
Additional material

Geoffroy Andrieux, Michel Le Borgne and Nathalie Théret

Table of contents for Additional material:

Page 2 Supplementary Figure 1: Translation scheme for biological reactions into guarded transi-
tions.
Page 5 Supplementary Figure 2: Illustration of translation schemes for the TGF-β model.
Page 7 Supplementary Figure 3: Conservation of biological annotations.
Page 8 Supplementary Figure 4: Reachability of a property P.
Page 9 Supplementary Methods: mathematical semantics

1

Supplementary Figure 1: Translation scheme for biological reactions into
guarded transitions.

2

Supplementary Figure 1: Translation scheme for biological reactions into guarded transitions.
(A) Top: General case of a biological reaction where biomolecule A gives rise to biomolecule B. The
regulation of the reaction is symbolized by activators Act and inhibitors Inh. The interpretation into
a guarded transition (top right) from place A to place B is symbolized by rounded rectangles; the Act
and Inh regulators form the guard of the transition. Bottom: generalization to a biological reaction
with several inputs and outputs. Because all the inputs are required for the reaction to occur, the in-
put C appears in the Guard1 of the transition A −→ B and A appears in the Guard2 of the transition
C −→ B. In addition, the inputs must be combined with other conditions within the guards. Combining
inhibitors and activators in a transition guard requires detailed biological information. The combina-
torics of inhibitors/activators are rarely well documented, if at all, in the literature. In the absence of
information, we can combine activators and inhibitors either with the conjunction "and" or the disjunc-
tion "or". Using the "or" option, the Guard1 combines the input C with activators and inhibitors as
follows: C and (act1 or act2) and not (Inh1 or Inh2).

(B) Translation scheme for different categories of biological reactions into guarded transitions. To
represent protein synthesis, we introduce a permanent place (double-lined rectangle) that symbolizes the
corresponding coding gene and which, unlike other places, is never inactivated by an outgoing transition.
On the contrary, trap places (black circle) are introduced for degradation processes and do not have
outgoing transitions.

(C) Representation of the specific case where two reactions share the same biomolecule A2 (top).
Merging of the reactions (bottom) leads to competition and the data-flow semantics do not allow the
activation of place A2B2. Difficulties arise from reactions that share the same input and/or output
biomolecules. A2 is involved in two reactions and can either be transformed into A3 or make a complex

with B2. In this case, the transition A2
[]−→ A3 is fired when A2 alone is activated while the transition

A2
[B2]−→ A2B2 is fired when A2 and B2 are both activated. Initializing the model with A1 and B0, and

using the data-flow evolution rule, the transition A2
[B2]−→ A2B2 does not occur as it formally requires

two transitions, (B0
[]−→ B1, B1

[]−→ B2), whereas only one transition, (A1
[]−→ A2), is required to

render A2
[]−→ A3 fireable. In more simple terms, according to the data-flow scheme, A2 is consumed

before B2 is available. Adding a transition A0
[]−→ A1 (dotted line) allows for the formation of the A2B2

complex if the model has been initialized with A0 activated instead of A1. Such a postulate illustrates
how the schedule of the model depends on the number and configuration of the transitions. To overcome
such limits, we introduce events to allow for delays in transition firing, as indicated in Materials and

Methods. One way to fire the transition A2
[B2]−→ A2B2 is to modify the timing by adding an event h in

each transition guard as follows: B0
h1[]−→ B1, B1

h2[]−→ B2, B2
h3[A2]−→ A2B2, A2

h3[B2]−→ A2B2, A1
h4[]−→ A2,

A2
h5[]−→ A3. We use the same event h3 for both A2

h3[B2]−→ A2B2 and B2
h3[A2]−→ A2B2 transitions since

complex formation implies simultaneous firing of the two transitions. The introduction of events per-
mits the activation of A2B2 when A1 and B0 are activated at the initial step if the following realization
of events is enforced:

Steps 1 2 3
h1 : > ⊥ ⊥
h2 : ⊥ > ⊥
h3 : ⊥ ⊥ >
h4 : > ⊥ ⊥
h5 : ⊥ ⊥ ⊥

3

Using this schedule, the following transitions are fired and A2B2 is activated:

1 2 3

A1
h4[]−→ A2 B1

h2[]−→ B2 A2
h3[B2]−→ A2B2

B0
h1[]−→ B1 B2

h3[A2]−→ A2B2

(D) Representation of the integration of reactions that share the same biomolecules. Top: To inte-
grate R1 and R2 biological reactions that share the same inputs and outputs but have different regulators
(inhibitors and activators), we generate two conditions: cond1 = (Act1 or Act2) and notInh1 or Inh2)
for R1 and cond2 = (Act3 and not Inh3) for R2. The new condition for the transition A → B re-
sulting from the two reactions is then cond1 or cond2. The event of the transition is a variable h1
since an occurrence of R1 cannot be distinguished from an occurrence of R2. Bottom: R1 and R2
are considered as two distinct biological reactions when at least one input or one output differs be-
tween reactions. According to previous definitions, we generate pairs (h1,cond1) and (h2,cond2)
for each reaction R1 and R2, where h1 and h2 are event variables and cond1 and cond2 are condi-
tion expressions for R1 and R2, respectively. Since information is transferred from A to B when R1
or/and R2 occurs, the event of the A transition is (h1 when cond1) de f ault (h2 when cond2) where
cond1 =C and (Act1 or Act2) and not(Inh1 or Inh2) and cond2 = E and Act3 and not Inh3.

4

Supplementary Figure 2: Illustration of translation schemes for the TGF-
β model.

5

Supplementary Figure 2: Illustration of translation schemes for the TGF-β model. (A) Transla-
tion scheme for different categories of biological reactions from the PID database into guarded tran-
sitions. The association between SMAD2 and SMAD4 is translated into two transition from each
input of the reaction to the output complex. The event is the same for both transitions since they
depend on the same reaction. The dissociation of TGFB_TGFBR2_TGFBR1_PML_SARA_SMAD2-
3_AP2B2_active_early_endosome complex into TGFB_TGFBR2_TGFBR1_PML_SARA and SMAD2-
3 is translated into two transition with the same event. Synthesis of the TGF-β target gene IFNB is
translated through a transition from a permanent place, symbolizing the gene, to the place symbolizing
the protein.
The transition is conditioned by the transcriptional activator: SMAD3_SMAD7_IRF7_active_nucleus.
The transition from TGFB_TGFBR2_TGFBR1_active_integral_to_membrane to a trap place (black cir-
cle) represents the degradation process activated by DAPPER2.

(B) Representation of the integration of reactions that share the same biomolecules. Top: the trans-
port of SMAD2_SMAD2_SMAD4 complexes from the cytoplasm to the nucleus is described by differ-
ent reactions in the PID database.
Reactions that have exactly the same input (SMAD2_SMAD2_SMAD4_active_cytoplasm) and ouput
(SMAD2_SMAD2_SMAD4_active_cytoplasm) are translated into a transition with a single event. The
regulators are combined using the "and" logical operator.
Bottom: different reactions have TGFB_TGFBR2_betaglycan_active_integral_to_membrane as input
and betaglycan_dimer_integral_to_membrane as output, among other inputs and outputs. The guard of
the transition is composed of events of reaction R1:
h1 when (TGFBR1_dimer_Par6_occludin_inactive_tight_junction) and of reaction R2:
h2 when (TRAP1_TGFBR1_dimer_inactive_integral_to_membrane).

6

Supplementary Figure 3: Conservation of biological annotations.

Supplementary Figure 3: Conservation of biological annotations.
The cellular component of GO ontologies of biomolecules (PID, red) and places (CADBIOM , blue) are
analyzed according to their frequencies. The ten most represented location terms in PID and CADBIOM

are equally distributed.

7

Supplementary Figure 4: Reachability of a property P.

Supplementary Figure 4: Reachability of a property P.
When the system is initialized by activation of places A and B, the scenario ({A,B}, [{h2},{h3},{h0,h1},{h5}])
is a solution, that is, conditions that allow reaching property P in 4 steps. In this model, the scenario
({A,B}, [{h2},{h3},{h0,h1},{}]) is minimal for the reachability of the place P, in 4 steps.

8

Supplementary Methods: mathematical semantics

Events and states

Event realization

An event is the mathematical concept that denotes a from-time-to-time occurrence. In the absence of a
universal time reference, an event alone is of no interest. It requires at least another event to exist, such
as an observer or a clock.

An event has a name h and a singleton domain to denote the occurrence of the event. We define
> as the unique element of the event domain1. Occurrences of different events are equivalent as far as
the domain is concerned. It is comparable to the "tick" of a clock. In general, when considering only
time, we don’t make any distinction between the sounds emitted by different clocks. Accordingly, it is
legitimate to consider that all events have the same value.

Definition 1.1
A realization of a finite set of events (hi)i∈I is a sequence of elements of {>,⊥}I \{⊥I}.

The sequence may be finite or infinite. The symbol⊥ denotes the absence of an event relative to another
event. The simultaneous absence of all the events cannot occur since at least one observer must be
present to mark this fact. For this reason, the multiple ⊥I is excluded. The following example shows a
realization of the events e1, e2 and e3:

e1 : > > ⊥ ⊥ > > > . . .
e2 : ⊥ > > > ⊥ ⊥ > . . .
e3 : ⊥ ⊥ > ⊥ ⊥ ⊥ > . . .

State variables

An event is well adapted to model a transient phenomenon. A new type of variable is required to model
something that is persistent. This type of variable is called a state variable. The domain of values for
state variables is any useful domain. For guarded transition systems, we will consider Boolean and finite
domains.

In a realization, the value of a state variable may change. However and contrary to events, a state
variable is always available. At any step or for any index of the realization, the value of a state variable
is either True or False.

The following example shows a realization of the events e1, e2 and the state variable A:

e1 : > > ⊥ ⊥ > > > . . .
e2 : ⊥ > > > ⊥ ⊥ > . . .
A : F F F F T T T . . .

where A is a state variable and F and T stand for false and true, respectively.
This leads to the following definition:

Definition 1.2
A realization of a finite set of events and states (hi)i∈I,(S j) j∈J is a finite or infinite sequence of elements
of ({>,⊥}I \{⊥I})×{T,F}J .

1> must not be confused with True although it will be assimilated to this Boolean later on.

9

Basic operations on events and states

In many models, we need to combine events and, more generally, events and states. Operations on
events are well known in computer science. The two basic operators are a merge that corresponds to
multiplexing and a selection of occurrences that corresponds to under-sampling. For CADBIOM , we
have borrowed the default operator and the when operator from the SIGNAL language with semantics
close to SIGNAL semantics.

The default operator
The default operator merges the two events h1 and h2 or, more precisely, the occurrences of the events

in any realization. In the following example, we assume that there are more events. This legitimizes the
case where h1 and h2 are simultaneously absent.

h1 : > > ⊥ ⊥ > ⊥ > . . .
h2 : ⊥ > > > ⊥ ⊥ > . . .

h1 default h2 : > > > > > ⊥ > . . .

This operator on events is commutative.
For the mathematically inclined reader, we provide a rigorous definition. We first define an operator

↑ on {>,⊥} by following the rules:
> ↑ > = >
> ↑ ⊥ = >
⊥ ↑ > = >
⊥ ↑ ⊥ = ⊥

We then define default by its semantics:

Definition 1.3
Given two events h1 and h2, h = h1 default h2 if and only if, for any realizations s of (h1,h2,h), the
relation sh

i = s1h1
i ↑ s2h2

i is satisfied.

The when operator
The when operator is an operator between events and logical combinations of state variables. Since

state variables have a Boolean domain, it is possible to write propositional logic formulas with state
variables. At each instant of a realization, the formula can be evaluated since state variables always have
values.

The when operator selects occurrences of an event when the propositional formula evaluates to
True on its right hand side. For example:

h1 : > > ⊥ ⊥ > > > . . .
B : F T F T F T F . . .

h1 when B : ⊥ > ⊥ ⊥ ⊥ > ⊥ . . .

where B is a state variable.
For a more mathematical definition, we need to introduce the operator ↓ with the rules:

> ↓ True = >
> ↓ False = ⊥
⊥ ↓ True = ⊥
⊥ ↓ False = ⊥

We then define when by its semantics:

10

Definition 1.4
Given an event h1 and a state propositional formula B(X) where X represents a multiple of state variables,
h = h1 when B(X) if and only if for all realizations s of (h1,X ,h), the relation sh

i = s1h1
i ↓ B(xi) is

satisfied.

The logical operators ∨, ∧ and ¬ are implemented in CADBIOM . They can be used in the condition
part of a transition guard with place names as state variable names. The default and when operators
are also implemented and can be used in the event of a transition guard. The right hand side operand of
a when must be a propositional formula with state variables (and True and False constants).

Extension to signals

The event concept naturally generalizes to the signal concept. Signals are useful to define the mathemat-
ical semantics of guarded transition-based models. With the extension of events to signals, it becomes
possible to write the evolution equation of the dynamic system into relatively simple mathematical for-
mulas.

A signal is a generalization of an event. Contrary to an event, a signal can have an arbitrary domain
of values. An event is simply a signal with {>} as domain. Given a family (Zi)i∈I of signals with
domains (Di)i∈I , a realization is a sequence of multiples (zn

i)i∈I such that zn
i ∈ Di ∪{⊥}. Again, the

multiple ⊥I is excluded.
Extending the default operator to signals, we face a new problem. If, in a realization of Z1 and Z2,

we have for some instant z1 6=⊥ and z2 6=⊥, we have to decide which value to choose. Here, we decided
to keep the value of the left hand side operand. Note that, in general, the domain of a signal built with
the default operator is the union of the domains of the operands. In most cases, default is used only
with operand signals that have the same domain. We will only consider Boolean domains.

The domain of an event is an arbitrary singleton. To combine events and Boolean signals in a mathe-
matical formula, we will identify the > value with True. With this identification, an event is assimilated
to a Boolean signal with constant value True. It is also possible to extend Boolean operations to Boolean
signals with different semantics. Since general operations are not required on Boolean signals, they will
not be discussed and only the negation of an event which is assimilated to a Boolean signal with the
constant value False need be considered.

A state variable can be assimilated to a signal. In any realization and at any instant, the value
associated with a state variable is different from ⊥. A state is present in any realization, it acts as
memory in a computer. A state, an event and the negation of an event are limit cases of signals. They are
either always present (state) or always have the same value (event or event negation). This special feature
is essential to obtain a simple encoding of guarded-transition model dynamics into logical clauses.

Semantic of guarded transitions

The firing of a transition is an event. Given a guarded transition A
h[C]−→ B, we define a new event, called

the transition event, as:
htr = h when (A∧C)

The transition event htr is present if and only if the three conditions for transition firing are satisfied.
If we focus on the evolution of the source and target places when a transition is fired, informal

semantics state that:

• the source is inactivated

• the target is activated

11

The evolution function of a state B relies on the current value Bk at step k to the next value Bk+1 at
step k+1. Traditionally the current value is denoted as B and the next value B′. With this notation, the
evolution of the target, upon possible firing of one transition, is described by:

B′ = htr default B

which must be interpreted with the extension of the operator default to signals. The state variables
are considered as signals and the events are considered as signals with the value True. The priority of
the left operand of the default operator is essential for defining correct semantics. When the transition
is fired (htr is present), the state takes the value of the default left hand side operator (True) regardless
of the preceding value. When it isn’t fired, the value of the state remains unchanged.

Using the same conventional notations, the evolution of the source is formalized by:

A′ = ¬htr default A

reflecting the inactivation of the source when the transition is fired. Again, we use the extensions
introduced at the end of the preceding section.

In general, several transitions are adjacent to a place. For a place, we call an in-transition a transition
having the place as target. The set of in-transitions of a place A is denoted Tin(A). A transition having
the place as source will be called an out-transition and the set of out-transitions of a place A is denoted
Tout(A). When there is no ambiguity, the name of the place is omitted.

The state of a place changes if either an in-transition or an out-transition is fired. In case of simulta-
neous firing we apply the rule:

• activation prevails overs inactivation.

We define two events associated with a place A by:

hin = default tr∈Tinhtr

hout = default tr∈Tout htr

The hin event is present if at least one of the in-transitions is fired. The hout event is present if at least
one of the out-transitions is fired. The mathematical formalization of the rules is given by:

A′ = (hin default ¬hout) default A

The semantics of default on signals are again essential to obtain a correct formalization of the
priority rule.

Guarded transition systems

With the rigorous definition of the semantics of a transition, it is straightforward to verify that the two

guarded transitions A
h[C]→ B and A

(hwhen C)[]−→ B are semantically equivalent. They induce the same
dynamics on the state variables. Taking advantage of this, we will consider guarded transitions without
condition.

Definition 1.5
A guarded transition system (GTS) is a triplet (P, H , T) where:

• P is a finite set of places

• H is a finite set of free events

• T is a finite set of triplets (A,B,h) where A,B ∈P and h is an event built on P and H

12

The state of a guard transition system is a Boolean multiple in {T,F}|P|. This state is equivalently
described by the set A of activated places. The evolution of the state depends also on the events H
present at the current evolution step. This motivates the following definition:

Definition 1.6
A configuration of a guarded transition system (P, H , T) is a couple (A ,H) where A is a subset of
P representing activated places, and H is a subset of free events that are present at the evolution step.

Property search

Because of the semantics of guarded transitions, the evolution of a guarded transition system is com-
pletely determined by the initial activated places and a sequence of free events.

Definition 1.7
A scenario is a couple (A0,(E0,E1, . . . ,En−1)) where

• A0 is the set of activated places at initialization

• (E0,E1, . . . ,En−1) is a sequence of subset of free events.

n is the length or the horizon of the scenario.

A sequence of configurations (Ak,Ek) is associated with a scenario where Ak is the set of activated
places after the kth step. An is the set of activated places reached by the scenario. A state property
represented by a logical formula f on places is reached by the scenario if for some k ≤ n, Ak is a model
of the formula f .

From dynamic model to logical formula
To perform analysis satisfactorily, we first translate the dynamic systems into propositional logic. The
value of each place depends on its surrounding transitions as follows:

Ii Gi

→ x G j

→ O j

where Ii the input place of an incoming transition to x with the guard Gi, O j is the output place of an
outgoing transition from x with the guard G j. The value of place x at step 1 can be written as:

x1 ⇔
[∨

i∈[0,m]

(Ii
0 ∧ Gi

0)
]
∨
[
x0 ∧ ¬ (x0 ∧

∨
j∈[0,l]

(G j
0)
]

where m and l are the numbers of incoming and outgoing transitions. This formula is translated into
conjunction normal form using the Tseitin translation.

Unfolding the trajectory
The evolution rule is summarized as Xn = f (Xn−1), where Xn is the set of place values at step n. This
formula first describes the evolution between steps 0 and 1. We create new literals to unfold the trajectory
to the step n as follows: X1 = f (X0); X2 = f (X1); ...; Xn = f (Xn−1). The final formula is next given to
the SAT solver that allocates the value for each litterals to verify the formula.

13

