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ICAM-2 regulates vascular permeability and
N-cadherin localization through ezrin-radixin-
moesin (ERM) proteins and Rac-1 signalling
Valerie Amsellem1,4, Nicola H Dryden1,5, Roberta Martinelli2,6, Felicity Gavins3, Lourdes Osuna Almagro1,

Graeme M Birdsey1, Dorian O Haskard1, Justin C Mason1, Patric Turowski2 and Anna M Randi1*

Abstract

Background: Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition.

VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers,

N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes

at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2,

also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis.

Results: In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell

contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers.

Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in

NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient

mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length

ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant

ICAM-2 lacking the binding site for ERM proteins (IC2 ΔERM) or the cytoplasmic tail (IC2 ΔTAIL) failed to restore

junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function,

measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions

and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since

transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced

extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle

showed that permeability was increased in ICAM-2-deficient mice compared to controls.

Conclusions: These results indicate that ICAM-2 regulates endothelial barrier function and permeability through a

pathway involving N-Cadherin, ERMs and Rac-1.
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Lay abstract
Blood vessels are lined by a single layer of cells, called

endothelial cells, which control many critical functions

in the body. Endothelial cells form a tight layer thanks

to the presence of proteins on the surface of the cells,

which bind to similar proteins on neighboring cells.

These proteins, called adhesion molecules, control the

flux of liquid from inside the vessels to the tissue. This

process, called permeability, is essential for the health of

tissues and for the ability of the body to respond to

changes in blood pressure or to inflammation. Control

of this process can be disturbed in diseases such as can-

cer or chronic inflammation. Here we identify a new

mechanism that controls permeability, which is medi-

ated by a protein called ICAM-2. This protein is also im-

portant in regulating inflammation and the formation of

new blood vessels, called angiogenesis. We show that

ICAM-2 regulates the localization of another adhesion
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molecule, N-Cadherin, at the endothelial points of cell-

cell contact (endothelial junctions). This occurs through

signals inside the cells mediated by ICAM-2. These re-

sults could have implications for the regulation of vascu-

lar permeability in particular areas of the body, such as

the eye, and in cancer.

Introduction
Endothelial intercellular junctions play an essential role

in many critical processes, including survival, angiogen-

esis and inflammation [1-3]. A large number of cell

adhesion molecules are localized at the cell junctions;

their extracellular domains support intercellular adhesion

through homophilic and/or heterophilic interactions,

whilst connection to the actin cytoskeleton contributes to

strengthening the intercellular contacts. Complex signal-

ing networks regulated by cell-cell junctions control con-

tact inhibition, cell growth, survival and permeability [2,4].

These pathways are modulated by cross-talk between dif-

ferent junctional adhesion molecules and with other sur-

face receptors.

Cadherins are a large family of Ca2+-dependent adhe-

sion molecules, which mediate homophilic adhesion

through formation of multimeric complexes at the

adherens junctions (AJ) [5] and are essential for the

maintenance of intercellular contacts. The two main

endothelial cadherins, VE-Cadherin (VECad) and N-

Cadherin (NCad), share similar structures and intracel-

lular binding partners; however they display differences

in tissue distribution and function. VECad expression is

restricted mainly to endothelial cells (EC), whilst NCad

is expressed in several cell types including neurons,

muscle cells and fibroblasts [6-9]. Both cadherins are

involved in vascular development and angiogenesis:

endothelial deletion of either VECad or NCad leads to

embryonic lethality due to vascular defects [10,11].

Whilst the role of VECad in controlling endothelial

junction stability and function has been intensely inves-

tigated, the role of NCad is less clear. In mature stable

vessels, VECad is concentrated at endothelial cell-cell

junctions and is essential for junction stability, whilst

NCad is mainly localized across the cell surface. VECad

has been shown to exclude NCad from mature junc-

tions, through pathways that involve β-catenin and

p120ctn [12,13] and to negatively regulate NCad levels

[13]. Despite this, some NCad has been reported at

endothelial junctions and shown to be upstream of

VECad during blood vessel morphogenesis [14]. More-

over, in specialized endothelial cells such as corneal

endothelium, NCad is clearly mainly localized at cell-

cell junctions and controls permeability [15].

ICAM-2, a transmembrane glycoprotein of the im-

munoglobulin superfamily expressed by endothelial cells,

platelets and leukocytes [16], is found on the apical surface

of endothelial cells and at cell-cell junctions. Like many

other junctional adhesion proteins, ICAM-2 can sup-

port homophilic adhesion [17,18]. As well as regulating

leukocyte adhesion and transmigration [17,19,20], ICAM-

2 is required for angiogenesis [17]. In addition, ICAM-2

regulates activation of the small GTPase Rac1 in EC [17].

The short intracellular domain of ICAM-2 is linked to the

cytoskeleton through interaction with α-actinin [21] and

with members of the ERM family [22]. The ERM proteins

are implicated in the regulation of cell-cell and cell-matrix

adhesion, partly through the small GTPases pathway (for

review [23]).

In this study we investigate the role of ICAM-2 in

controlling endothelial junctions and barrier function.

We show that ICAM-2 regulates early junction stability

and the transient accumulation of NCad at endothelial

junctions in loosely established contacts. We also show

that ICAM-2 regulates NCad localization through intra-

cellular pathways involving the ERM binding motif and

Rac-1 signalling. Finally, we demonstrate that ICAM-2

controls barrier function and vascular permeability

in vitro and in vivo. Thus we identify a novel connection

in the complex network regulating localization and sig-

naling at endothelial junctions.

Results
Localization of ICAM-2 and NCad on human EC in

sub-confluent vs confluent monolayers

The organization of AJ can be different at different

stages of confluence and maturity; therefore we set out

to investigate the localization of ICAM-2 and the two

cadherins on EC by performing co-staining in HUVEC

monolayers at different stages of confluency. In mono-

layers just beginning to reach confluency (referred to

as “sub-confluent” from now on), both VECad and

NCad showed discontinuous staining at cell-cell contacts

(Figure 1, panel a, b and h); NCad was also distributed

over the apical and basal surface of the cells (Figure 1,

panel a). In confluent monolayers, VECad accumulated

at the junctions to form the characteristic thick zipper-

like structure (Figure 1, panel e and k) whilst NCad was

no longer at cell-cell contacts (Figure 1, panel d) and its

expression levels were downregulated (Additional file 1:

Figure S1). ICAM-2 was localized at cell-cell contacts

and on the apical surface both in sub-confluent and con-

fluent monolayers (Figure 1, panel g and j). These data

indicate that in sub-confluent HUVEC monolayers both

VECad and NCad can be found at the junctions, and

suggest that the localization and expression of N-

cadherin in endothelial cells is partly due to the matur-

ation stage of adherens junctions. ICAM-2 and VECad,

on the other hand, appear to be localized at cell junc-

tions in both sub-confluent and confluent monolayers,

with staining intensity increasing over time.
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Distribution of NCad in early endothelial cell-cell junctions

is regulated by ICAM-2

To test whether ICAM-2 may be involved in regulating

endothelial junction assembly and/or integrity, we inhib-

ited ICAM-2 expression in HUVEC using ICAM-2

siRNA. This resulted in a significant decrease in ICAM-

2 protein levels (Additional file 2: Figure S2A) and cell

surface staining (Figure 2A, panel d). Morphological

analysis showed that in loosely confluent areas inhibition

of ICAM-2 expression (30 h after siRNA treatment) dis-

rupted the continuity of the early established cell-cell

contacts, with the appearance of gaps (Figure 2A, panel

d-l). Quantification of these areas showed that the num-

ber of junctional gaps in ICAM-2 siRNA-treated cells

was significantly higher compared to cells treated with

control siRNA (Figure 2B). VECad levels were not af-

fected by the loss of ICAM-2 (Figure 2C); VECad junc-

tional staining appeared more fragmented but not

significantly altered by ICAM-2 siRNA treatment (Figure 2A,

panels e and k). On the other hand, in ICAM-2 deficient

cells, NCad localization at the cell junctions of loosely

confluent cells was lost (Figure 2A, panel j) without

modification of NCad level (Figure 2C). Loss of junc-

tional localization was not a generalized phenomenon,

since staining for CD31/PECAM was similar in ICAM-

2 and control siRNA-treated cells (Additional file 3:

Figure S3). These data indicate that ICAM-2 is involved

in regulating NCad localization in recently established

endothelial junctions and is required for junction as-

sembly in primary EC.

ICAM-2 regulates N-Cad localization at cell-cell junction

To investigate whether ICAM-2-dependent signaling is

involved in regulating NCad localization in EC, we gen-

erated ICAM-2 endothelioma lines from WT and

ICAM-2-deficient mice. EC isolated from cardiac tissue

by positive selection [17] were immortalized by infection

with the polyoma virus middle-T oncogene [24]. The

Figure 1 Distribution of ICAM-2, VECad and NCad in sub-confluent vs confluent HUVEC monolayers. Cells were seeded at low confluence

(10000 cells/cm2) and cultured for 24 and 96 hours to achieve sub confluent and confluent endothelial monolayer respectively. For NCad/VECad

co-staining (a-f), NCad was stained using mAb Cl32 anti-NCad followed by anti-mouse AlexaFluor488 (Green) and VECad was stained using mAb

Cl55-7H1 anti-human VECad prelabelled with the Zenon® mouse IgG1 555 kit (Red). For ICAM-2/VECad co-staining (g-l), ICAM-2 was visualized

using mAb BT-1 followed by anti-mouse AlexaFluor 488 (Green) and VECad was stained as described above. Co-staining for ICAM-2 and NCad

was attempted with several antibodies and methods, however due to species incompatibility and the well known limitations of NCad antibodies

available, satisfactory images could not be achieved. Bar = 25 μm.
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endothelial lineage of puromycin selected lines was con-

firmed by endoglin surface expression (Additional file 4:

Figure S4C) and by functional analysis of tube formation

in matrigel (Additional file 4: Figure S4B). Immortalization

of mouse EC with this approach resulted in loss of VECad

expression (Figure 3D); this allowed us to use these lines

to investigate the function of NCad at the endothelial

junctions. Interestingly, PECAM-1 expression was also

lost in these lines, whilst expression of JAM-A was

retained (data not shown).

The ICAM-2-deficient endothelial line (KOIC2-PmT)

was used for re-expression of murine wild type full

length (IC2 FL) or mutant ICAM-2. After infection of

pBabe-IC2, IC2 FL cells expressed ICAM-2 surface

levels similar to those found in HUVEC (Additional file

4: Figure S4C). In these cells ICAM-2 was strongly local-

ized at cell-cell junctions; intense ICAM-2 staining on

the apical surface of the cells was also observed

(Figure 3E, panel a), as expected [25]. Previous work has

shown that ICAM-2 deficiency in EC result in reduced

tube formation in Matrigel [17]. Tube network formation

was restored in IC2 FL cells, compared to IC2 neg cells

(Additional file 4: Figure S4B), indicating that the pheno-

type of the IC2 neg cells can be reversed by re-expression

of ICAM-2.

A striking difference in cell morphology between IC2

neg and IC2 FL mouse cell lines was observed. IC2

neg cells were unable to form a confluent cobblestone

monolayer; organized junctions between cells were lost

and the cells grew on top of each other, suggesting loss

of contact inhibition (Figure 3A, panel a). Cobblestone

morphology and junction formation were restored

by over-expression of ICAM-2 in the IC2 FL cells

(Figure 3A panel b). To test whether the disruption of

the monolayer resulted in disruption of cell growth, we

measured the proliferation rate of the two endothelial

Figure 2 Distribution of NCad in early endothelial cell-cell junctions is regulated by ICAM-2. A- Distribution of ICAM-2, VECad and NCad in

HUVEC ~30 hours post siRNA treatment (a-i: control siRNA; d-l: ICAM-2 siRNA). Arrows indicate the gaps between cells that transiently appeared

following ICAM-2 inhibition by siRNA. For ICAM-2/VECad co-staining (a-f), see details in Figure 1 legend. Bar = 25 μm B- Quantification of the

number of gaps. The gaps were counted manually from 15 fields taken from confocal immunofluorescence images (233 μm x 233 μm, see panel

B) in two independent experiments. Results are shown as % of gaps per number of cells per field. Error bars indicate mean ± S.E.M., n = 30.

Statistical analysis (t-test: ***p < 0.001). C- VECad and NCad levels are unchanged 30 h post-treatment with ICAM2 siRNA. Quantification of VECad

and NCad: Western blot quantification was performed by densitometry, normalized to α-tubulin. Error bars indicate mean ± s.e.m., n = 5.
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Figure 3 ICAM-2 regulate N-Cad localization at cell-cell junction. A- Generation of mouse cardiac EC (MCEC) cell lines. Phase contrast image

of IC2 neg (a), IC2FL (b), IC2 ΔERM (c) and IC2 ΔTAIL (d) cells. Bar = 150 μm. B- Analysis of ICAM-2 surface protein expression by FACS in IC2 neg

(a), IC2 FL (b), IC2 ΔERM (c), IC2 ΔTAIL (d) cells; below, diagram showing the WT and mutant sequences of the constructs. FACS staining was

performed using mAb 3C4 anti-mouse ICAM-2. C- Growth curves of MCEC cell lines. IC2 neg, IC2 ΔERM and IC2 ΔTAIL cells show loss of contact

inhibition of cell growth. Results are represented as number of cells/cm2 over time (hours). D- Western blot analysis of NCad and VECad levels in

IC2 neg, IC2 FL, IC2 ΔERM and IC2 ΔTAIL endothelioma lines and heart tissue from WT and IC2 deficient mice (ko). VECad and NCad were

detected using mAb BV13 and mAb Cl32, respectively. Error bars indicate mean ± s.e.m., n = 3. E- Analysis of ICAM-2 and NCad distribution in

IC2 FL (a-c), IC2 neg (d-f), IC2 ΔERM (g-i) and IC2 ΔTAIL (j-l) cells. ICAM-2 was stained with mAb 3C4 anti-mouse ICAM-2 followed by anti-rat

AlexaFluor488 (Green). NCad was stained with mAb Cl32 anti-NCad followed by anti-mouse AlexaFluor555 (Red). Nuclei were stained using

TOPRO-3 (Purple). Bar = 25 μm. F- Inhibition of NCad expression in IC2 FL cell line by siRNA resulted in disruption of cell-cell contacts and

altered cell morphology. (a)- Phase contrast image of scrambled siRNA (a) and NCad siRNA (b) 48 hours post-transfection, Bar = 150 μm.

(b)- Localization of ICAM-2 and NCad in IC2 FL cells treated with 48 hours scrambled (a-c) or NCad siRNA (d-f).
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lines. As shown in Figure 3C, proliferation of IC2

FL cells reached a plateau at 72 hours, whilst IC2neg

cells continued to proliferate. These findings indicate

loss of contact-dependent inhibition of cell growth in

IC2 neg cells. In these cells, VECad disappears after

immortalization ([26] and Figure 3D), whilst NCad is

expressed at high levels. NCad protein levels were simi-

lar in both lines (Figure 3D). NCad staining was dif-

fusely expressed on the cell surface of IC2 neg cell line

(Figure 3E, panel e); however, when ICAM-2 expression

was restored (IC2 FL), NCad was recruited to the junc-

tions (Figure 3E, panel b).

To test whether NCad was responsible for junction as-

sembly and contact inhibition of cell growth in these

cells, NCad expression was inhibited in the IC2 FL line

using siRNA (Figure 3F and S2B). Inhibition of NCad

expression in IC2 FL cells resulted in loss of normal

cobblestone appearance (Figure 3F, panel b). The cells

showed irregular morphology and loss of contact inhib-

ition; ICAM-2 staining was distributed on the apical sur-

face and in some areas around the edge of the cells

(Figure 3F, panel b). Thus, in the absence of VECad,

NCad localizes at cell-cell junctions, where it regulated

contact inhibition and junction assembly. ICAM-2 is

required for NCad localization at the junctions; defi-

ciency of ICAM-2 results in loss of NCad junctional

localization and, in the absence of VECad, loss of con-

tact inhibition and junction assembly.

ERMs are involved in the ICAM-2-dependent N-cadherin

recruitment and junction formation

ICAM-2 regulates several signal transduction pathways.

Ligation of ICAM-2 in leukocyte and fibroblast lines re-

sulted in activation of the PI-3K/Akt pathway and inhib-

ition of apoptosis, through involvement of ERM proteins

[27]. To test whether ICAM-2 intracellular signaling and

interaction with ERM proteins are involved in recruit-

ment of NCad to the junctions, we generated two

ICAM-2 mutants, one lacking the 28 amino acids (aa

249-277) corresponding to the cytoplasmic tail (IC2

ΔTAIL), and one where the ERM binding site (residues

255 to 264, RxxTYxVxxA) was mutated (IC2 ΔERM). To

abolish ERM binding without affecting the α-actinin

binding site, only the first three key residues R, T and

Y of the ERM binding motif were mutated to alanines

(Figure 3B). Individual loss of these residues has previ-

ously been shown to abrogate interaction between

ICAM-2 and ERMs [28]. The mutant ICAM-2 cDNAs

were cloned into pBabe retroviral vectors and used to infect

the IC2 neg-PmT endothelioma line (see above). Surface

expression levels of ICAM-2 in the IC2 FL, IC2 ΔERM and

IC2 ΔTAIL lines were similar (Figure 3B). When examined

by phase contrast microscopy (Figure 3A), IC2 ΔERM and

IC2 ΔTAIL cells were unable to form cobblestone

monolayers, similar to IC2 neg cells. Both IC2 ΔERM and

IC2 ΔTAIL cells showed an irregular and elongated morph-

ology with projections often protruding over neighboring

cells; this was more pronounced in the IC2 ΔTAIL mutant

line (Figure 3A and 3E, panel g and j). Proliferation curves

of both mutant cell lines resembled that of the IC2 neg

cells, with exponential growth and no plateau (Figure 3C),

indicating loss of contact inhibition. We next investigated

the cellular localization of ICAM-2 and NCad in the cell

lines. In IC2 ΔERM and IC2 ΔTAIL cells, ICAM-2 was

diffusely expressed over the apical surface and on the ir-

regular cytoplasmic projections (Figure 3E). In both

mutant lines, NCad was also diffusely expressed on the

cell surface, similar to the pattern observed in the IC2

neg line (Figure 3E). Co-localization of NCad and

ICAM-2 is clearly visible in areas of cell-cell contact.

Expression levels of NCad were comparable across all

IC2 lines (Figure 3D). These results indicate that

ICAM-2 localization at the junctions is dependent on

its cytoplasmic tail and on the interaction with ERM

proteins. Moreover, NCad localization and junction

assembly in these cells requires intracellular signaling

through ICAM-2 and ERMs.

ICAM-2 interaction with ERM proteins regulates Rac1

activity

Rac1 is key regulator of the actin cytoskeleton, cell mo-

tility, junction assembly and stability and can modulate

assembly and disassembly of adherens junctions [28-32].

We have previously shown that ICAM-2 cross-linking in

EC results in increased activation of the small GTPase

Rac1, and that Rac1 activity is decreased in ICAM-2 de-

ficient cells [17]. As expected, IC2 neg cells showed de-

creased levels of Rac1 activity compared to IC2 FL cells

(Figure 4A). To determine whether the activation of

Rac1 by ICAM-2 is dependent on ICAM-2 binding to

ERMs, we measured Rac1 activity in the IC2 ΔERM and

IC2 ΔTAIL cell lines. In both cell lines Rac1 activity was

decreased compared to IC2 FL (Figure 4A). These data

indicates that ICAM-2 mediates activation of Rac1 in

EC via a signaling pathway involving ERMs.

Rac1 is involved in ICAM-2-dependent recruitment of

NCad and junction assembly

Rac1 activity is required to assemble adherens junctions,

in a complex and dynamic pathway. To establish

whether Rac1 is involved in the ICAM-2 and NCad-

dependent regulation of endothelial junction stability, we

made use of two well characterized mutants of Rac1,

V12-N17 and V12, which are respectively a dominant

negative (DN) and a constitutively active form (CA) of

Rac1 [33]. IC2 neg and IC2 FL cells were transfected

with plasmids expressing DN Rac1-GFP or CA Rac1-
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Figure 4 (See legend on next page.)
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GFP; empty GFP vector or mock transfections were used

as controls. Similar expression levels were obtained in

each cell type (data not shown). In IC2 neg cells, over-

expression of CA Rac1-GFP, but not DN Rac1-GFP or

GFP alone, resulted in restoration of junctions and

cobblestone morphology (Figure 4 B, panels a-l). CA

Rac1-GFP was concentrated at the cell-cell contacts, as

expected [34] (Figure 4 B, panel g). In contrast, disrup-

tion of Rac1 activity in IC2 FL cells by DN Rac1-GFP re-

sulted in loss of the regular cobblestone appearance and

of cell-cell contacts (Figure 4 B, panels m-x). Over ex-

pression of CA Rac1 or GFP alone in IC2 FL cells did

not affect the cobblestone appearance (Figure 4B, panels

s and o, respectively). In line with these findings, NCad

junctional staining, normally absent in IC2 neg cells

(see Figure 3E), was restored by over-expression of CA

Rac1-GFP (Figure 4B, panel f), but not by DN Rac1-GFP

(Figure 4B, panel j). These results indicate that ICAM-2

activation of Rac1 is involved in NCad localization and

endothelial junction formation.

ICAM-2 is controls barrier function and vascular

permeability

The results shown so far indicate a role for ICAM-2 in

regulating endothelial junction stability and the recruit-

ment of NCad. To test whether ICAM-2 controls endo-

thelial barrier function, we measured transendothelial

electrical resistance (TEER) by impedance spectroscopy

in IC2 neg and IC2 FL lines. Baseline TEER was signifi-

cantly higher in IC2FL cells compared to IC2 neg cells

(Figure 5A). Thrombin treatment induced a reduction of

TEER in all endothelioma cell lines but barrier break-

down was significantly stronger in IC2 neg than IC2 FL

cells (Figure 5B) indicating that the baseline endothelial

barrier was weaker and also that the barrier was more

susceptible to permeabilising agents in the absence of

ICAM-2. Rac1 has been shown to control endothelial

permeability [35,36]. To determine whether Rac1 was in-

volved in ICAM-2-dependent barrier regulation, we ana-

lyse the transendothelial electrical resistance in IC2 neg

and IC2 FL cells, infected with recombinant adenovirus

expressing constitutively active (DA) or dominant nega-

tive Rac1 (DN). In IC2neg cells, DA Rac1 restored the

transendothelial electrical resistance to a level similar to

IC2 FL, whilst DN had no effect. On the other hand, DN

Rac significantly decreased the transendothelial electrical

resistance in IC2 FL, whilst DA had no effect (Figure 5C).

Finally, we tested the role of IC2 in regulating vascular

permeability in vivo, by measuring the extravasation of

FITC-labeled albumin via intravital fluorescence micros-

copy in postcapillary venules of the mouse cremaster

muscle. Thrombin caused an increase in FITC-labeled al-

bumin into the adjacent tissue. This effect was signifi-

cantly enhanced in mice lacking IC2 vs. WT counterparts

(Figure 5D) suggesting that the absence of ICAM-2 in-

creases vascular permeability. Taken together these data

indicated that the absence of ICAM-2 in vitro or in vivo

increases vascular permeability.

Discussion
In this study, we present new evidence that the adhesion

molecule ICAM-2 is involved in junction stability and

the control of permeability by recruiting NCad to the

junctions, through pathways which involve ERM pro-

teins and the small GTPase Rac1.

Staining for ICAM-2, NCad and VECad in sub-

confluent and confluent HUVEC suggests that NCad

junctional localization is transient and occurs at the

early stages of cell-cell contact. VECad has been shown

to displace NCad from the junctions [12,37,38] and

NCad levels are downregulated at confluence [39]. In-

hibition of ICAM-2 expression in HUVEC by siRNA re-

sulted in a transient loss of cell-cell contacts and

displacement of NCad from the junctions. The transient

nature of the disruption of cell junctions caused by

ICAM-2 siRNA is likely due to the recruitment and en-

gagement of VECad at the junctions, which over-rides

NCad in maintaining junction stability and is seemingly

independent of ICAM-2. Therefore we made use of en-

dothelioma mouse lines where VECad expression was

permanently lost, to study the role of NCad at the junc-

tions and the role of ICAM2 in regulating its function.

The absence of VECad expression from mouse endothe-

lioma lines has not been reported consistently. Loss of

VECad expression in endothelioma lines has been ob-

served before [26]; however, endothelioma lines from

WT, ICAM-2 or ICAM-1/ICAM-2 double deficient mice

were found to express VE-Cad [40,41]. The reason for

(See figure on previous page.)

Figure 4 ERMs and Rac1 activity are involved in ICAM-2-dependent NCad recruitment and cell-cell contact. A- Rac1 activity in MCEC cell

lines, as measured by the GST-PAK pull-down assay. (a) Representative Western blot analysis of Rac1 activity. Rac1-GTP pull-down with GST-PAK

as well as total Rac1 were detected using mAb Cl23A8. (b) Quantification of Rac1 activity (Rac1-GTP/Total Rac1) in IC2 neg, IC2 FL, IC2 ΔERM,

IC2 ΔTAIL cell lines. Error bars indicate mean ± s.e.m., n = 6. Statistical analysis (t-test: *p < 0.05, **p < 0.005). B- Effect of DN and CA Rac1 on the

morphology and the distribution of NCad in the IC2 neg and IC2 FL lines. IC2 neg or IC2 FL were transfected with pEGFP control (a-d and m-p),

pEGFP-V12 Rac1 (e-h and q-t) or pEGFP-V12-N17 Rac1 (i-l and u-x). Cells were co-stained for ICAM-2 and NCad. ICAM-2 was stained using the

mAb 3C4 anti-mouse ICAM-2 followed by anti-rat AlexaFluor488 (pseudo colored Red). NCad was stained using mAb Cl32 anti-NCad followed by

anti-mouse AlexaFluor555 (pseudo colored Blue). Bar = 25 μm.
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these discrepancies is unclear. It is conceivable that dif-

ferent protocols for immortalization may be responsible

for these differences. Alternatively, or perhaps in com-

bination, the tissue of origin of the cells might influence

the ability of the endothelioma lines to retain certain ex-

pression profiles. However, in our hands lines from both

heart and lung lost VECad expression after passaging.

Moreover, three different preparations of endothelioma

lines were established and investigated, and all showed

the same adhesion molecules’ profile (data not shown).

In non-endothelial tissues, NCad is concentrated at

cell-cell contacts where it plays an important role in

maintaining barrier function; however the role of NCad

at endothelial cell-cell contacts is poorly understood.

Several reports show NCad expression in confluent EC

monolayers to be diffusely distributed over the surface

rather than junctional [37,42]. However, in line with our

findings, others have identified NCad expression at

endothelial cell-cell junctions and have suggested an in-

direct role for NCad in regulating junction assembly and

stability [14], possibly through the control of VECad ex-

pression. The data presented here suggests that NCad

may also play a direct, VECad-independent role in main-

taining the integrity of immature junctions.

Our data suggest that NCad may be present at imma-

ture AJ, possibly during vascular remodeling and/or

angiogenesis, or inflammation. AJ organization is differ-

ent at different stages of cell confluency [43]. Thus, our

findings may have implications for neo-vascularization.

NCad expression has been associated with neo-vessels in

the context of dental inflammation, where the gener-

ation of new vessels, in response to dental pulp inflam-

mation, is accompanied by re-expression of NCad in

endothelial cells [44]. In tumor angiogenesis, the fre-

quency of hypervascular tumours was shown to be sig-

nificantly higher for NCad-positive carcinomas than for

NCad-negative carcinomas [45]. A direct role for NCad

in angiogenesis has been show by Derycke et al, who

demonstrated that soluble NCad promotes angiogenesis

in both in vitro and in vivo models [46].

Figure 5 In vitro and in vivo cell permeability assays. A- Cells were grown in full medium on gold electrodes until stable impedance was

reached. TEER changes were recorded after 48 h and changes in TEER at baseline or B- after 10 min thrombin stimulation. Shown are average values

-/+ s.e.m. of 4 independent experiments. C- Cells were grown in full medium on gold electrodes until stable impedance was reached. Cells were then

infected with recombinant adenovirus encoding constitutively active (DA) or dominant negative (DN) myc-Rac1 at an m.o.i. of 400. After 4 h the virus

was removed and cells starved to assess barrier development. TEER changes were recorded after 48 h. Shown are average values -/+ s.e.m of 4

independent experiments. D- In vivo permeability assay: albumin leakage in postcapillary venules from the cremaster muscles of WT and ICAM-2 KO

(IC2 neg) mice in response to thrombin (2U/mL) during 10 min. Data are mean ± s.e.m. of n = 6 mice per group. t-test WT vs IC2-/- *p < 0.05,

**p < 0.01.
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Our findings may also be particularly relevant for spe-

cialized types of endothelium, such as corneal endothe-

lium (CE). In CE, NCad is a differentiation marker since

its expression coincides with the formation of the endo-

thelial cell layer during eye development [15]. Also, in

CE the anti-inflammatory neuropeptide VIP up-regulates

NCad expression [47]. In the eye, NCad has been shown

to regulate vascular permeability [15]. NCad deficiency

resulted in disorganization of apical junctional complex

in CE, and fluorescein dye injection in the anterior

chamber demonstrated increased permeability of the

endothelium and corneal edema. To our knowledge, the

expression and function of ICAM-2 in CE has not yet

been investigated.

In this paper we show that ICAM-2 regulates

localization of NCad at the junctions via a pathway in-

volving ERM proteins and the small GTPase Rac1.

Over-expression of constitutively active Rac1 restored

cell-cell contacts and NCad junctional localization in

ICAM-2 deficient cells, and conversely inhibition of

Rac1 activity in ICAM-2 over-expressing cells results in

monolayer disruption, suggesting that ICAM-2 mediates

junction assembly, at least in part, via the Rac1 pathway.

Several junctional molecules, including cadherins, have

been implicated in Rac1 activation [29,48,49]. The inter-

play between different stimuli could be critical for time-

dependent regulation of Rac1 activation and remains to

be investigated. Our data shows that interaction with

ERM proteins is required for the ICAM-2-dependent re-

cruitment of NCad at the junctions and contact inhib-

ition of cell proliferation, as well as ICAM-2-dependent

activation of Rac1.

ICAM-2, like many other adhesion molecules, is

known to play multiple roles in EC: leukocyte trafficking,

inflammation and angiogenesis. These data now add a

novel function, namely regulation of permeability. These

findings may be particularly relevant to inflammation. In

the ICAM-2 KO mice, thrombin-induced permeability

was reduced compared to controls. Thrombin is known

to have a significant remodelling effect over endothelial

junctions, by acting through several pathways including

small GTPases for review [36]. Our data suggests that

ICAM-2 controls the cellular response to thrombin by

regulating Rac1 activity. Future studies will investigate

the role of ICAM-2 in permeability induced by other

stimuli, and the possible cross-talk with other cell sur-

face receptors in controlling barrier function.

Conclusions
In conclusion, the data presented here describe a new

role for the adhesion molecule ICAM-2 in regulating the

localization of NCad in the early stages of monolayer

formation and in the control of permeability. Based on

these results, we propose a model where ICAM-2

supports early contact between EC by driving recruit-

ment of NCad at the junctions. This model is similar to

that proposed for nectins, cell adhesion molecules of the

Ig superfamily which regulate the organization of adhe-

rens junctions by mediating early contact between epi-

thelial cells and recruiting E-Cadherin to the junctions

[50]. Because of the role of NCad in new vessel forma-

tion, these results suggest ICAM-2 might regulate per-

meability and angiogenesis at least in part through its

ability to recruit NCad at the junctions.

Methods
Animals

All animal care and experimental procedures were per-

formed under licence and complied with the UK Ani-

mals (Scientific Procedures) Act, 1986. ICAM-2

deficient mice [40] where backcrossed for 10 generations

with C57/BL6 WT mice, supplied by Charles River La-

boratories UK. WT and ICAM-2 deficient mice were 8-

11 months old at the time of the experiments. Animals

were maintained in standard condition at the Biological

services Unit, Hammersmith Hospital, London, UK.

Reagents and antibodies

Antibodies (Ab) against human ICAM-2, monoclonal

Ab (mAb) BT-1 and polyclonal sc-1512, were obtained

from Serotec and Santa-Cruz, respectively. mAb against

mouse ICAM-2 (3C4) was obtained from Pharmingen.

mAb against NCad (Cl 32) was purchased from BD Bio-

science. mAbs against human VECad were purchased

from BD bioscience (Cl75) and Pharmingen (Cl55-7H1).

The mAb anti-mouse VECad (BV13) was kindly pro-

vided by Prof Elisabetta. Dejana (IFOM, Italy [51]). mAb

PECAM-1 P2B1 was purchased from Santa-Cruz. mAb

MJ7/18 anti-mouse endoglin was purchased from Che-

micon. mAb Cl 23A8 anti-Rac1 was purchased from

Transduction Laboratories. The anti-α-tubulin was ob-

tained from SIGMA. The pBabe-Puro retroviral vector

was a gift from Dr Aleksandar Ivetic (King’s College

London, UK). PEGFP-C1 control, constitutive active V12

Rac1-GFP and dominant negative V12-N17 Rac1-GFP

were kindly provided by Prof. Francisco Sanchez-Madrid

(Universidad Autonoma de Madrid, Spain [33]. The

PAK-GST construct was kindly provided by Prof. Anne

Ridley (King’s College London, UK). Fluroscein isothio-

cyanate (FITC)-labelled albumin (Sigma, UK) solubilised

in deionised water. Thrombin was purchased from

Sigma-Aldrich (Poole, Dorset, UK) and solubilised in

physiological saline.

Generation and culture of mouse endothelioma lines

Primary murine cardiac endothelial cells (MCEC) were

isolated from ICAM-2 deficient mice as previously de-

scribed [52]. The released EC were isolated by positive
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endoglin selection using Mac Microbead system (Milte-

nyi Biotech). MCEC cells were cultured in DMEM sup-

plemented with 10% fetal calf serum (FCS), 30ug/mL

endothelial cell growth supplement (ECGS; BD Biosci-

ences), 10 U/mL heparin, 2 mM L-glutamine, 100 IU/mL

penicillin, and 0.1 mg/mL streptomycin). For all experi-

mental assays, the cells were grown in DMEM media sup-

plemented with 1% FCS.

Immortalization of primary MCEC cells was carried out

with Polyoma middle T oncogene known to immortalize

only the endothelial cells [24]. To generate cell lines ex-

pressing full length or mutant murine ICAM-2, the im-

mortalized MCEC IC2 negative line was infected with the

retroviral supernatant corresponding to the empty vector

pBabe-Puro, pBabe-IC2, pBabe-IC2 ΔTAIL or pBabe-IC2

ΔERM at a multiplicity of infection of 0.025 to generate

the following lines: IC2 neg, IC2 FL, IC2 ΔERM and IC2

ΔTAIL, respectively. Plasmids contruct methods were

detailed in additional data section. Retroviral supernatants

were generated by transfecting Phoenix ecotropic pack-

aging cells (Orbigen Inc) with calcium phosphate ac-

cording to the manufacturer’s protocol. 96 hours

post-infection, cells were selected with puromycin (5

μg/mL, SIGMA). All the MCEC cells lines are poly-

clonal populations, thereby excluding a possible influ-

ence of vector integration on the phenotype.

Transfection endothelioma cell lines

Endothelioma cell lines IC2 neg and IC2 FL were trans-

fected with the plasmid pEGFP-C1 control, constitutive

active Rac1 pEGFP-V12 or constitutive negative Rac1

pEGFP-V12-N17 with Lipofectamine2000 (Life tech-

nologies), according to the manufacturer’s procedure.

To generate cell line, KOIC2-PmT cells were infected

with the retroviral supernatant pBabe-IC2 encoding full-

length (FL) mouse ICAM-2 (IC2 FL), or empty vector

pBabe (IC2 neg).

Isolation and culture of HUVEC

HUVEC were isolated as previously described [53]. The

use of human EC was approved by Hammersmith

Hospital Research Ethics Committee (06/Q0406/21).

Inhibition of expression by RNA interference

Human ICAM-2 siRNA (20 nM, Dharmacon) were de-

livered into 30% confluent HUVEC, cultured in EGM-2

media (Lonza-Cambrex) using AtuFECT01 lipid (1 μg/mL;

Silence Therapeutics, Berlin, Germany) [54]. Non-targeting

siRNA (Dharmacon) at the same concentration was used

as a control. The following day, the transfection complex

was replaced with medium M199 (containing 10% FCS

and 15 μg/mL ECGS). After 6 hr, this was replaced with

medium M199 (containing 10% FCS and 7.5 μg/mL ECGS)

until analysis. Inhibition of NCad expression in IC2 FL was

performed in medium DMEM 1% FCS using the same

methods and siRNA concentration that was used for

HUVEC. The siRNA sequences used were: NCad siRNA

(UGUCAAUGGGGUUCUCCACdTdT) and GUGGAGA

ACCCCAUUGACAdTdT); scrambled siRNA (CAUGCG-

GAUUCGGAUUUUCdTdT and GAAAAUCCGAAUCC

GCAUGdTdT).

Permeability assay

Endothelial barrier assessment: Cells were grown on

gold electrodes (in 8W1E arrays) and transendothelial

electrical resistance (TEER) measured by real time im-

pedance spectroscopy using ECIS (Applied Biophysics).

Cells were grown to confluence in full medium and then

switched into starvation medium containing 1% FCS for

48 h at which point TEER values were recorded. To as-

sess responsiveness to vasoactive treatment, starved cells

were stimulated with 1 U/ml thrombin (Sigma) and

TEER changes measured after 10 min. To assess the role

of Rac1, cells were infected with recombinant adenovi-

ruses encoding constitutively active (V12) or dominant-

negative (N17) myc-tagged Rac 1 [35] (a kind gift from

Prof Anne Ridley, King’s College London, UK) at an

m.o.i. of 400. After 4 h, virus was removed and the

cells switched to starvation medium to assess barrier

development.

In vivo permeability assay: Vascular permeability assay

in-vivo was performed using the technique of measuring

plasma protein extravasation in the mouse cremaster

muscle [55]. Briefly, mice (WT and ICAM-2 deficient

mice) were anaesthetised with ketamine (150 mg/kg;

Ketaset, Fort Dodge Animal Health, Southampton, UK)

and xylazine (7.5 mg/kg; Rompun, Bayer Healthcare,

Newbury, UK). The jugular vein was exposed and can-

nulated with polyethylene tubing (PE10) for drug/dye

administration.

The cremaster muscle was exteriorised [55,56] and

gently laid across a Plexiglass viewing stage; and

mounted on an Olympus “BW61WI” microscope with a

water-immersion objective lens (magnification of 40×;

LUMPlan, FI/IR, Olympus, Japan). Vascular permeability

was measured by injecting FITC-albumin i.v. (0.25 mg

per gram body weight) 10 min before recording. Five mi-

nutes prior to recording, thrombin (2 U/ml) was admin-

istered i.v. A snapshot of vessel fluorescence was taken

using a block filter (excitation at 450—490 nm, emission

at 535—620 nm) and a camera (model CoolSNAP HQ2,

Photometrics, Tucson, AZ) coupled to a Windows

XP-based computer for recording by Slidebook 4.2 (In-

telligent Imaging Innovations, Inc., Denver, CO). Post-

capillary venules with diameters of 20-40 μm were

analyzed for a period of 10 minutes. Albumin leakage

was quantified by measuring mean fluorescence inten-

sity using ImageJ64 (National Institute of Health, USA).
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Average fluorescence intensity in three areas of equal

size was measured: inside the vessel (Flin), outside the

vessel (Flout) and background fluorescence in an area

with no obvious leakage (bk). Albumin leakage was then

determined as: [(Flout × bk)/(Flin × bk)] × 100%.

Flow cytometry (FACS)

FACS analysis was performed using standard methods

[52] and analyzed on an Epic XL-MCL flow (Beckman-

Coulter).

Cell proliferation assay

Cells were seeded onto 1% gelatin-coated 24 wells plates

at 2500 cells/cm2, and counted using a hemocytometer

in triplicate every day over 4 days.

Western blot

Total protein was extracted using RIPA lysis buffer

(10 mM sodium phosphate pH 8, 150 mM NaCl, 1% so-

dium deoxycholate, 1% NP40, 0.5% SDS, 1 mM PMSF,

10 mM NaF, 1 mM sodium orthovanadate) and protease

inhibitor cocktail (SIGMA). Protein extracts were ana-

lysed by SDS-PAGE followed by immunoblotting using

the indicated antibodies and detected using an enhanced

ECL detection system (GE Healthcare). The intensity of

the bands was quantified using alpha Innotech Chemi

Imager software.

Immunofluorescence microscopy

Cells were cultured on glass cover-slips, fixed with 4%

paraformaldehyde, permeabilized with 0.4% Triton-X100

and immunostained with the indicated primary antibodies.

Subsequent visualization was performed with AlexaFluor-

conjugated Ab (Life technologies). For ICAM-2/VECad or

VECad/NCad co-staining, VECad was labeled using the

ZENON® kit (Life technologies), according to the manufac-

turer’s protocol. Nuclei were visualized using TOPRO-3

(Life technologies). Images were captured with a confocal

microscope (LSM510 META; Carl Zeiss). Adobe Photo-

shop was used according to the guidelines to construct the

confocal multi-channel images, to select specific regions of

interest and to apply minor alterations to contrast and

brightness uniformly across the entire figure panel.

Rac pull-down assay

Rac1 activity was determined as previously described

[17]. Briefly, cells were grown in reduced media for

48 hours and lysed in magnesium lysis buffer 1× (MLB)

on ice. GTP loading of Rac was measured using 100 μg

GST-PAK bound to glutathione beads (GE Healthcare),

as previously described [57]. The detailed protocol of

the Rac pull-down assay and preparation of lysis/wash

buffers was provided by Upstate Biotechnology (Rac

activity Assay kit).

Statistics

Data are expressed as mean ± s.e.m. Comparisons be-

tween groups were performed with a two-tailed t-test

using Prism software (GraphPad, San Diego, CA, USA).

Additional files

Additional file 1: Figure S1. Analysis of N-Cad levels in confluent and

sub-confluent HUVECs. N-Cad levels were measured by Western-Blot in

HUVECs at 48h post-seeding, in sparse (5000 cells/cm2) and confluent

condition (500000 cells/cm2). Quantification was performed by densitometry,

normalized with GAPDH. Error bars indicate mean ± s.e.m., n = 3. t-test sparse

vs confluent *p<0.05.

Additional file 2: Figure S2. Analysis of ICAM-2 and N-Cad level after

siRNA treatment. A- Analysis by Western-blot of ICAM-2 level after IC2

siRNA treatment from 24 to 72 h. Quantification of ICAM-2 Western-Blot

was performed by densitometry, normalized with respect of α-tubulin.

Error bars indicate mean ± s.e.m., n=5. t-test control vs IC2 siRNA *p<0.05,

**p<0.01. B- Analysis by Western-blot of N-Cad level after N-Cad siRNA

treatment from 24 to 96 h. Quantification of N-Cad Western-Blot was

performed by densitometry, normalized with respect of α-tubulin. Error

bars indicate mean ± s.e.m., n=5. t-test control vs N-Cad siRNA *p<0.05,

**p<0.01,***p<0.001).

Additional file 3: Figure S3. Distribution of VEC and PECAM-1 in

HUVEC treated with ICAM-2 siRNA. VEC was visualized using mAb

Cl55-7H1 followed by anti-mouse AlexaFluor 488 (Green) and PECAM-1

was visualised using mAb P2B1 anti-human PECAM-1 prelabelled with

the Zenon® mouse IgG1 555 kit (Red). Bar = 25 μm.

Additional file 4: Figure S4. Endothelial characteristics of the

endothelioma cell lines. A- Phase contrast image of WT Pmt, KOIC2

Pmt cell lines, showing that IC2 Pmt as well as have lost the typical

cobblestone monolayer morphology and grow on top of each other

whilst WT Pmt cell line have a cobblestone structure Bar = 150 μm.

B- ICAM-2 over-expression restores tube formation on Matrigel. Cells

were plated onto 48 wells (25000 cells/well) pre-coated with reduced

growth factor Matrigel. Phase contrast pictures were taken 9 hours

post-seeding using digital camera model DP50-CU (Olympus) connected

to a Leitz labovert inverted microscope (Leica microsystems, objective

x10). Bar=200 μm. C- Representative FACs profile of ICAM-2 and endoglin

surface levels on IC2 neg, IC2 FL and HUVEC cells.
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