R. Ketting, The Many Faces of RNAi, Developmental Cell, vol.20, issue.2, pp.148-161, 2011.
DOI : 10.1016/j.devcel.2011.01.012

E. Bernstein, S. Kim, M. Carmell, E. Murchison, H. Alcorn et al., Dicer is essential for mouse development, Nature Genetics, vol.35, issue.3, pp.215-217, 2003.
DOI : 10.1038/ng1253

W. Yang, D. Yang, S. Na, G. Sandusky, Q. Zhang et al., Dicer Is Required for Embryonic Angiogenesis during Mouse Development, Journal of Biological Chemistry, vol.280, issue.10, pp.9330-9335, 2005.
DOI : 10.1074/jbc.M413394200

B. Harfe, M. Mcmanus, J. Mansfield, E. Hornstein, and C. Tabin, The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.10898-10903, 2005.
DOI : 10.1073/pnas.0504834102

B. Cobb, T. Nesterova, E. Thompson, A. Hertweck, O. Connor et al., T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer, The Journal of Experimental Medicine, vol.19, issue.9, pp.1367-1373, 2005.
DOI : 10.1038/ng1351

J. Chen, E. Murchison, R. Tang, T. Callis, M. Tatsuguchi et al., Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure, Proceedings of the National Academy of Sciences, vol.105, issue.6, pp.2111-2116, 2008.
DOI : 10.1073/pnas.0710228105

M. Otsuka, M. Zheng, M. Hayashi, J. Lee, O. Yoshino et al., Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice, J Clin Invest, p.118, 1944.

S. Albinsson, A. Skoura, J. Yu, A. Dilorenzo, C. Fernandez-hernando et al., Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function, PLoS ONE, vol.284, issue.12, p.18869, 2011.
DOI : 10.1371/journal.pone.0018869.s005

S. Albinsson, Y. Suarez, A. Skoura, S. Offermanns, J. Miano et al., MicroRNAs Are Necessary for Vascular Smooth Muscle Growth, Differentiation, and Function, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.6, pp.1118-1126, 2010.
DOI : 10.1161/ATVBAHA.109.200873

S. Albinsson and W. Sessa, Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?, Physiological Genomics, vol.43, issue.10, pp.529-533, 2011.
DOI : 10.1152/physiolgenomics.00146.2010

T. Boettger, N. Beetz, S. Kostin, J. Schneider, M. Kruger et al., Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster, Journal of Clinical Investigation, vol.119, issue.9, pp.2634-2647, 2009.
DOI : 10.1172/JCI38864DS1

Y. Cheng, X. Liu, Y. J. Lin, Y. Xu, D. Lu et al., MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation, Circulation Research, vol.105, issue.2, pp.158-166, 2009.
DOI : 10.1161/CIRCRESAHA.109.197517

M. Xin, E. Small, L. Sutherland, X. Qi, J. Mcanally et al., MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury, Genes & Development, vol.23, issue.18, pp.2166-2178, 2009.
DOI : 10.1101/gad.1842409

A. Kuehbacher, C. Urbich, A. Zeiher, and S. Dimmeler, Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis, Circulation Research, vol.101, issue.1, pp.59-68, 2007.
DOI : 10.1161/CIRCRESAHA.107.153916

Y. Suarez, C. Fernandez-hernando, Y. J. Gerber, S. Harrison, K. Pober et al., Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis, Proceedings of the National Academy of Sciences, vol.105, issue.37, pp.14082-14087, 2008.
DOI : 10.1073/pnas.0804597105

R. Heusschen, M. Van-gink, A. Griffioen, and V. Thijssen, MicroRNAs in the tumor endothelium: Novel controls on the angioregulatory switchboard, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1805, issue.1, pp.87-96, 1805.
DOI : 10.1016/j.bbcan.2009.09.005

L. Poliseno, A. Tuccoli, L. Mariani, M. Evangelista, L. Citti et al., MicroRNAs modulate the angiogenic properties of HUVECs, Blood, vol.108, issue.9, pp.3068-3071, 2006.
DOI : 10.1182/blood-2006-01-012369

A. Kuehbacher, C. Urbich, and S. Dimmeler, Targeting microRNA expression to regulate angiogenesis, Trends in Pharmacological Sciences, vol.29, issue.1, pp.12-15, 2008.
DOI : 10.1016/j.tips.2007.10.014

S. Landskroner-eiger, I. Moneke, and W. Sessa, miRNAs as modulators of angiogenesis. Cold Spring Harbor perspectives in medicine, p.6643, 2013.

Y. Suarez, C. Fernandez-hernando, J. Pober, and W. Sessa, Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells, Circulation Research, vol.100, issue.8, pp.1164-1173, 2007.
DOI : 10.1161/01.RES.0000265065.26744.17

Y. Suarez and W. Sessa, MicroRNAs As Novel Regulators of Angiogenesis, Circulation Research, vol.104, issue.4, pp.442-454, 2009.
DOI : 10.1161/CIRCRESAHA.108.191270

A. Bonauer, G. Carmona, M. Iwasaki, M. Mione, M. Koyanagi et al., MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice, Science, vol.324, issue.5935, pp.1710-1713, 2009.
DOI : 10.1126/science.1174381

C. Doebele, A. Bonauer, A. Fischer, A. Scholz, Y. Reiss et al., Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells, Blood, vol.115, issue.23, pp.4944-4950, 2010.
DOI : 10.1182/blood-2010-01-264812

J. Fish, M. Santoro, S. Morton, S. Yu, R. Yeh et al., miR-126 Regulates Angiogenic Signaling and Vascular Integrity, Developmental Cell, vol.15, issue.2, pp.272-284, 2008.
DOI : 10.1016/j.devcel.2008.07.008

R. Hinkel, D. Penzkofer, S. Zuhlke, A. Fischer, W. Husada et al., Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model, Circulation, vol.128, issue.10, pp.1066-1075, 2013.
DOI : 10.1161/CIRCULATIONAHA.113.001904

F. Kuhnert, M. Mancuso, J. Hampton, K. Stankunas, T. Asano et al., Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126, Development, vol.135, issue.24, pp.3989-3993, 2008.
DOI : 10.1242/dev.029736

S. Wang, A. Aurora, B. Johnson, X. Qi, J. Mcanally et al., The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis, Developmental Cell, vol.15, issue.2, pp.261-271, 2008.
DOI : 10.1016/j.devcel.2008.07.002

K. Yin, K. Olsen, M. Hamblin, J. Zhang, S. Schwendeman et al., Vascular Endothelial Cell-specific MicroRNA-15a Inhibits Angiogenesis in Hindlimb Ischemia, Journal of Biological Chemistry, vol.287, issue.32, pp.27055-27064, 2012.
DOI : 10.1074/jbc.M112.364414

N. Kane, L. Howard, B. Descamps, M. Meloni, J. Mcclure et al., Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells, STEM CELLS, vol.335, issue.4, pp.643-654, 2012.
DOI : 10.1002/stem.1026

P. Fasanaro, D. 'alessandra, Y. , D. Stefano, V. Melchionna et al., MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3, Journal of Biological Chemistry, vol.283, issue.23, pp.15878-15883, 2008.
DOI : 10.1074/jbc.M800731200

P. Fasanaro, S. Greco, M. Lorenzi, M. Pescatori, M. Brioschi et al., An integrated approach for experimental target identification of hypoxia

J. Kazenwadel, M. Michael, and N. Harvey, Prox1 expression is negatively regulated by miR-181 in endothelial cells, Blood, vol.116, issue.13, pp.2395-2401, 2010.
DOI : 10.1182/blood-2009-12-256297

R. Del-toro, C. Prahst, T. Mathivet, G. Siegfried, J. Kaminker et al., Identification and functional analysis of endothelial tip cell-enriched genes, Blood, vol.116, issue.19, pp.4025-4033, 2010.
DOI : 10.1182/blood-2010-02-270819

Y. Kisanuki, R. Hammer, J. Miyazaki, S. Williams, J. Richardson et al., Tie2-Cre Transgenic Mice: A New Model for Endothelial Cell-Lineage Analysis in Vivo, Developmental Biology, vol.230, issue.2, pp.230-242, 2001.
DOI : 10.1006/dbio.2000.0106

P. Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain, Nature Genetics, vol.21, issue.1, pp.70-71, 1999.
DOI : 10.1038/5007

J. Wigle and G. Oliver, Prox1 Function Is Required for the Development of the Murine Lymphatic System, Cell, vol.98, issue.6, pp.769-778, 1999.
DOI : 10.1016/S0092-8674(00)81511-1

F. Abtahian, A. Guerriero, E. Sebzda, M. Lu, R. Zhou et al., Regulation of Blood and Lymphatic Vascular Separation by Signaling Proteins SLP-76 and Syk, Science, vol.299, issue.5604, pp.247-251, 2003.
DOI : 10.1126/science.1079477

K. Suzuki-inoue, O. Inoue, G. Ding, S. Nishimura, K. Hokamura et al., Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS, Journal of Biological Chemistry, vol.285, issue.32, pp.24494-24507, 2010.
DOI : 10.1074/jbc.M110.130575

Y. Wang and G. Oliver, Current views on the function of the lymphatic vasculature in health and disease, Genes & Development, vol.24, issue.19, pp.2115-2126, 2010.
DOI : 10.1101/gad.1955910

R. Srinivasan, M. Dillard, O. Lagutin, F. Lin, S. Tsai et al., Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature, Genes & Development, vol.21, issue.19, pp.2422-2432, 2007.
DOI : 10.1101/gad.1588407

W. Li, M. Ferkowicz, S. Johnson, W. Shelley, and M. Yoder, Endothelial Cells in the Early Murine Yolk Sac Give Rise to CD41-expressing Hematopoietic Cells, Stem Cells and Development, vol.14, issue.1, pp.44-54, 2005.
DOI : 10.1089/scd.2005.14.44

C. Lancrin, P. Sroczynska, C. Stephenson, T. Allen, V. Kouskoff et al., The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage, Nature, vol.109, issue.7231, pp.892-895, 2009.
DOI : 10.1038/nature07679

C. Bertozzi, P. Hess, and M. Kahn, Platelets: Covert Regulators of Lymphatic Development, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.30, issue.12, pp.2368-2371, 2010.
DOI : 10.1161/ATVBAHA.110.217281

L. Carramolino, J. Fuentes, C. Garcia-andres, V. Azcoitia, D. Riethmacher et al., Platelets Play an Essential Role in Separating the Blood and Lymphatic Vasculatures During Embryonic Angiogenesis, Circulation Research, vol.106, issue.7, pp.1197-1201, 2010.
DOI : 10.1161/CIRCRESAHA.110.218073

T. Okuda, J. Van-deursen, S. Hiebert, G. Grosveld, and J. Downing, AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis, Cell, vol.84, issue.2, pp.321-330, 1996.
DOI : 10.1016/S0092-8674(00)80986-1

T. Goerge, B. Ho-tin-noe, C. Carbo, C. Benarafa, R. Donnell et al., Inflammation induces hemorrhage in thrombocytopenia, Blood, vol.111, issue.10, pp.4958-4964, 2008.
DOI : 10.1182/blood-2007-11-123620

P. Uhrin, J. Zaujec, J. Breuss, D. Olcaydu, P. Chrenek et al., Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation, Blood, vol.115, issue.19, pp.3997-4005, 2010.
DOI : 10.1182/blood-2009-04-216069

C. Bertozzi, A. Schmaier, P. Mericko, P. Hess, Z. Zou et al., Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling, Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling, pp.661-670, 2010.
DOI : 10.1182/blood-2010-02-270876

Y. Yang, J. Garcia-verdugo, M. Soriano-navarro, R. Srinivasan, J. Scallan et al., Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos, Blood, vol.120, issue.11, pp.2340-2348, 2012.
DOI : 10.1182/blood-2012-05-428607

R. Hagerling, C. Pollmann, A. M. Schmidt, C. Nurmi, H. Adams et al., A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy, The EMBO Journal, vol.32, issue.5, pp.629-644, 2013.
DOI : 10.1182/blood-2012-05-428607

P. Hess, D. Rawnsley, Z. Jakus, Y. Yang, D. Sweet et al., Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life, Journal of Clinical Investigation, vol.124, issue.1, pp.273-284, 2014.
DOI : 10.1172/JCI70422

R. Tiedt, T. Schomber, H. Hao-shen, and R. Skoda, Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo, Blood, vol.109, issue.4, pp.1503-1506, 2007.
DOI : 10.1182/blood-2006-04-020362

S. Calaminus, A. Guitart, A. Sinclair, H. Schachtner, S. Watson et al., Lineage Tracing of Pf4-Cre Marks Hematopoietic Stem Cells and Their Progeny, PLoS ONE, vol.14, issue.12, p.51361, 2012.
DOI : 10.1371/journal.pone.0051361.g005

R. Bohmer, B. Neuhaus, S. Buhren, D. Zhang, M. Stehling et al., Regulation of Developmental Lymphangiogenesis by Syk+ Leukocytes, Developmental Cell, vol.18, issue.3, pp.437-449, 2010.
DOI : 10.1016/j.devcel.2010.01.009

M. Ema, T. Yokomizo, A. Wakamatsu, T. Terunuma, M. Yamamoto et al., Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo, Blood, vol.108, issue.13, pp.4018-4024, 2006.
DOI : 10.1182/blood-2006-03-012872

M. Pitulescu, I. Schmidt, R. Benedito, and R. Adams, Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice, Nature Protocols, vol.163, issue.9, pp.1518-1534, 2010.
DOI : 10.1038/nprot.2010.113

S. Claxton, V. Kostourou, S. Jadeja, P. Chambon, K. Hodivala-dilke et al., Efficient, inducible Cre-recombinase activation in vascular endothelium, genesis, vol.97, issue.2, pp.74-80, 2008.
DOI : 10.1002/dvg.20367

URL : https://hal.archives-ouvertes.fr/hal-00282602

N. Buza-vidas, V. Cismasiu, S. Moore, A. Mead, P. Woll et al., Dicer is selectively important for the earliest stages of erythroid development, Blood, vol.120, issue.12, pp.2412-2416, 2012.
DOI : 10.1182/blood-2011-10-383653

S. Guo, J. Lu, R. Schlanger, H. Zhang, J. Wang et al., MicroRNA miR-125a controls hematopoietic stem cell number, Proceedings of the National Academy of Sciences, vol.107, issue.32, pp.14229-14234, 2010.
DOI : 10.1073/pnas.0913574107

M. Raaijmakers, S. Mukherjee, S. Guo, S. Zhang, T. Kobayashi et al., Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia, Nature, vol.102, issue.7290, pp.852-857, 2010.
DOI : 10.1038/nature08851

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422863