D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nature Reviews Molecular Cell Biology, vol.26, issue.4, pp.251-262, 2012.
DOI : 10.1038/nrm3311

S. Fogarty, S. A. Hawley, K. A. Green, N. Saner, K. J. Mustard et al., and AMP, Biochemical Journal, vol.118, issue.1, pp.109-118, 2010.
DOI : 10.1074/jbc.275.1.223

URL : https://hal.archives-ouvertes.fr/hal-00479250

O. Neill and H. M. , AMPK and Exercise: Glucose Uptake and Insulin Sensitivity, Diabetes & Metabolism Journal, vol.37, issue.1, pp.1-21, 2013.
DOI : 10.4093/dmj.2013.37.1.1

O. Neill, H. M. Holloway, G. P. Steinberg, and G. R. , AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity, Mol Cell, vol.366, pp.135-151, 2013.

J. T. Treebak, C. Pehmoller, J. M. Kristensen, R. Kjobsted, J. B. Birk et al., Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, The Journal of Physiology, vol.298, issue.2, pp.351-375, 2014.
DOI : 10.1113/jphysiol.2013.266338

T. E. Jensen, J. F. Wojtaszewski, and E. A. Richter, AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?, Acta Physiologica, vol.99, issue.Suppl. 1, pp.155-174, 2009.
DOI : 10.1111/j.1748-1716.2009.01979.x

J. T. Treebak, J. B. Birk, B. F. Hansen, G. S. Olsen, and J. F. Wojtaszewski, A-769662 activates AMPK ??1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, AJP: Cell Physiology, vol.297, issue.4, pp.1041-1052, 2009.
DOI : 10.1152/ajpcell.00051.2009

J. B. Birk and J. F. Wojtaszewski, Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle, J, vol.577, pp.1021-1032, 2006.

J. T. Treebak, J. B. Birk, A. J. Rose, B. Kiens, E. A. Richter et al., AS160 phosphorylation is associated with activation of ??2beta2??1- but not ??2beta2??3-AMPK trimeric complex in skeletal muscle during exercise in humans, AJP: Endocrinology and Metabolism, vol.292, issue.3, pp.715-722, 2007.
DOI : 10.1152/ajpendo.00380.2006

R. S. Lee-young, S. R. Griffee, S. E. Lynes, D. P. Bracy, J. E. Ayala et al., Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo The ?subunit of AMPK is essential for submaximal contraction-mediated glucose transport in skeletal muscle in vitro, J Biol Am J Physiol Endocrinol, vol.284, issue.295, pp.1447-1454, 2008.

J. Mu, J. T. Brozinick, . Jr, O. Valladares, M. Bucan et al., A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle, Molecular Cell, vol.7, issue.5, pp.1085-1094, 2001.
DOI : 10.1016/S1097-2765(01)00251-9

O. Neill, H. M. Maarbjerg, S. J. Crane, J. D. Jeppesen, J. Jorgensen et al., AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise, Proc Natl Acad Sci, pp.16092-16097, 2011.

M. J. Abbott, L. D. Bogachus, and L. P. Turcotte, AMPK??2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle, Journal of Applied Physiology, vol.111, issue.1, pp.125-134, 1985.
DOI : 10.1152/japplphysiol.00807.2010

N. Fujii, M. F. Hirshman, E. M. Kane, R. C. Ho, L. E. Peter et al., AMP-activated protein kinase alpha2 activity is not essential for contraction-and hyperosmolarity-induced glucose transport in skeletal muscle, J Biol, vol.280, pp.39033-39041, 2005.

T. E. Jensen, P. Schjerling, B. Viollet, J. F. Wojtaszewski, E. A. Richter et al., AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. PLoS One3 Exercise-induced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity, Mol Cell, vol.366, pp.204-214, 2008.

B. Viollet, F. Andreelli, S. B. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity, J Clin, vol.111, pp.91-98, 2003.

R. Mounier, M. Theret, L. Arnold, S. Cuvellier, L. Bultot et al., AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration, Cell, vol.18, pp.251-264, 2013.

P. Miniou, D. Tiziano, T. Frugier, N. Roblot, L. Meur et al., Gene targeting restricted to mouse striated muscle lineage. Nucleic acids research27 Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse, J Cell, vol.27, issue.111, pp.2437-2449, 1990.
DOI : 10.1093/nar/27.19.e27

URL : http://doi.org/10.1093/nar/27.19.e27

S. C. Bodine, E. Latres, S. Baumhueter, V. K. Lai, L. Nunez et al., Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy, Science, vol.294, issue.5547, pp.1704-1708, 2001.
DOI : 10.1126/science.1065874

S. B. Jorgensen, B. Viollet, F. Andreelli, C. Frosig, J. B. Birk et al., Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4- carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle, J Biol, vol.279, pp.1070-1079, 2004.

S. J. Maarbjerg, S. B. Jorgensen, A. J. Rose, J. Jeppesen, T. E. Jensen et al., Genetic impairment of AMPK??2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice, AJP: Endocrinology and Metabolism, vol.297, issue.4, pp.924-934, 2009.
DOI : 10.1152/ajpendo.90653.2008

R. S. Lee-young, J. E. Ayala, P. T. Fueger, W. H. Mayes, L. Kang et al., Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPK??2 in the regulation of exercise capacity in vivo, International Journal of Obesity, vol.28, issue.7, pp.982-989, 2011.
DOI : 10.1038/ijo.2010.220

R. R. Russell, J. Li, D. L. Coven, M. Pypaert, C. Zechner et al., AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. The Journal of clinical investigation114, 495-503 27, Proc Natl Acad Sci, pp.15983-15987, 2002.

J. H. Um, S. J. Park, H. Kang, S. Yang, M. Foretz et al., AMP-Activated Protein Kinase-Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol, Diabetes, vol.59, issue.3, pp.554-563, 2010.
DOI : 10.2337/db09-0482

S. B. Jorgensen, J. T. Treebak, B. Viollet, P. Schjerling, S. Vaulont et al., Role of AMPK??2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle, AJP: Endocrinology and Metabolism, vol.292, issue.1, pp.331-339, 2007.
DOI : 10.1152/ajpendo.00243.2006

L. Barre, C. Richardson, M. F. Hirshman, J. Brozinick, S. Fiering et al., Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation, AJP: Endocrinology and Metabolism, vol.292, issue.3, pp.802-811, 2007.
DOI : 10.1152/ajpendo.00369.2006

K. S. Rockl, M. F. Hirshman, J. Brandauer, N. Fujii, L. A. Witters et al., Skeletal Muscle Adaptation to Exercise Training, Diabetes, vol.56, issue.8, pp.2062-2069, 2007.
DOI : 10.2337/db07-0255

T. L. Scheffler, J. M. Scheffler, S. Park, S. C. Kasten, Y. Wu et al., Fiber hypertrophy and increased oxidative capacity can occur simultaneously in pig glycolytic skeletal muscle, AJP: Cell Physiology, vol.306, issue.4, 2013.
DOI : 10.1152/ajpcell.00002.2013

D. K. Klein, H. Pilegaard, J. T. Treebak, T. E. Jensen, B. Viollet et al., Lack of AMPK??2 enhances pyruvate dehydrogenase activity during exercise, AJP: Endocrinology and Metabolism, vol.293, issue.5, pp.1242-1249, 2007.
DOI : 10.1152/ajpendo.00382.2007

Y. Athea, B. Viollet, P. Mateo, D. Rousseau, M. Novotova et al., AMP-activated protein kinase alpha2 deficiency affects cardiac cardiolipin homeostasis and mitochondrial function, pp.786-794, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00150990

S. Jager, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC- 1alpha, Proc Natl Acad Sci, pp.12017-12022, 2007.

C. Canto, L. Q. Jiang, A. S. Deshmukh, C. Mataki, A. Coste et al., Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle, Cell Metabolism, vol.11, issue.3, pp.213-219, 2010.
DOI : 10.1016/j.cmet.2010.02.006

C. Handschin, S. Chin, P. Li, F. Liu, E. Maratos-flier et al., Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals, J Biol, vol.282, pp.30014-30021, 2007.

G. C. Rowe, I. S. Patten, Z. K. Zsengeller, R. El-khoury, M. Okutsu et al., Disconnecting Mitochondrial Content from Respiratory Chain Capacity in PGC-1-Deficient Skeletal Muscle, Cell Reports, vol.3, issue.5, pp.1449-1456, 2013.
DOI : 10.1016/j.celrep.2013.04.023

L. Leick, J. F. Wojtaszewski, S. T. Johansen, K. Kiilerich, G. Comes et al., PGC-1?? is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle, AJP: Endocrinology and Metabolism, vol.294, issue.2, pp.463-474, 2008.
DOI : 10.1152/ajpendo.00666.2007

S. B. Jorgensen, J. F. Wojtaszewski, B. Viollet, F. Andreelli, J. B. Birk et al., Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, Faseb, vol.19, pp.1146-1148, 2005.

C. B. Tanner, S. R. Madsen, D. M. Hallowell, D. M. Goring, T. M. Moore et al., Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1, AJP: Endocrinology and Metabolism, vol.305, issue.8, pp.1018-1029, 2013.
DOI : 10.1152/ajpendo.00227.2013

S. Larsen, J. M. Kristensen, N. Stride, J. F. Wojtaszewski, J. W. Helge et al., Skeletal muscle mitochondrial respiration in AMPK??2 kinase-dead mice, Acta Physiologica, vol.99, issue.2, pp.314-320, 2012.
DOI : 10.1111/j.1748-1716.2011.02399.x

J. M. Kristensen, S. Larsen, J. W. Helge, F. Dela, and J. F. Wojtaszewski, Two Weeks of Metformin Treatment Enhances Mitochondrial Respiration in Skeletal Muscle of AMPK Kinase Dead but Not Wild Type Mice, PLoS ONE, vol.297, issue.7, pp.53533-53578, 2013.
DOI : 10.1371/journal.pone.0053533.g006

S. C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball et al., Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey, Molecular Cell, vol.23, issue.4, pp.607-618, 2006.
DOI : 10.1016/j.molcel.2006.06.026

K. Shinmura, K. Tamaki, M. Sano, N. Nakashima-kamimura, A. M. Wolf et al., Caloric Restriction Primes Mitochondria for Ischemic Stress by Deacetylating Specific Mitochondrial Proteins of the Electron Transport Chain, Circ Res109, pp.396-406, 2011.
DOI : 10.1161/CIRCRESAHA.111.243097

B. H. Ahn, H. S. Kim, S. Song, I. H. Lee, J. Liu et al., A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis, Proc Natl Acad Sci U S A105, pp.14447-14452, 2008.
DOI : 10.1073/pnas.0803790105

T. E. Jensen, A. J. Rose, S. B. Jorgensen, N. Brandt, P. Schjerling et al., Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction, AJP: Endocrinology and Metabolism, vol.292, issue.5, pp.1308-1317, 2007.
DOI : 10.1152/ajpendo.00456.2006

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. Grahame-hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO Journal, vol.108, issue.10, pp.1810-1820, 2005.
DOI : 10.1038/sj.emboj.7600667

C. Roepstorff, M. Thiele, T. Hillig, H. Pilegaard, E. A. Richter et al., Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise, J, vol.574, pp.125-138, 2006.

W. Hadj-said, M. Bangratz, A. Vignaud, A. Chatonnet, G. Butler-browne et al., Effect of locomotor training on muscle performance in the context of nerve-muscle communication dysfunction, Muscle & Nerve, vol.30, issue.4, pp.567-577, 2012.
DOI : 10.1002/mus.22332