary period, whereas the six others became

significantly heavier than those of the control group.

This delineated three distinct groups: i) the control (C)

rats fed the control diet; ii) the animals whose weight

did not differ from the control animals despite ingestion

of the dense food (HF- group); and iii) the animals that

gained weight due to the HF diet (HF+ group). However,

the HF diet increased the adiposity of both HF rat

groups. Table 1 shows statistical analyses indicating that

the HF- group displayed a similar body weight as the C

group and the HF+ group a higher body weight than the

other two ones (+22 and +24% compared to the C and

HF- groups, respectively, p < 0.05). The weight gain after

this 3-month diet period was similar for the C and HF-

groups (+21%) while it was significantly higher in the

HF+ group (+24%). The cumulative dietary intake in the

HF groups was 586 ± 15 and 644 ± 11 g/50 days/rat for

the HF- and HF + groups respectively. The weight ra-

tio between the PRAT and VAT was increased in the

HF- group (2.0 ± 0.4 vs. 0.8 ± 0.1 in the C group, +150%,

p < 0.05), but was intermediary in the HF + group (1.3 ± 0.4,

not significant). Consequently, in the HF- rats, fat mass lo-

calized more in the peri-renal area and less in the visceral

area compared to the HF + animals. The heart weight

was decreased by the HF diet. However, that reduction

was significant in those animals remaining lean (−18%

for the HF- group, p < 0.05), but a tendency remained

in the HF+ group.

There were no statistically significant differences be-

tween the groups regarding the values of blood glucose

and insulin on the day of sacrifice. However, the total

area under the curve for glucose was moderately in-

creased in the HF- group whereas it was significantly
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increased in the HF+ group (+18%, p < 0.05) compared

to the control one. Total cholesterol concentrations were

higher in the HF-fed rats (+72 and +58% for the HF-

and HF+ compared to the control animals, p < 0.05).

This was also the case for the triglyceride concentration

in the HF- group (+66%, p < 0.05), but not in the HF+

group in which the difference did not reach significance

(+28% only, not significant).

In vivo cardiac function

Table 2 depicts the in vivo cardiac function in the HF

diet-fed rats. The heart rate was not significantly af-

fected by the diet. Conversely, the systolic pressure,

LVDP, dP/dt max and dP/dt min were increased in the

HF- group (+28, +33, +38% and + 36% compared to the

C group respectively, p < 0.05), suggesting an augmented

contractile function. These parameters were also moder-

ately increased in the HF+ group (+17, +19, +24% and +

22% compared to the C group respectively, not significant).

Ex vivo cardiac function

The heart rate was not affected by the diet (Table 3), but

the LVDP was decreased in the HF+ group (−32% com-

pared to the C group, p < 0.05). However, the reduction of

LVDP was not significant in the HF- group. The RPP was

always reduced by the HF diet irrespective of the body

weight change of the animals (−27 and −28% for HF- and

HF+ groups compared to the C group, p < 0.05). The de-

creased mechanical function occurred despite maintained

coronary flows and pressures. Infusing the vasoconstrictor

agent U46619 increased the coronary pressure to values

ranging from 94 to 120 mmHg, but did not modify the

rate pressure product (data not shown).

Ex vivo coronary reactivity: effect of body weight change

The Figure 1A demonstrating the ACh-induced vasodilata-

tion clearly indicates that the HF-diet increased that param-

eter. This was true for the HF- group (+36% when the

administrated ACh dose was 60 pmoles, p < 0.05), but also

for the HF+ group (+48% at 60 pmoles of administrated

ACh, p < 0.05). As indicated by Figure 1B and 1C, the HF

diet-induced increase in EDV did not originate from the

same mechanism in the two HF-fed rat groups. When the

HF-fed animals did not gain weight (HF- group), the in-

crease in ACh-induced vasodilatation was due to an aug-

mentation of the ECVA (Figure 1C). Indeed, the ECVA was

increased in that group (i.e. +53% at 60 pmoles of adminis-

trated ACh, p < 0.05), whereas in the HF + group it dis-

played similar values as in the C group. On the contrary,

when the HF-fed animals gained weight (HF + group), the

increase in EDV was mainly due to an augmentation of the

SNP-induced vasodilatation (Figure 1B), outlining the es-

sential role of SMCs relaxation. In that last group, the EIV

Table 1 Animal characteristics

C HF- HF+

Final body weight 438 ± 7a 429 ± 10a 534 ± 8b

Body weight gain 90 ± 3a 88 ± 4a 129 ± 6b

Heart weight 57 ± 2a 47 ± 3b 48 ± 6a,b

PRAT 1.2 ± 0.1a 3.6 ± 0.7b 3.2 ± 0.7b

VAT 1.5 ± 0.2a 1.9 ± 0.2a,b 2.5 ± 0.3b

AAT 2.7 ± 0.3a 5.4 ± 0.7b 5.8 ± 0.9b

Glucose 5.06 ± 0.34 5.17 ± 0.17 5.31 ± 0.05

Insulin 153 ± 17 106 ± 13 145 ± 26

Triglycerides 0.97 ± 0.06a 1.61 ± 0.25b 1.24 ± 0.04a,b

Total cholesterol 0.53 ± 0.01a 0.91 ± 0.07b 0.84 ± 0.06b

Total AUCglucose 29077 ± 1048a 32298 ± 1167a,b 34364 ± 2060b

The number of experiments was 6 per group. The body weight and body

weight gain was expressed in g, the heart weight in mg of dry weight per

100 g of body weight, the weight of the perirenal (PRAT), visceral (VAT) and

abdominal (AAT) adipose tissues in g of wet weight per 100 g of body weight,

the concentration of glucose in mM, the concentrations of triglycerides and

total cholesterol in g/l, the insulin concentration in mU/l and the total area

under the curve (AUCglucose) in arbitrary units. C: control group; HF-: high

fat-fed animals without weight gain compared to the control rats; HF+: high

fat-fed animals with weight gain compared to the control rats; a, b: two means

located on a same line without a common letter are significantly different.

Table 2 In vivo cardiac function

C HF- HF+

HR 347 ± 20 397 ± 9 370 ± 24

SP 128 ± 4a 164 ± 14b 150 ± 14a,b

DP 21 ± 1 20 ± 1 21 ± 1

LVDP 108 ± 4a 144 ± 14b 129 ± 14a,b

dP/dt max 3350 ± 206a 4608 ± 530b 4163 ± 531a,b

dP/dt min −3275 ± 180a −4467 ± 457b −3981 ± 513a,b

The number of experiments was 8, 4 and 4 for the C, HF- and HF + groups.

The heart rate, pressures (systolic, diastolic and left ventricular developed

pressures), dP/dt max and dP/dt min were expressed in beats/min, mmHg and

mmHg/s. C: control; HF-: high fat-fed rats without weight gain; HF+: high

fat-fed rats with weight gain; HR: heart rate; SP: systolic pressure; DP: diastolic

pressure; LVDP: left ventricular developed pressure; dP/dt max: maximum rate of

pressure change; dP/dt min: maximum rate of pressure change; a, b: two means

located on a same line without a common letter are significantly different.

Table 3 Ex vivo cardiac function

C HF- HF+

Heart rate 288 ± 29 248 ± 20 295 ± 20

LVDP 82 ± 10a 67 ± 2a,b 56 ± 7b

RPP 22.9 ± 1.5a 16.8 ± 1.7b 16.4 ± 1.7b

Coronary flow 42.9 ± 7.5 40.2 ± 6.7 42.9 ± 13.7

CP before U46619 62.8 ± 6.4 67.5 ± 5.9 68.4 ± 3.8

CP after U46619 94.0 ± 3.9 106.0 ± 8.5 120.4 ± 7.7

The number of experiments was 6 per group. The heart rate, pressures

(left ventricular developed pressure or LVDP, coronary pressure or CP before

and after U46619 infusion), rate pressure product (RPP) and coronary flow

were expressed in beats/min, mmHg, mHg/min and ml/min/g of dry weight.

C: control group; HF-: high fat-fed animal without weight gain compared to

the control group; HF+: high fat-fed animals with weight gain compared to

the control group; a, b: two means located on a same line without a common

letter are significantly different.
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was increased by 39% at the administrated SNP dose of

600 pmoles compared to the C group (p < 0.05), whereas

it remained similar to the one of the C group in the HF-

animals.

Ex vivo coronary reactivity: effects of NOS and

cyclooxygenase inhibitors

The high coronary pressure induced by the U46619 infu-

sion allowed the determination of the effects of the vasodi-

lators ACh and SNP. The effects of each inhibitor were

also calculated at 60 pm of the Ach injected dose.

In the absence of inhibitor, the EDV was increased by

the HF diet (i.e. +41% compared to the C group at the

dose of 60 pmoles, p < 0.05, Figure 2). The presence of

L-NAME reduced the EDV significantly only in the HF-

group (−71% at 60 pmoles of injected ACh, p < 0.05)

whereas indomethacin reduced this parameter only in

the HF + group (−43% at 60 pmoles of injected ACh, p <

0.05). The presence of both inhibitors in the perfusate

significantly reduced the EDV in both HF groups (−58%

and −38% for the HF- and HF + groups respectively at

60 pmoles of injected ACh, p < 0.05).

Respiratory chain complexes activities

Citrate synthase activity (Table 4) was of similar magni-

tude in the three groups. It was also true for C1 and C4

activities. C2 activity was decreased by the HF diet irre-

spective of the animal body weight change (−15% for the

HF- and HF + groups compared to the C group when the

values were expressed in unit per unit of citrate synthase,

p < 0.05). That slight difference was however erased when

the values were normalized to the amount of cardiac pro-

teins. Finally, C3 activity appeared the most affected by

the dietary intervention. That parameter was reduced by

the HF diet when the animals did not gain weight (−26

and −28% for the values expressed in relation to the

amount of mitochondria and the amount of myocardial

proteins, p < 0.05), but was similar to the C group value

for the HF+ group.

Fatty acid composition of cardiac phospholipids

The fatty acid composition of myocardial phospholipids is

presented in Table 5. SFAs were increased by the HF diet

(+12 and +11% in the HF- and HF+ groups, p < 0.05) at

Figure 1 Effects of the diets on the reactivity of the coronary

microvasculature. (A) Endothelial-dependent vasodilatation (EDV).

(B) Endothelial-independent vasodilatation (EIV). (C) Endothelial cell

vasodilatation activity (ECVA). C: control; HF- : HF-fed rats with no

body weight change; HF+: HF-fed rats with body weight gain; Ach:

acetylcholine; SNP: sodium nitroprusside. The number of experiments

was 6 per group. a, b: significantly different.

Figure 2 Effects of HF diet, L-NAME and Indomethacin on the

EDV of the coronary microvasculature at 60 pm of injected Ach

dose. The number of experiments was 6 for the control groups and

4 for the HF groups. C: control animals; HF-: HF-fed rats with no

body weight change; HF+: HF-fed rats with body weight gain; Ach:

acetylcholine. a, b: values without a common letter are significantly

different; *: significant difference in the HF- group in the absence or

presence of inhibitors; #: significant difference in the HF+ group in

the absence or presence of inhibitors.
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the expense of the MUFAs (−20 and −26%, p < 0.05).

However, the proportions of total PUFAs, n-6 PUFAs and

n-3 PUFAs were not altered.

Some alterations occurred inside the lipid classes. The

SFAs DMA C18:0, C18:0 and C22:0 were increased by the

HF diet (+132, +25 and +63% compared to the C group,

p < 0.05). Interestingly, the proportion of C18:0 was more

increased in the HF- group (+29%, p < 0.05) than in the

HF+ group (+22%, p < 0.05). In the MUFAs, the propor-

tions of C18:1 n-9 was amplified by the HF diet at the det-

riment of the n-7 fatty acids (−76 and −47% for the C16:1

n-7 and C18:1 n-7, p < 0.05). In the n-6 PUFAs, the pro-

portion of C18:2 n-6 was drastically decreased by the HF

diet, but that reduction was ampler in the HF- group

(−30%, p < 0.05) than in the HF+ group (−14%, p < 0.05).

Except for the C18:3 n-6 which was also reduced, all the

other n-6 PUFAs (C20:2 n-6, C20:3 n-6, C20:4 n-6, C22:4

n-6 and C22:5 n-6) were increased by the HF diet in a

similar way for both HF- and HF + groups. The only ex-

ception was the C20:4 n-6, which was highly augmented

in the HF- group (+23%, p < 0.05) and only moderately in

the HF+ group (+11%, not significant). The HF diet-

induced tendency to augment the carbon chain length of

the membrane PUFAs was also true for the n-3 PUFAs.

Indeed, the HF diet increased the proportion of C22:5 n-3

(+143 and +141% for the HF- and HF+ groups, p < 0.05).

As indicated by the C18:0/C16:0, C18:1 n-7/C16:1 n-7,

C20:2 n-6/C18:2 n-6, C22:4 n-6/C20:4 n-6 and C22:5 n-

3/C20:5 n-3 ratios, activities of the elongases were in-

creased by the HF diet. Conversely, activities of the Δ9-,

Δ6- and Δ5-desaturases were reduced as suggested by

the reduction of the C16:1 n-7/C16:0, C18:3 n-6/C18:2

n-6 and C20:4 n-6/C20:3 n-6 ratios. Finally, the n-6 to

Table 4 Activities of the respiratory chain complexes in

myocardial biopsies

Enzyme C HF- HF+

CS mU./mg 4.3 ± 0.1 4.4 ± 0.2 4.6 ± 0.4

C1 U./U. CS 0.24 ± 0.01 0.20 ± 0.02 0.21 ± 0.03

mU./mg 1.05 ± 0.05 0.82 ± 0.07 0.99 ± 0.22

C2 U./U. CS 0.20 ± 0.01a 0.17 ± 0.01b 0.17 ± 0.01b

mU./mg 0.85 ± 0.03 0.78 ± 0.05 0.79 ± 0.08

C3 U./U. CS 0.068 ± 0.004a 0.050 ± 0.005b 0.064 ± 0.002a

mU./mg 0.29 ± 0.01a 0.21 ± 0.02b 0.29 ± 0.03a

C4 U./U. CS 0.024 ± 0.001 0.020 ± 0.002 0.020 ± 0.002

mU./mg 0.101 ± 0.006 0.079 ± 0.006 0.094 ± 0.013

The number of experiments was 6 per group. Citrate synthase (CS) activities

were expressed in mU./mg of myocardial proteins. Complex 1, 2, 3 and 4 (C1,

C2, C3, C4) activities were expressed either in mU./mg of myocardial proteins

(mU./mg) or in units/unit of citrate synthase activity (U./U. CS). C: control

group; HF-: high fat-fed animals without weight gain compared to the control

group; HF+: high fat-fed animals with weight gain compared to the control

group; a, b: two means located on a same line without a common letter are

significantly different.

Table 5 Fatty acid composition of cardiac phospholipids

Fatty acid C HF- HF+

C14:0 0.06 ± 0.01 0.08 ± 0.01 0.08 ± 0.01

DMA C16:0 3.22 ± 0.17 3.04 ± 0.17 3.34 ± 0.19

C16:0 13.15 ± 0.14 10.30 ± 0.48 11.38 ± 1.15

DMA C18:0 1.07 ± 0.05a 2.49 ± 0.12b 2.47 ± 0.20b

C18:0 21.27 ± 0.09a 27.42 ± 0.26b 25.86 ± 0.71c

C22:0 0.04 ± 0.01a 0.06 ± 0.01b 0.07 ± 0.01b

C24:0 0.15 ± 0.01a 0.06 ± 0.01b 0.05 ± 0.01b

SFA 38.82 ± 0.25a 43.44 ± 0.85b 43.24 ± 1.81b

C16:1 n-7 0.51 ± 0.05a 0.12 ± 0.01b 0.12 ± 0.05b

C16:1 n-9 nd 0.05 ± 0.03 0.07 ± 0.02

C18:1 n-7 5.24 ± 0.19a 2.91 ± 0.05b 2.60 ± 0.35b

C18:1 n-9 3.24 ± 0.04a 4.02 ± 0.07b 3.72 ± 0.27a,b

C20:1 n-9 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01

MUFA 8.91 ± 0.24a 7.17 ± 0.09b 6.57 ± 0.51b

C18:2 n-6 26.49 ± 1.27a 18.65 ± 0.49b 22.82 ± 1.08c

C18:3 n-6 0.02 ± 0.01a 0.01 ± 0.01b 0.01 ± 0.01b

C20:2 n-6 0.10 ± 0.01a 0.22 ± 0.01b 0.21 ± 0.02b

C20:3 n-6 0.28 ± 0.02a 0.59 ± 0.03b 0.64 ± 0.06b

C20:4 n-6 17.02 ± 0.34a 20.95 ± 0.84b 18.89 ± 1.10a,b

C22:4 n-6 0.24 ± 0.01a 0.50 ± 0.04b 0.46 ± 0.05b

C22:5 n-6 0.21 ± 0.03a 0.52 ± 0.03b 0.43 ± 0.05b

n-6 PUFA 44.36 ± 1.05 41.42 ± 0.48 43.45 ± 1.02

C18:3 n-3 0.02 ± 0.01 0.04 ± 0.01 0.05 ± 0.02

C20:5 n-3 0.12 ± 0.01 0.12 ± 0.03 0.09 ± 0.04

C22:5 n-3 0.75 ± 0.09a 1.82 ± 0.14b 1.81 ± 0.23b

C22:6 n-3 5.54 ± 0.22 6.00 ± 0.44 4.78 ± 0.46

n-3 PUFA 6.37 ± 0.21 7.98 ± 0.58 6.73 ± 0.67

Total PUFA 52.43 ± 0.12 49.40 ± 0.86 50.18 ± 1.55

n-6/n-3 7.00 ± 0.10a 5.28 ± 0.38b 6.62 ± 0.57a

EPA/AA 0.0068 ± 0.0008 0.0056 ± 0.0012 0.0043 ± 0.0019

EPA + DHA 5.66 ± 0.21 6.12 ± 0.44 4.87 ± 0.50

C18:0/C16:0 1.62 ± 0.02a 2.68 ± 0.11b 2.33 ± 0.18b

C18:1 n-7/C16:1 n-7 10.9 ± 1.6a 24.8 ± 0.9b 18.1 ± 5.6a,b

C20:2 n-6/C18:2 n-6 3.9 ± 0.1a 11.6 ± 0.8b 9.0 ± 0.7c

C22:4 n-6/C20:4 n-6 1.4 ± 0.1a 2.4 ± 0.2b 2.4 ± 0.1b

C22:5 n-3/C20:5 n-3 7.2 ± 1.7a 18.1 ± 5.2a,b 32.6 ± 9.3b

C16:1 n-7/C16:0 4.0 ± 0.6a 1.1 ± 0.1b 1.0 ± 0.3b

C18:3 n-6/C18:2 n-6 7.8 ± 0.5a 4.1 ± 1.4b 3.4 ± 1.1b

C20:4 n-6/C20:3 n-6 62.7 ± 5.6a 36.1 ± 2.8b 30.8 ± 4.7b

The number of experiments was 6 per group. Except for the different ratios, the

results are expressed in percent of total fatty acids. The C22:4 n-6/C20:4

n-6 and C16:1 n-7/C16:0 ratios must be multiplied by 10−2. The C20:2 n-6/C18:2 n-6

and C18:3 n-6/C18:2 n-6 ratios must be multiplied by 10−3 and 10−4, respectively.

DMA: dimethylacetal; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids;

PUFA: polyunsaturated fatty acids; EPA: eicosapentaenoic acid; AA: arachidonic acid;

DHA: docosahexaenoic acid. C: control group; HF-: high fat-fed animals without

weight gain compared to the control rats; HF+: high fat-fed animals with weight

gain compared to the control rats; a, b, c: two means located on a same line without

a common letter are significantly different.
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n-3 PUFA ratio of cardiac phospholipids was decreased in

the HF- group (−25%, p < 0.05), but not in the HF+ group.

Discussion
The present study was aimed at determining the effects

of a 3-month HF diet rich in SFAs and MUFAs on the

cardiac function and at investigating the underlying

mechanism at the level of coronary circulation. Despite

its high percentage in fat content, the high-fat diet

chosen for this study did not induce severe obesity in

the animals but increased significantly their adiposity,

which was accompanied or not by body weight gain. The

increased adiposity of the animals was related to changes

observed in the in vivo and ex vivo cardiac function as

well as in the ex vivo coronary reactivity. However, the

body weight change and thus the adipose tissue distribu-

tion seemed to affect the mechanism through which the

changes at the coronary level occurred.

Feeding rats for 3 months with a HF diet containing

large amounts of SFAs and MUFAs was expected to gen-

erally increase the body weight of the animals. During

the experiments two distinct groups were observed in

the HF-fed animals with one of them being character-

ized by no body weight change compared to the control

group (HF-) and the other showing an increased body

weight (HF+). These two groups displayed a similar in-

crease in abdominal adiposity and were thus clearly dif-

ferent from the C group. The HF + group was composed

of obese animals, since their body weight and abdominal

adiposity were increased. However, the body weight was

moderately increased compared to the C group. These

animals were thus considered as moderately obese. The

HF- rats were not distinctly obese, since they had an in-

creased abdominal adiposity but no augmentation of

body weight. As the case with high body weight and ab-

dominal adiposity can occur in humans, the situation

with low body weight and high abdominal adiposity also

exists and refers to abnormal and hazardous body com-

position with high risk of chronic pathological events

[27]. Indeed, this situation is interesting to study since it

has been recently recognized in the literature the exist-

ence of different subtypes of obesity such as metabolic-

ally healthy but obese (elevated body fat but normal

metabolic profiles) and metabolically obese, normal

weight individuals that may be or not at increased car-

diovascular risk. Furthermore, a new syndrome has been

described lately in humans, the normal weight obesity

syndrome, which is defined as a normal body mass index

associated with increased body fat [28]. Thus, the study

of these two HF subgroups allowed the study of two dif-

ferent subtypes of obesity that correspond to different

situations of obesity occurring in humans.

The fact that the fat content of the HF diet chosen

was not consisted entirely by saturated fat or that the

protein content was doubled in our HF diet might ex-

plain the state of obesity that we found in our rats. It

could also explain any differences concerning basic char-

acteristics of the animals from previous studies, such as

body weight and glucose levels [11,29]. Futhermore,

Buettner et al. have shown that PUFA- or medium-chain

fatty acids-rich diets did not induce insulin resistance in

rats after a 12 week period [30]. Indeed, in the HF diet

chosen for this study one can find not only SFA but also

a percentage of PUFAs that could explain the metabolic

results of the rats. This diet affected only the triglycer-

ides and cholesterol levels of the rats indicating the be-

ginning of a dyslipidemia. Furthermore, it provoked the

development of glucose intolerance in the HF+ rats,

which is consistent with previous studies [31]. Thus, the

high-fat diet altered the metabolic profile of the HF-fed

rats according to the percentage of the adiposity in their

bodies with the HF- rats having a less obese profile com-

pared to the HF+ rats.

The reason why the HF- animals did not gain body

weight is not known, since we did not evaluate the food

intake and the energy expenditure in our study. For that

reason, we analyzed a previous study in which we deter-

mined the food intake. In that last study, the C diet was

given to five rats and the HF diet to ten rats for a period

of 50 days. As in the present study, the HF diet-fed ani-

mals were divided into two groups of equal sample size

(n = 5) with the lightest and heaviest animals. The ani-

mal weight at the beginning of the experiment was simi-

lar in the three groups (321 ± 3, 318 ± 6 and 316 ± 3 g

for the C, HF- and HF + groups, not significant). At the

end of the fifty day-diet, the animal weight was signifi-

cantly higher in the HF + group (445 ± 8 g) compared to

the two other groups (411 ± 5 and 406 ± 8 g for the C

and HF- groups, respectively). This perfectly fits with

the results of the present study indicating that the HF-

fed rats can either take weight compared to the control

group or not. Indeed, the weight gain of the animals

during the 3 month-feeding period was higher in the

HF+ group compared to the two other ones. Interest-

ingly, the weight gain paralleled that of the cumulative

dietary intake in the HF groups, suggesting that the dif-

ference in weight gain was due to a difference in food in-

take. The palatability of the HF diet could thus be

responsible for the observed differences. It could be high

enough for the subgroup of rats becoming obese and in-

sufficient for the other ones. However, the reduction of

the n-6 to n-3 PUFA ratio of cardiac phospholipids ob-

served in the HF- group could also limit the food intake.

In the present study, despite the different body weight

gains, the abdominal fat mass was of similar magnitude

in the two subgroups of HF diet-fed rats, suggesting that

the excessive caloric intake observed in the HF+ group

was used to build up other tissues in the body. Another
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explanation for the lack of body weight gain in the HF-

group could be an insufficient intake of proteins and a

low lean mass build-up [32-35]. In the present study, the

protein content of the HF diet was planned to be twice

as high as that of the C diet in order to compensate for

the lower food intake due to the dietary lipid enrich-

ment. This could be not enough for certain animals in

order to build up a sufficient amount of muscle proteins.

Moreover, a reduced respiratory chain complex 3 activity

which paralleled the decreased n-6 to n-3 PUFA ratio of

membrane phospholipids was observed in the hearts of

the HF- animals. This could lead to a lower rate of ATP

production. If the energy available for biochemical syn-

thesis was also reduced in the skeletal muscle, this could

lead to decreased protein build-up and muscle mass for-

mation. The phenomenon would not occur in the HF+

group, since the respiratory chain complex 3 activity and

n-6 to n-3 PUFA ratio of membrane phospholipids were

as high as in the C group. However, the formation of

these two HF subgroups reveals that a HF diet can have

differential effects on the body and blood composition of

the individual.

The HF diet chosen for this study triggered an in-

crease in the in vivo contractile function of the animals

especially that of the HF- rats, whereas the HF+ rats had

an intermediate profile between control and HF- rats.

However, these results were not found in the ex vivo

situation. Indeed, the ex vivo cardiac mechanical func-

tion was reduced by the HF diet, following the elevated

adiposity of the animals irrespective of their body

weight. That observation has already been presented in

the literature after a HF diet period [9,31], after weight

gain through post-natal overfeeding in the mouse [7]

and in the rat [8] as well as in the ZDF rat [6]. This de-

pressed ex vivo cardiac mechanical activity observed in

this study could be related to changes in the cardiac

metabolism related to the whole body glucose intoler-

ance, the increased degree of saturation of the cardiac

membranes as shown by the increase in the SFAs at the

detriment of MUFAs [36] and the pro-inflammatory en-

vironment as indicated by the low ratio EPA/AA that

predisposes to a balance of eicosanoids favoring plate-

let aggregation and inflammatory signaling [37,38].

However, an increased cardiac output is expected to

occur with nascent low- and moderate-severity obesity

[8]. Indeed, our in vivo cardiac function measurements

suggest an augmented inotropism after the 3-month

HF diet intake as already shown by measurements of

the in vivo ejection fraction after post-natal overfeed-

ing. That parameter is firstly increased at the age of

3 months before being reduced from the age of

5 months [8]. Thus, nascent obesity may lead to an in-

creased cardiac output resulting from an increased car-

diac mechanical function.

The further study of these two subgroups revealed the

same profile of the ex vivo cardiac and coronary function

after the HF diet but the results were related to different

mechanisms at the level of coronary vessels depending

on the body composition of the animals. These results

indicate that the high-fat diet has an important effect on

the adiposity of the individual, but not necessarily on the

body weight, and that these changes in the adiposity are

related to changes occurring at the level of cardiovascu-

lar function.

We then evaluated the ex vivo coronary reactivity of

the animals according to Langendorff mode. We evalu-

ated the global cardiac reactivity through estimation of

changes in the aortic pressure, which in our model of

Langendorff perfusion at fixed flow reflected mainly the

pressure of the coronary micro vessels. The conductance

vessels may also contribute to the aortic pressure, but no

spasm and no atheroma plaque was expected to occur in

our experimental conditions. This study reports for the

first time that a 3 month HF diet triggered an increase

in EDV of the coronary microvasculature. HF diet- or

post-natal overfeeding-induced obesity has been associ-

ated with either a reduced [14-16,18] or a maintained

[7,10,12] EDV of the coronary vessels. It has also been

reported that glucose intolerance due to high-fat feeding

does not alter myocardial perfusion during hyperemia

[31]. However, Jerebolvszki et al. [11] reported a HF

diet-induced increase in the sensitivity of pressurized

coronary arterioles to NO, suggesting that the coronary

reactivity can be increased in certain circumstances. This

increase in the EDV of the HF-fed animals could aug-

ment the coronary reserve explaining the results of the

in vivo situation.

The HF diet-induced inotropic effect that encountered

in vivo in our experiments fits perfectly with the in-

creased coronary reserve reported ex vivo. This mechan-

ism could also explain results from previous studies

reporting maintenance of myocardial perfusion or pre-

served contractile function after high-fat feeding

[31,39,40]. Hence, early obesity triggers an in vivo in-

crease in contractile function which is supported by an

augmentation of the coronary reserve. The discrepancies

between the ex vivo and in vivo situations observed in

our study could be due to an increased left end diastolic

volume reported to occur in overfed rats [8], which

would stimulate the cardiac contractile function through

the Frank Starling’s law in the in vivo situation.

The augmented EDV observed in our study paralleled

the increase in abdominal fat mass, but was not related

to an augmentation of body weight. It is possible that

the increased fat mass at the abdominal level or at the

pericardiac level if it also occurred acted on the coronary

vessels through a change in adipocytokine release. Sys-

temic leptin is increased with augmented adiposity [41]
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while adiponectin is reduced [42]. The resulting in vivo

adiposity-related changes in coronary function could be

retained ex vivo and contribute to the adaptation of myo-

cardial function in nascent obesity. Indeed, it has been

shown that obesity necessitates higher cardiac mechanical

activity [43-45] due to augmented whole body energy ex-

penditure. As already indicated, in our model of cardiac

perfusion, we measured mainly the reactivity of the coron-

ary microvasculature which determines myocardial perfu-

sion. The increased coronary EDV observed in our study

could reflect an augmented in vivo coronary perfusion due

to an obesity-related increase in cardiac output.

Previous studies suggest that obesity may reduce NO

levels mostly through increased oxidative stress [46] and

that when NO bioavailability is reduced a compensatory

mechanism takes place in order to maintain a normal

coronary function [47]. Adaptation of coronary vessels is

particularly important, as in the coronary circulation

oxygen extraction is near maximal and any mismatch

between blood supply and metabolic demand would de-

teriorate myocardial contractile function [48]. Further-

more, the increase in body mass, either muscular or

adipose, requires higher cardiac output and expanded

intravascular volume to meet the elevated metabolic re-

quirements [45]. Thus, the vascular alterations observed

in our study could help the coronary microvasculature

to adjust the organ perfusion during physiological pro-

cesses such as exercise. Otherwise the heart would not

be able to respond to increased metabolic demands and

lead eventually to ischemic incidents.

In order to evaluate the contribution of the main vaso-

dilator pathways in the observed EDV, inhibitors that

block NO production and COX were used during the

perfusion protocol. The main results were the following:

i) L-NAME reduced EDV in the HF- group, indicating

the implication of NOS pathway in the enhanced ACh

response in the HF group; ii) indomethacin decreased

EDV in the HF+ group, implying an altered balance be-

tween COX-derived vasodilators and vasoconstrictors in

the HF group. The HF diet seems to reduce the avail-

ability of vasoconstrictor mediators and maintain or

even enhance that of vasodilators contributing eventu-

ally to the enhanced EDV. The analysis of the fatty acid

content of the cardiac phospholipids also revealed that

the arachidonic acid (AA, C20:4n-6) was increased in

the HF- rat hearts which could lead eventually to an in-

crease in the COX-vasoactive agents [49]; iii) association

of L-NAME and indomethacin decreased the EDV in

both HF- and HF+ groups. Thus, both NOS and COX

pathways seem to be implicated in the HF-induced ACh

response.

The study of the two HF subgroups (HF-, HF+) during

the last set of experiments helped to elucidate the in-

volvement of the NOS and COX pathways in the

increased ACh-response of the HF rats. The augmented

ACh- response of the HF- rats was due to an increase in

the activity of endothelial cells, as shown by the ECVA

diagram while that of the HF+ rats was due to an in-

creased sensitivity of the smooth muscle cells to NO, as

shown by the response to SNP injections. The mechan-

ism explaining the increased EDV observed in the HF+

rats has already been described in the literature [11] and

was explained by an increased sensitivity to NO of the

SMC guanylate cyclase with consequent augmented cyc-

lic guanosine monophosphate (cGMP) production and

SMC relaxation. This fits well our results since L-NAME

did not affect the EDV of the HF+ rats, indicating that

NOS pathway was not affected, but since SMCs are

more sensitive to NO which leads finally to increased

EDV. Furthermore, the implication of COX-derived va-

sodilators seem to participate in the increased EDV of

the HF+ rats as shown by the results of the indometh-

acin experiments. However, more original was the mech-

anism explaining the increased EDV observed in the

HF- group. Indeed, these rats with normal weight obes-

ity displayed an improved EDV which was strictly due to

an increased ECVA, which was probably due to in-

creased NOS signaling as shown by the results of the L-

NAME experiments. Since the content of AA of myocar-

dial phospholipids was increased in that group and not

in the HF+ group, we also suspected the involvement of

COX products in order to explain the increased ECVA.

Indeed, indomethacin decreased the EDV of the HF-rats

but not significantly, indicating that the NOS pathway re-

mains the prominent pathway for the vasodilatation to-

gether with the activity of the endothelial cells. This

relationship between NOS/COX pathways and endothe-

lial/smooth muscle cells in the EDV seems to be reversed

in the HF+ group, with the COX pathway having the most

important role and the smooth muscle cells becoming

more sensitive. Thus, the adipose tissue distribution seems

to affect the mechanism through which the increased ACh

response occurs in the HF-fed rats.

Conclusions
In summary, our results showed that HF contribute to an

augmentation of coronary EDV, which supports an im-

proved cardiac mechanical activity necessary for the

higher whole body energy expenditure of the individuals.

Since the HF diet-fed rats did not display necessarily an

increased body weight but had systematically a higher ab-

dominal adiposity, the improved EDV was rather related

to the increased abdominal fat mass. Despite all these al-

terations, the coronary microvasculature of HF fed obese

rats adapts resulting to enhanced ACh responses in order

to maintain an adequate tissue perfusion in cases of

physiological processes of enhanced metabolic demand

such as exercise. One of the most interesting points of our
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study is that the mechanisms of the coronary reactivity re-

sponsible for the improvement of the cardiac function de-

pend on the percentage of body adiposity. Indeed, the

augmented coronary reactivity of the HF rats was due ei-

ther to an augmented sensitivity of the SMCs to NO in

the rats displaying body weight gain compared to the con-

trol ones or to an improved ECVA in the animals with no

body weight gain. To our knowledge, the last effect was

never described in the literature and our results indicate

that this was related to an enrichment of the myocardial

membranes in AA. The increased arachidonic acid propor-

tion resulted from a stimulation of elongases and inhibition

of desaturases and was responsible for an increased produc-

tion of cyclooxygenase end-product(s) with vasodilatation

properties. Whatever the mechanism through which it oc-

curs, the HF diet-induced increase in coronary reserve seem

to favor the cardiac mechanical activity and thus the up-

holding of tissue perfusion and welfare of obese individuals.
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