S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

B. Goldstein, Insulin resistance as the core defect in type 2 diabetes mellitus, The American Journal of Cardiology, vol.90, issue.5, pp.3-10, 2002.
DOI : 10.1016/S0002-9149(02)02553-5

P. Wilson, D. Agostino, R. Parise, H. Sullivan, L. Meigs et al., Metabolic Syndrome as a Precursor of Cardiovascular Disease and Type 2 Diabetes Mellitus, Circulation, vol.112, issue.20, pp.3066-3072, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.539528

C. Bouvet, E. Belin-de-chantemele, A. Guihot, E. Vessieres, A. Bocquet et al., Flow-Induced Remodeling in Resistance Arteries From Obese Zucker Rats Is Associated With Endothelial Dysfunction, Hypertension, vol.50, issue.1, pp.248-254, 2007.
DOI : 10.1161/HYPERTENSIONAHA.107.088716

E. Vessieres, M. Freidja, L. Loufrani, and C. Fassot, Flow (shear stress)-mediated remodeling of resistance arteries in diabetes, Vascular Pharmacology, vol.57, issue.5-6, pp.173-178, 2012.
DOI : 10.1016/j.vph.2012.03.006

URL : https://hal.archives-ouvertes.fr/inserm-00768638

J. Van-den-akker, M. Schoorl, E. Bakker, and E. Vanbavel, Small Artery Remodeling: Current Concepts and Questions, Journal of Vascular Research, vol.47, issue.3, pp.183-202, 2009.
DOI : 10.1159/000255962

E. Bakker, H. Matlung, P. Bonta, C. De-vries, N. Van-rooijen et al., Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone, Cardiovascular Research, vol.78, issue.2, pp.341-348, 2008.
DOI : 10.1093/cvr/cvn050

K. Tarhouni, A. Guihot, M. Freidja, B. Toutain, B. Henrion et al., Key Role of Estrogens and Endothelial Estrogen Receptor ?? in Blood Flow-Mediated Remodeling of Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.33, issue.3, pp.605-611, 2013.
DOI : 10.1161/ATVBAHA.112.300334

M. Freidja, K. Tarhouni, B. Toutain, and . Tc, The AGE-Breaker ALT-711 Restores High Blood Flow-Dependent Remodeling in Mesenteric Resistance Arteries in a Rat Model of Type 2 Diabetes, Diabetes, vol.61, issue.6, pp.1562-1572, 2012.
DOI : 10.2337/db11-0750

URL : https://hal.archives-ouvertes.fr/inserm-00768683

P. Ulrich and A. Cerami, Protein Glycation, Diabetes, and Aging, Recent Progress in Hormone Research, vol.56, issue.1, pp.1-21, 2001.
DOI : 10.1210/rp.56.1.1

J. Su, P. Lucchesi, R. Gonzalez-villalobos, D. Palen, B. Rezk et al., Role of Advanced Glycation End Products With Oxidative Stress in Resistance Artery Dysfunction in Type 2 Diabetic Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.8, pp.1432-1438, 2008.
DOI : 10.1161/ATVBAHA.108.167205

J. Unthank, S. Fath, H. Burkhart, S. Miller, and M. Dalsing, Wall Remodeling During Luminal Expansion of Mesenteric Arterial Collaterals in the Rat, Circulation Research, vol.79, issue.5, pp.1015-1023, 1996.
DOI : 10.1161/01.RES.79.5.1015

F. Pourageaud, D. Mey, and J. , Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow, Am J Physiol, vol.273, pp.1699-1706, 1997.

A. Driss, C. Devaux, D. Henrion, M. Duriez, C. Thuillez et al., Hemodynamic Stresses Induce Endothelial Dysfunction and Remodeling of Pulmonary Artery in Experimental Compensated Heart Failure, Circulation, vol.101, issue.23, pp.2764-2770, 2000.
DOI : 10.1161/01.CIR.101.23.2764

M. Freidja, E. Vessieres, N. Clere, V. Desquiret, A. Guihot et al., Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats, Journal of Hypertension, vol.29, issue.1, pp.102-112, 2010.
DOI : 10.1097/HJH.0b013e32833db36e

C. Dubroca, X. Loyer, K. Retailleau, G. Loirand, P. Pacaud et al., RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries, Cardiovascular Research, vol.73, issue.1, pp.190-197, 2007.
DOI : 10.1016/j.cardiores.2006.10.020

M. Bolla, K. Matrougui, L. Loufrani, J. Maclouf, B. Levy et al., p38 Mitogen-Activated Protein Kinase Activation Is Required for Thromboxane- Induced Contraction in Perfused and Pressurized Rat Mesenteric Resistance Arteries, Journal of Vascular Research, vol.39, issue.4, pp.38353-360, 2002.
DOI : 10.1159/000065547

D. Henrion, I. Laher, R. Laporte, and J. Bevan, Further evidence from an elastic artery that angiotensin II amplifies noradrenaline-induced contraction through activation of protein kinase C, European Journal of Pharmacology, vol.224, issue.1, pp.13-20, 1992.
DOI : 10.1016/0014-2999(92)94812-A

F. Dowell, D. Henrion, J. Benessiano, P. Poitevin, and B. Levy, Chronic infusion of low-dose angiotensin II potentiates the adrenergic response in vivo, JH yp ert ens1996, pp.177-182
DOI : 10.1097/00004872-199602000-00005

E. Vessieres, E. Belin-de-chantemele, B. Toutain, A. Guihot, A. Jardel et al., Cyclooxygenase-2 Inhibition Restored Endothelium-Mediated Relaxation in Old Obese Zucker Rat Mesenteric Arteries, Frontiers in Physiology, vol.1, p.145, 2010.
DOI : 10.3389/fphys.2010.00145

K. Retailleau, E. Belin-de-chantemele, S. Chanoine, A. Guihot, E. Vessieres et al., Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries, Hypertension, vol.55, issue.2, pp.339-344, 2010.
DOI : 10.1161/HYPERTENSIONAHA.109.140236

E. B. De-chantemele, E. Vessieres, O. Dumont, A. Guihot, B. Toutain et al., Reactive Oxygen Species Are Necessary for High Flow (Shear Stress)-induced Diameter Enlargement of Rat Resistance Arteries, Microcirculation, vol.16, issue.5, pp.391-402, 2009.
DOI : 10.1080/10739680902816301

L. Loufrani, S. Lehoux, A. Tedgui, and B. Levy, Stretch Induces Mitogen-Activated Protein Kinase Activation and Myogenic Tone Through 2 Distinct Pathways, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.19, issue.12, pp.2878-2883, 1999.
DOI : 10.1161/01.ATV.19.12.2878

L. Loufrani, Z. Li, B. Levy, D. Paulin, and D. Henrion, Excessive Microvascular Adaptation to Changes in Blood Flow in Mice Lacking Gene Encoding for Desmin, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.10, pp.1579-1584, 2002.
DOI : 10.1161/01.ATV.0000032652.24932.1A

A. Eichmann, L. Yuan, D. Moyon, F. Lenoble, L. Pardanaud et al., Vascular development: from precursor cells to branched arterial and venous networks, The International Journal of Developmental Biology, vol.49, issue.2-3, pp.259-267, 2005.
DOI : 10.1387/ijdb.041941ae

R. Hilgers, P. Schiffers, W. Aartsen, G. Fazzi, J. Smits et al., Tissue Angiotensin-Converting Enzyme in Imposed and Physiological Flow-Related Arterial Remodeling in Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.5, pp.892-897, 2004.
DOI : 10.1161/01.ATV.0000126374.60073.3d

G. Kojda and R. Hambrecht, Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?, Cardiovascular Research, vol.67, issue.2, pp.187-197, 2005.
DOI : 10.1016/j.cardiores.2005.04.032

O. Sorop, E. Bakker, A. Pistea, and J. Spaan, Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels, AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.1236-1245, 2006.
DOI : 10.1152/ajpheart.00838.2005

M. Heil, T. Ziegelhoeffer, S. Wagner, B. Fernandez, A. Helisch et al., Collateral Artery Growth (Arteriogenesis) After Experimental Arterial Occlusion Is Impaired in Mice Lacking CC-Chemokine Receptor-2, Circulation Research, vol.94, issue.5, pp.671-677, 2004.
DOI : 10.1161/01.RES.0000122041.73808.B5

H. Steinberg, H. Chaker, R. Leaming, A. Johnson, G. Brechtel et al., Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance., Journal of Clinical Investigation, vol.97, issue.11, pp.2601-2610, 1996.
DOI : 10.1172/JCI118709

O. Dumont, F. Pinaud, A. Guihot, C. Baufreton, L. Loufrani et al., Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine, Cardiovascular Research, vol.77, issue.3, pp.600-608, 2008.
DOI : 10.1093/cvr/cvm055

URL : https://hal.archives-ouvertes.fr/hal-01390572

B. Shapiro, T. Owan, S. Mohammed, D. Meyer, L. Mills et al., Advanced Glycation End Products Accumulate in Vascular Smooth Muscle and Modify Vascular but Not Ventricular Properties in Elderly Hypertensive Canines, Circulation, vol.118, issue.10, pp.1002-1010, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.777326

S. Vasan, P. Foiles, and H. Founds, Therapeutic potential of breakers of advanced glycation end product???protein crosslinks, Archives of Biochemistry and Biophysics, vol.419, issue.1, pp.89-96, 2003.
DOI : 10.1016/j.abb.2003.08.016

J. Steppan, H. Tran, A. Benjo, L. Pellakuru, V. Barodka et al., Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness, Experimental Gerontology, vol.47, issue.8, pp.565-572, 2012.
DOI : 10.1016/j.exger.2012.04.006

P. Vaitkevicius, M. Lane, H. Spurgeon, D. Ingram, G. Roth et al., A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys, Proceedings of the National Academy of Sciences, vol.98, issue.3, pp.1171-1175, 2001.
DOI : 10.1073/pnas.98.3.1171

F. Lenfant, F. Tremollieres, P. Gourdy, and J. Arnal, Timing of the vascular actions of estrogens in experimental and human studies: Why protective early, and not when delayed?, Maturitas, vol.68, issue.2, pp.165-173, 2011.
DOI : 10.1016/j.maturitas.2010.11.016

URL : https://hal.archives-ouvertes.fr/inserm-00615494

C. Yan, A. Huang, G. Kaley, and D. Sun, Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats, AJP: Heart and Circulatory Physiology, vol.293, issue.5, pp.3105-3110, 2007.
DOI : 10.1152/ajpheart.00627.2007

J. De-haan and M. Cooper, Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction, Front Biosci, vol.3, pp.709-729, 2011.

L. Gao and G. Mann, Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling, Cardiovascular Research, vol.82, issue.1, pp.9-20, 2009.
DOI : 10.1093/cvr/cvp031

J. Lu, J. J. Meng, H. Wang, D. Jiang, B. Liu et al., The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats, Cardiovascular Diabetology, vol.12, issue.1, p.58, 2013.
DOI : 10.1016/S0026-0495(96)90000-1

B. Engelbrecht, Y. Mattern, S. Scheibler, D. Tschoepe, T. Gawlowski et al., Methylglyoxal Impairs GLUT4 Trafficking and Leads to Increased Glucose Uptake in L6 Myoblasts, Hormone and Metabolic Research, vol.46, issue.02, pp.77-84, 2013.
DOI : 10.1055/s-0033-1357121

Y. Su, S. Qadri, L. Wu, and L. Liu, Methylglyoxal modulates endothelial nitric oxide synthase-associated functions in EA.hy926 endothelial cells, Cardiovascular Diabetology, vol.12, issue.1, p.134, 2013.
DOI : 10.1016/j.ejphar.2006.08.086

O. Dumont, L. Loufrani, and D. Henrion, Key Role of the NO-Pathway and Matrix Metalloprotease-9 in High Blood Flow-Induced Remodeling of Rat Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.317-324, 2007.
DOI : 10.1161/01.ATV.0000254684.80662.44

URL : https://hal.archives-ouvertes.fr/inserm-00136211

. Gornyd, . Loufranil, . Kubisn, and H. Levybi, Chronic Hydralazine Improves Flow (Shear Stress)-Induced Endothelium-Dependent Dilation in Mouse Mesenteric Resistance Arteries in Vitro, Microvascular Research, vol.64, issue.1, pp.127-134, 2002.
DOI : 10.1006/mvre.2002.2417

D. Sun, A. Huang, A. Koller, and G. Kaley, Decreased Arteriolar Sensitivity to Shear Stress in Adult Rats is Reversed by Chronic Exercise Activity, Microcirculation, vol.9, issue.2, pp.91-97, 2002.
DOI : 10.1080/713774057